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ABSTRACT
There are generally three steps to isolate a disease linkage-susceptibility gene: genome-wide scan, fine

mapping, and, last, positional cloning. The last step is time consuming and involves intensive laboratory
work. In some cases, fine mapping cannot proceed further on a set of markers because they are tightly
linked. For years, genetic statisticians have been trying different ways to narrow the fine-mapping results
to provide some guidance for the next step of laboratory work. Although these methods are practical and
efficient, most of them are based on IBD data, which usually can be inferred only from the genotype data
with some uncertainty. The corresponding methods thus have no greater power than one using genotype
data directly. Also, IBD-based methods apply only to relative pair data. Here, using genotype data, we
have developed a statistical hypothesis-testing method to pinpoint a SNP, or SNPs, suspected of responsibility
for a disease trait linkage among a set of SNPs tightly linked in a region. Our method uses genotype data
of affected individuals or case-control studies, which are widely available in the laboratory. The testing
statistic can be constructed using any genotype-based disease-marker disequilibrium measure and is asymp-
totically distributed as a chi-square mixture. This method can be used for singleton data, relative pair
data, or general pedigree data. We have applied the method to simulated data as well as a real data set;
it gives satisfactory results.

RECENTLY, genome-wide scans have been widely used to exclude those only in linkage disequilibrium (LD)
in the study of complex genetic diseases such as car- to the susceptibility markers.

diovascular diseases, obesity, diabetes, schizophrenia, etc., Difficulty in the identification of specific disease-pre-
due to the advance in biological science that hundreds of disposing alleles may result due to multiple genetic fac-
markers could be genotyped quickly with reduced cost. tors (Tait and Harrison 1991; Thomson 1991). Green-
Subsequent fine-mapping studies have been also fre- berg (1993) and Hodge (1993) considered the analysis
quently reported, which narrow the linkage region to a of “necessary” vs. “susceptibility” loci in which the associ-
disease trait to about one or a few centimorgans. How- ated marker allele itself increases disease susceptibility
ever, very few of the studies reach the final step of but is neither necessary nor sufficient for disease expres-
positional cloning to isolate the gene responsible for sion. The conditioning method is one of the typical
the linkage to a complex disease. Part of the reason is statistical tools for studying such problems. Fulker et
that the process involves genomic DNA spanning millions al. (1999) developed a conditioning method using the
of base pairs at the linkage region, sequencing large variance component model. This method tests both link-
amounts of the overlapped genomic DNA fragments, and age and association at the same time, so that it provides
genotyping tens or hundreds of markers in the region, the result whether a locus is the candidate locus to the
which take intensive work in an ordinary laboratory. In trait or is just in LD with the candidate locus. This idea
some cases, fine mapping cannot proceed farther on a was further expanded by Cardon and Abecasis (2000),
set of markers because they are tightly linked. For years, in which a combined linkage and association method
genetic statisticians have been trying to develop para- using the variance components model is proposed. Valdes
metric and/or nonparametric methods to pinpoint the and Thomson (1997) and Siegmund et al. (2001) used
linkage to one or very few markers suspected to be the conditioning method to narrow down the associa-
truly responsible for the linkage of a disease trait and tion region. Lazzeroni and Lange (1998) proposed

such a framework in the transmission/disequilibrium
test. Furthermore, Soria et al. (2000) considered a con-
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studied a Bayesian variance components method, and is to identify the true susceptible SNP(s), if any, among
them.Horikawa et al. (2000) used a modified association

study method, which identified a single-nucleotide poly- For ease of explanation we first describe our method
for singleton data and then extend it to general pedi-morphism (SNP), SNP43, that showed significant associ-
gree data in a later section. We now describe a generalation with the evidence for linkage with type 2 diabetes.
procedure for the conditional inference of this prob-Recently, Sun et al. (2002) proposed a statistical method
lem; the construction of the specific testing statistic isfor this problem. They used a conditioning hypothesis-
detailed later. Let G � (G1, . . . , GJ) be a general nota-testing procedure to pinpoint, among a set of tightly
tion for the composite SNP genotype at all the SNP loci,trait-linked genes, a single or a few susceptible markers,
where Gj � (gj1, gj 2) is its allelic notation; Gnj � (gnj1,using identity-by-descent (IBD) data from affected sib-
gn j 2) be the observed genotype of the nth individual atships. This method is based on the genome-wide scan
the jth SNP locus (n � 1, . . . , N; j � 1, . . . , J ); and Gn �result, which identified a region showing strong linkage
(Gn1, . . . , GnJ) be the vector notation of the observedwith a putative trait. Often markers in such a region are
composite genotype of individual n. The data to be usedtightly linked among themselves. The goal of the method
are G1, . . . , GN , the observed composite genotypes of Nis to identify which of those markers are truly responsi-
individuals at J SNP loci each.ble for the linkage and which are merely tightly linked

Here we assumed the common practice that at eachto such putative markers. This method is practical in
SNP locus there are two different alleles in the popula-application and yielded good results in their simulation
tion; we code them as 1 and 2, although the same valuestudies.
from alleles at different loci may have different allelicHowever, most of the existing methods for this prob-
meaning. At each locus, we code the genotype as Gnj �lem use IBD data on paired family members. Usually
0 when gnj1 � gnj2, Gnj � I when (gnj1, gnj2) � (1, 1), andIBD data are not fully available in practice and can be
Gnj � II when (gnj1, gnj2) � (2, 2). Note that we have twoinferred only from genotype data with uncertainty and
representations of a SNP genotype, one allelic and oneoften inconsistently from different methods used. Infer-
numerical. Which one(s) will be used, even in the sameence based on them has no greater power than that
expression, depends on convenience.based on genotype data, unless the IBD data are a suffi-

The disequilibrium measure and the conditioningcient statistic for the parameters underlying the model.
principle: The proposed conditional testing procedureAlso, IBD-based methods apply only to relative pair data.
uses testing statistics, which are constructed via the con-Here we present a method for this problem by formu-
ditional version of any trait-marker LD measure usinglating a set of conditional hypothesis testing, in this
genotype data. We first state the conditional testingrespect similar to that in Sun et al. (2002), but we use
principle and then give the specific forms of the testinggenotype data instead and the testing statistic is different
statistic for some particular data designs.in nature from theirs. Using any genotype-based trait-

Now we describe the trait-marker LD measure. Let pAmarker disequilibrium measure, the testing statistics are
be the population frequency of the disease allele A, qjkconstructed by successively conditioning on each of the
be those of allele k of marker j, and PA, jk be those of thetightly linked SNP sites. Our method is nonparametric:
haplotype (A, Mjk). Let DA, jk � PA, jk � pAqjk be the LDit does not require model specification or phase infor-
measure between the disease allele A and allele k ofmation in the data. It applies to family data of arbitrary
marker j. Since the position of A is unknown, pA, PA, jk,structure, including singleton data, in which each indi-
and thus DA,jk cannot be directly estimated from the ob-vidual comes from a different and independent family.
served data; instead various quantities are constructed toUnder the null hypothesis of being the sole susceptible
infer it.site, each of these statistics follows asymptotically a chi-

When DA, jk is positive, the marker allele Mjk is moresquare mixture distribution. The corresponding P val-
likely to be associated with the disease-susceptible alleleues are easily obtained via simulation.
A than would be expected by chance. The disequilib-
rium measures DA, jk are among the main tools for finding
the association between a marker locus (loci) and theTHE METHOD
disease locus. There are numerous ways to construct

The data: Let A be the unknown disease allele, for inference statistic from the DA, jk’s, some using relative
which we want to infer its position in the human ge- pair IBD data at markers, and some using marker geno-
nome. Assume that there are J identified SNP markers, type data (Bengtsson and Thomson 1981; Lehesjoki
Mj ( j � 1, . . . , J), with alleles Mjk (k � 1, 2), which are et al. 1993; Feder et al. 1996; Nielsen et al. 1998). Here
brought to our attention because of their tight linkage we develop the conditional version of the genotype-
to the disease allele. A natural question is whether all based method.
of them are susceptible genes for the linkage or some Let qjk |i be the population frequency of allele k of the
of them show disease linkage just because of their strong jth SNP conditional on the ith SNP genotype (k � 1,

2). Let PA, jk |i be the population frequency of the disease-linkage with the true susceptible gene(s). Our goal here
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TABLE 1 subdata sets, and we obtain the genotype frequency of
the second locus as shown in Table 2. Likewise, condi-Genotype frequencies at two loci
tioning on the second locus genotypes separately, we
get the genotype frequency of the first locus as shownLocus 2
in Table 3.

Locus 1 (1, 1) (1, 2) (2, 2) Total In conditional testing, test statistics are constructed
with the data in Tables 2 and 3. For example, to test(1, 1) 39 72 45 156

(1, 2) 70 101 57 228 the hypothesis that locus 1 is the only susceptible site,
(2, 2) 23 70 25 118 then conditioning on it we obtain three subtables. If
Total 132 243 127 502 the hypothesis is true, the LD vanish on each of the

subtables, and the test statistics constructed from them
should manifest nonsignificance.

The hypotheses and testing statistics: We are inter-
SNP haplotype (A, Mjk) at the jth marker locus condi- ested in testing the null hypothesis Hi : among the set
tional on the ith SNP genotype and Pjr |i be that of the of markers, SNP marker i is the sole cause of the linkage
homozygote SNP genotype r at the jth SNP locus con- to the disease locus. Here we assume background effects
ditional on the ith SNP genotype (r � I, II). We choose on the linkage are negligible; see the discussion for
the conditional LD measure at the jth locus, given the more details on this. Under Hi, Dj |i � 0 for all j � i. For
ith SNP genotype, as each fixed i, testing statistics Sj |i are constructed, usually

a function of the empirical version D̂j |i ( j � i), such thatDj |i � PAj1|i � pAqj1|i . (1)
they tend to be small under Hi and large otherwise. HiNote that PAj 2|i � pAqj2|i � �(PAj 1|i � pAqj1|i), so only one
can be decomposed as Hi � Hi1 � Hi2, where Hik is theof the marker alleles is needed to define this disequilib-
hypothesis: genotype k at site i is the sole susceptibilityrium. Our motivation to use the conditional LD measure
SNP reasonable for the trait LD in the region. Note thatis that if marker i is the sole susceptible site of linkage
when Hik is rejected, we can conclude only that the SNPto the disease allele, then the genotype data from this
does not contribute to the LD in the region, that thesite constitute a sufficient statistic for this measure, or,
single or multiple causal polymorphism may not be amongin other words, it will explain all the disequilibria in the
those that are typed, or that there is more than one sourceregion. Thus, conditioning on the site of interest, the
of such contribution. By testing the sequence of {Hik}, wedisequilibria parameters Dj |i vanish from the conditional
can find a confidence set, which may consist of a singledistribution of the data, for all j � i.
SNP or several SNPs, or it may be empty. This set mayIn the following we explain what the conditioning
be more accurately inferred by testing the hypothesis ofactually means in practice. Suppose we have genotype
multiple SNPs as in a later subsection. Our method candata for 502 individuals on two SNP loci, each locus has
be used to detect a more detailed local relationship bytwo alleles, and each allele takes one of the two forms
testing the more detailed hypothesis Hj |i, LD at site j isthat we coded as 1 and 2. The genotype at each locus
completely caused by site i , or even the finer hypothesisis thus represented as (1, 1), (1, 2) � (2, 1) and (2, 2).
Hj |ik, LD at site j is completely caused by genotype k ofThe supposed observed genotype frequencies for the
site i.two loci are given in Table 1.

These last hypotheses are inferred using the statisticsBy conditioning on the genotype at the first locus
Sj |ik, which are the corresponding versions of the Sj |i’s forbeing (1, 1), we mean the subgroup of 156 individuals
the Hj |ik’s. For recessive disease, the conditional statisticwhose genotype at the first locus is (1, 1). Within this
notation Sj |ik means Sj |Gi�k . The Sj |ik’s are constructed ofsubgroup, the genotype at the second locus is denoted
the form Sj |ik � nX 2

j |ik, and the random column vectoras locus 2/(1, 1) and similarly for conditioning on the
√nXik: � √n(Xj |ik : j � i) is jointly asymptotic normal un-first locus genotype being (1, 2) and (2, 2). Thus condi-
der Hik. Let �ik be the asymptotic variance matrix of Xiktioning on the first locus genotype (1, 1), (1, 2), and (2,

2) separately, the data are divided into three nonoverlap and � � (�1, . . . , � J�1) be its eigenvalues. Usually �ik

TABLE 2

Genotype frequencies at locus 2 conditioning on locus 1

Locus 2/(1, 1) Locus 2/(1, 2) Locus 2/(2, 2)

(1, 1) (1, 2) (2, 2) Total (1, 1) (1, 2) (2, 2) Total (1, 1) (1, 2) (2, 2) Total

39 72 45 156 70 101 57 228 23 70 25 118
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TABLE 3

Genotype frequencies at locus 1 conditioning on locus 2

Locus 1/(1, 1) Locus 1/(1, 2) Locus 1/(2, 2)

(1, 1) (1, 2) (2, 2) Total (1, 1) (1, 2) (2, 2) Total (1, 1) (1, 2) (2, 2) Total

39 70 23 132 72 101 70 243 45 57 25 127

and thus � can be estimated by their empirical version. it is simpler in computing the quantiles or P values
The particular forms of the Sj |ik’s are given later for using the existing �2 tables.
different data designs. 4. Given � and �, the density of �2

d(�, �) can be derived
Asymptotic distribution of the testing statistic: Let us by the multiple convolution formula, and thus its

consider Hik. Its testing statistic is given by �th quantile and/or the P value of the observed
statistic can be obtained. But, more conveniently, for
a given level �, the �th quantile and/or the P valueS�|ik(�) � �

j�i

S j |ik

�j

or S�|ik � �
j �i

Sj |ik .
of the observed statistic can be consistently estimated
by their empirical versions.To get the asymptotic distribution of S�|ik(�) or S�|ik

under Hik, we first give a general result for the distribu- To sample from �2
d(�, �), we sample Y 2

1, . . . , Y 2
J�1

tion of quadratic form of normal random variables. The from �2
1 independently; then �1�1Y 2

1 � . . . � �d�dY 2
d is

proof is given in the appendix. a sample from �2
d(�, �).

Proposition: Let X � (X1, . . . , Xd)� be a nondegenerate The �2 linear combination is the general form of the
normal random vector: X � N(0, �) (i.e., |�| � 0), quadratic form of normals. When the Xj’s are indepen-
with eigenvalues � � (�1, . . . , �d); A is a d-dimensional dent, � j � Var(Xj); when the Xj’s are IID and A �
positive definite symmetric matrix with eigenvalues � � Id, �2

d(�, �) � �1�
2
d. There are some other similar results

(�1, . . . , �d); the �i’s and the �i’s keep the same order about the quadratic form of normals (Graybill and
in the diagonalization. We have Marsaglia 1957; Good 1969; Khatri 1980, 1982;

Anderson and Styan 1982). Our result is independenti. X�AX � �2
d(�, �) :� �1�1Y 2

1 � . . . � �d �dY 2
d ,

and not of the same formulations and conditions as the
where the Y 2

j ’s are independent and identically distrib- others.
uted (IID) �2

1 random variables. Let the eigenvalues (in their original order) of �i k be
� � (�1, . . . , �J�1); by ii of the Proposition, we have (seeii. Let 	 � diag(�1, . . . , �d) and 
 � (�1, . . . , �d); then
appendix):

Corollary: Under Hik, asymptoticallyX�(A1/2)�	�1
�1A1/2X � �2
d .

S�|ik(�) � �2
J�1,Especially, when A � Id, we have

and
X�
�1 X �

X 2
1

�1

� . . . �
X 2

d

�d

� �2
d .

S�|ik � �2
J�1(�) :� �1Y 2

1 � . . . � �J�1Y 2
J�1 ,

Remark:
where the Y 2

j ’s are IID �2
1 random variables.

Thus for given 0 � � � 1, the asymptotic level � test1. The case � or A being degenerate is not of much
of Hik is given by the rejection rule: the P value of theinterest and can be avoided easily in the construction
observed S�|ik is smaller than �, or S�|ik � Q J�1(�, �),of the testing statistic.
the �th quantile of the �2

J�1(�) distribution.2. It requires that � and � be of the same order; this
Note that our method requires only the genotype infor-can be done using the same orthogonal matrix (ma-

mation and allele counts at each locus. It does not requiretrices) in the diagonalization of � and A. More con-
phase information in diploids; thus it is practical in applica-veniently, since it actually used only the � j� j’s, they
tions.are just the eigenvalues of A� (or �A).

In the following we give the specific forms of the S�|ik’s3. Using i or ii is a matter of choice. i is simpler in
[S�|ik(�)’s] under some commonly used settings; thoseforming the �2 statistic but not in computing the
of the S�|ik(�)’s are the same and are omitted.quantiles or P values, while the order of the � j�j’s

Multiple susceptible loci: Our method can be ex-does not matter. ii involves computing A1/2 in forming
tended to the case of multiple susceptible loci withoutthe �2 statistic, and the order of �j�j and that of Xj

must match. In practice, this is not trivial; however, conceptual difficulty, but with more involved computa-
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tions. Consider the hypothesis Hi1k1,...,irkr (1  r � J) that PMM | Affected � P M M | Affected � q 2
M | Affected � q 2

M | Affected � 2�(1 � �)D 2
AM/φ2 .

(2)the composite genotypes (k1, . . . , kr) at loci (i1, . . . , ir) are
the true susceptible ones. The corresponding testing

We derive a conditional version of (2) to serve ourstatistics Sj |i1k1,...,i r k r are constructed similarly as before. The
purpose.only difference is now the inference set, the conditional

Since all individuals are affected in this study, we dropdata set, consisting of those individuals whose alleles at
off the index “Affected” to simplify the notations. We

loci (i1, . . . , ir) are (k1, . . . , kr), and
want to test the hypothesis Hik : SNP type k at locus i is
the sole cause of the LD in the region. Let Pjr |ik be theS�|1k1,...,i r k r � �

j�{i1,...,i r}
Sj |i1k1,...,i r k r ,

population frequency of genotype r (r � I, II) of locus
j given one’s genotype being k at locus i, qjr |ik be that of

which is asymptotically �2
J�r(�), and � � (�1, . . . , �J�r) is allele r (r � 1, 2) at locus j given one’s genotype being

the eigenvalue of the asymptotic variance matrix �i1k1,...,ir kr, k at locus i, �j be the probability that an individual will
which is estimated the same way as the single susceptible exhibit the disease due to causes other than locus j, and
locus case, but uses the current inference data set. Dj|ik be the disequilibrium corresponding to the conditional

For fixed r, there are J !( J � r)!/r ! of such tests across LD measure. Now the same derivation of (2) leads to
different choices of loci combinations, and 2r of such

Tj |ik :� PjI |ik � PjII |ik � q2
j1|ik � q 2

j2|ik � 2�j(1 � �j)D2
j |ik/φ2 .tests for each choice of loci combination. So the total

(3)number of tests will be 2rJ !( J � r)!/r !.
Note that the above construction of the testing statis-

Under Hik, all association of SNP j is completely explainedtic is general; its inference behavior depends on the
by genotype k of locus i ; thus Dj|ik � 0 and hence Tj |ik � 0

particular statistic used. The general form of the testing
( j � i).

statistic is asymptotically a chi-square mixture, which is We comment that our method works for a general
centralized under Hik and noncentralized otherwise. The disease model; in this case Tj |ik is still a function of Dj |ikfunctional form of the parameters of interest entering but the expression is more involved (see Nielsen et al.
the noncentrality parameter in the chi-square mixture 1998, pp. 1533–1534), and under Hik we still have Tj |ik � 0
will explain the behavior of the test in terms of asymp- ( j � i); hence the test is still valid. In this case, the power
totic power. We give more detail on this for specific and error rate computation will be more involved. The
tests used in the following sections. same comment applies to the case-control section also.

Now we construct testing statistics for Hik (i � 1, . . . , J ).
The consistent estimates P̂jr |ik of Pjr |ik and q̂ jr |ik of qjr |ik are
given byAFFECTED INDIVIDUAL DATA

Now we explain how to construct the S�|ik’s in this
P̂jr |ik �

1
Nik

�
Nik

n�1
In,jr |ik (r � I, II),type of data. In the case J � 1, assume the two SNP

alleles are M and M, and let A be the disease allele. Let
where Nik � �N

n�1I(Gni � k) is the total number of indi-pA, qM, and PAM be the population frequency of the alleles
viduals with the ith SNP genotype being k, and we re-A and M and haplotype AM, respectively, and let DAM �
arrange them as the first, second, . . . , and the NikthPAM � pAqM be the LD. For clarity we first assume the
individual. In,jr |ik ,(� 0, 1) is the indicator that the nthdisease is recessive and P(Affected|AA) � 1. Under these
individual among this set has genotype type r on theassumptions, Feder et al. (1996) and more specifically
jth locus given he (she) has genotype k at locus i, andNielsen et al. (1998) discovered the relationship

q̂ j1|ik �
1

Nik
�
Nik

n�1

Jn,j1|ik

2
, q̂ j2|ik � 1 � q̂ j1|ik ,FM �

PMM | Affected � PM M | Affected � q 2
M | Affected � q 2

M | Affected

1 � q 2
M � q 2

M

where Jn,j1|ik(� 0, 1, 2) is, for the nth individual, the� �(1 � �)D 2
AM/(φ2qMqM),

number of times allele 1 occurs at locus j, given one’s
genotype being k at locus i. The estimate of Tj |ik iswhere � is the probability that an individual will exhibit

the disease due to causes other than this locus, and φ T̂j |ik � P̂jI |ik � P̂jII |ik � q̂2
j1|ik � q̂2

j2|ik .
is the prevalence of the disease in the population. This

Let T̂ik � (T̂j |ik : j � i) be the ( J � 1) dimensionalequality enables us to detect the marker-disease associa-
tion by testing Hardy-Weinberg disequilibrium at the column vector. Under Hik, √NikT̂ik is asymptotically N(0,

�ik) for some matrix �ik to be identified later. Let � �marker locus without using IBD information. In fact the
(�1, . . . , � J�1) be all the eigenvalues of �ik, and Sj |ik �connection between the marker allele frequencies and
NikT̂ 2

j |ik. By the Corollary, under Hik asymptoticallythe marker-disease LD is kept if we use only the numera-
tor in the above equality, and this will simplify the com-

S�|ik � �
j�i

Ŝj |ik � NikT̂ �ikT̂ik � Nik �
j�i

T̂ 2
j |ik � � 2

J�1(�),
putation. That is,
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and �ik is estimated by It is clear that Hik is true if and only if Dj |ik � 0 ( j � i).
In terms of �, the null hypothesis is rephrased as Hik :�̂ik � D̂�̂D̂� (4)
� � 0. For a given level � (� P(reject Hik|Hik is true)),
the parameters �, �js, φ, and the Dj |ik’s, the asymptotic(appendix), where
power of the test is

�̂ �
1

Nik � 1 �
Nik

n�1
Zn |ikZ�n |ik , D̂ � �j�i(1, 2 � 4q̂j1|ik) � � P(S� |ik � Q J�1(�, �)).

Here Q J�1(�, �) is the �th quantile of the noncentraland
� 2

J�1(�, �) distribution, which can be simulated by the
sampling method after the Remark of the Proposition, butZn |ik � ((In,jI |ik � In,jII |ik � P̂jI |ik � P̂jII |ik ,

Jn,j1|ik

2
� q̂j1|ik) : j � i).

with Y1, . . . , YJ�1 independent, and Yj from N(�j, 1)
with �j � 2�j(1 � �j)D 2

j |ik/φ2 (j � i).Here � means matrix direct summation, which results
For this particular test statistic, since the power is anin a ( J � 1) � 2( J � 1) dimensional matrix. From

increasing function of �, Hik will be more accurately�̂ik , we obtain the estimated eigenvalues �̂.
rejected when the �j(1 � �)j’s and the conditional Dj |ik’sSimilarly, for Hi, let Ni � Ni1 � Ni2, �r � Nir/Ni,
are large, and φj is small or the disease is relatively rare.

Tj |i � Tj |i1 � Tj |i2 and T̂j |i � T̂j |i1 � T̂j |i2, Likewise, Hik will be more correctly accepted when the
�j(1 � �j)’s and the conditional Dj |ik’s are small (i.e.,and T̂i � (T̂j |i : j � i). Let �i be the asymptotic matrix
mainly explained by allele k of locus i), and the diseaseof T̂i and � � (�1, . . . , �2( J�1)) be all the eigenvalues of
is relatively common.�i. Note that T̂i � T̂i1 � T̂i2, and T̂i1 and T̂i2 are indepen-

Likewise, the error rate, the probability of false accep-
dent, so under Hi, √NiT̂i is asymptotically N(0, �i), with tance, is
�i � ��1

1 �i1 � ��1
2 �i2. Its estimate is obtained as �̂i �

P(S� |ik � Q J�1(�, �)) � 1 � �.��1
1 �̂i1 � ��1

2 �̂i2, and �̂ir is constructed as before.
Let

S j |i � NT̂ 2
j |i, S�|i � �

j�i
Ŝ j |i .

CASE-CONTROL DATA

Under Hi, S�|i � � 2
J�1(�). Let qM|A and qM|U denote marker M population frequen-

We remark that in the above the asymptotic variance cies for the affected (case) and unaffected (control)
matrices �jk are estimated the same way as for the IID individuals. Bengtsson and Thomson (1981) and Leh-
data. In general the familial data are not IID, and the esjoki et al. (1993) gave the following LD measure:
above variance matrices are dealt with differently. Usu-
ally, in the positive dependent case, the asymptotic vari- R �

qM |A � qM |U

1 � qM |U

�
(1 � �)pADAM

φ(1 � φ)[qM � (1 � �)pADAM/(1 � φ)]
.

ance matrix will be larger, in the sense of generalized
variance—the determinant of the variance matrix—and The conditional version of the above is
consequently will tend to have larger eigenvalues than

R( jr |ik) �
q jr |A,ik � q jr |U,ik

1 � q jr |U,ik

the IID case, such as the singleton data case. In the
case of homogeneous familial structure, more accurate

�
(1 � �)pAD jr |ik

φ(1 � φ)[q jr � (1 � �)pAD jr |ik/(1 � φ)]
(r � 1, 2).estimates can be obtained. We study the above methods

for general pedigree data in the extension section later.
In some of the existing methods for this problem, Let NA and NU be the number of affected and unaffected

e.g., Sun et al. (2002), the conditional IBD sharing statis- individuals, and
tics are computed at each site given the genotype at
that site. In this way the statistic can test whether each R̂( jr |ik) �

q̂ jr |A,ik � q̂ jr |U,ik

1 � q̂ jr |U,ik

,
of the sites is the sole susceptible site, but will not be
able to find the more detailed relationship between sites where
when the null hypothesis of only one susceptible site is
rejected, while our test statistic can be used to reveal q̂ jr |A,ik �

1
NA,ik

�
NA,ik

n�1

J A
n, jr |ik

2
.

more detailed relationship. If Hik is accepted, it is reason-
able to say that the connection between site j and the

NA,ik � �N
n�1I(A, Gni � k) is the total number of “af-disease locus is due to genotype k of site i.

fected” individuals with the ith SNP genotype being k,
By the asymptotic normality of √NikT̂ik and (3), when

Hik is false, S�|ik will be asymptotically a noncentral �2
J�1 q̂ jr |U,ik �

1
NU,ik

�
NU,i k

n�1

J U
n, jr |ik

2
,

(�, �), with noncentrality parameter

where J A
n, jr |ik and J U

n, jr |ik are the same as the Jn, jr |ik before,� �
4
φ4 �

j�i
�2

j (1 � �j)2D 4
j |ik .

but here for affected and unaffected individuals. NU,ik �
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As in the affected individual case, when Hik is not�N
n�1I(U, Gni � k) is the total number of unaffected indi-

true, S�|ik is asymptotically noncentral � 2
J�1(�, �), whereviduals whose ith SNP genotype is k. Let Nik � NA,ik �

NU,ik . Assume NA,ik/Nik → �A,ik and NU,ik/Nik → �U,ik � 1 �
� �

p 2
A

φ2(1 � φ)2 �
j�i

(1 � �j)2D 2
j1|ik

[q j2 � (1 � �j)pADj1|ik/(1 � φj)]2
.�A,ik . To test Hik , let

S j1|ik � NikR̂ 2( j1|ik), S�|ik � �
j�i

S j1|ik . Given �, �, �j, φ, pA, the q j 2’s, and the Dj1|ik’s, the power
and error rate can be computed by simulation as before,

Under Hik , asymptotically
but with Y1, . . . , YJ�1 independent, with Yj from N(�j,
1), whereS�|ik � �2

J�1(�),

where � is the vector of eigenvalues of the matrix �ik . �j �
pA(1 � �j)Dj1|ik

φ(1 � φ)[q j2 � (1 � �j)pADj1|ik/(1 � φ)]
( j � i).

Let

Here, the power and probability of correct acceptanceZ A
n |ik � � J A

n,j1|ik

2
� q̂j1|A,ik : j � i �, of Hik depend on �, φ, pA, the q j2, and the Dj1|ik’s. The

power is maximum when the conditional Dj1|ik’s are max-
imum, and the test is more likely to accept Hik whenZ U

n |ik � � J U
n,j1|ik

2
� q̂j1|U,ik : j � i � (k � 1, 2).

the Dj1|ik’s are small. Their relationships with the other
parameters can be analyzed similarly.Then �ik is estimated by

�̂ik � D̂�̂D̂� (5)
EXTENSION TO GENERAL PEDIGREE DATA

(appendix), where, for singleton data, the affected
As mentioned earlier, the only difference in our meth-and the unaffected are independent, so �̂ � ��1

A,ik�̂A �
ods between general pedigree data and the singleton��1

U,ik�̂U,
data is the estimations of the corresponding asymptotic
variance matrices. A simple method for this purpose

�̂A �
1

NA,ik � 1 �
NA,i k

n�1
Z A

n |ik(Z A
n |ik)�,

can be found in the work of G. E. Bonney, V. Apprey
and A. Yuan (unpublished data), without any assump-
tion on the data and no extra parameters introduced�̂U �

1
NU,ik � 1 �

NU,i k

n�1
Z U

n |ik(Z U
n |ik)�,

for the dependence. We illustrate this with the affected
familial data, which for the case-control family data isand
similar. For such data, the estimations for the genotype/
allele frequencies in the previous sections are not IIDD̂ � �j�i � 1

1 � q̂ j1|A,ik

, q̂ j1|A,ik � 1
(1 � q̂ j1|U,ik)2 � .

averages; we rewrite them as IID versions, so that their
asymptotic variance matrices can be computed easily.

Similarly, to test Hi, let
First we assume the data have the same familial struc-
ture. Suppose there are M families with S individualsS�|i � �

2

k�1
S�|ik . each (N � MS). We redefine P̂jr|ik as

Then under Hi, asymptotically S�|i � � 2
J�1(�), and � is

P̂jr|ik �
1

Mik
�
Mik

m�1
�

S

s�1

s
S

Ijr|ik(s, m) (r � I, II ),
the vector of eigenvalues of �i, which is estimated by

�̂i � D̂�̂D̂� (6) where Mik � �M
m�1�S

s�1Iik(s, m) is the total number of
families in which at least one individual with SNP type(appendix), where, for singleton data, �̂ � ��1

A,i �̂A �
k at locus i, Iik(s, m), is the indicator that in the mth��1

U,i �̂U,
family, there are s individuals with SNP type k at locus
i . Ijr |ik (s, m) is the indicator that there are s individuals�̂A �

1
NA,i � 1 �

NA,i

n�1
Z A

n |i(Z A
n |i)� and �̂U �

1
NU,i � 1 �

NU,i

n�1
Z U

n |i(Z U
n |i)�,

in family m with SNP type r on the jth locus, given the
family is in the group with SNP type k on the ith locus.

where Z A
n |i � (Z A

n |i1, Z A
n |i2), Z U

n |i � (Z U
n |i1, Z U

n |i2), Ni � Ni1 � Let I jr |ik(m) � �S
s�1(s/S)I jr |ik(s, m). Then for fixed ( jr,

Ni2, NA,i � NA,i1 � NA,i2, NU,i � NU,i1 � NU,i2, �A,i � NA,i/Ni, ik), {I jr |ik(m) : m � 1, . . . , M } is an IID sequence, and
and �U,i � NU,i/Ni � 1 � �A,i . Similarly, for different ( jr, ik) and ( j�r�, i�k�), {Ijr|ik(m) : m � 1,

. . . , M } and {Ij�r�|i�k�(m) : m � 1, . . . , M } are independent.
Similarly, q̂ jr |ik is redefined asD̂ � �j�i,k�1,2 � 1

1 � q̂ j1|A,ik

, q̂ j1|A,ik � 1
(1 � q̂ j1|U,ik)2 � .

q̂ jr |ik �
1

Mik
�
Mik

m�1
�
2S

s�1

s
2S

J jr |ik(s, m) (r � 1, 2),Other LD measures can also be used, for example,
the trend test statistic (Armitage 1955; Devlin and
Roeder 1999). where Jjr |ik(s, m) is the count that there are s SNP allele
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r in family m on the jth locus, and their SNP type is k �̂ik � D̂ ��L

l�1

M (l )
ik

Mik

�̂l �D̂� (7)
on the ith locus. Let J jr |ik(m) � �2S

s�1 (s/2S) J jr |ik(s, m).
Then for fixed ( jr, ik), { Jjr |ik(m) : m � 1, . . . , M } is an

(appendix), whereIID sequence, and for different (jr, ik) and ( j�r�, i�k�),
{Jjr|ik(m) : m � 1, . . . , M} and {J j�r�|i�k�(m) : m � 1, . . . , M}

�̂l �
1

M (l )
ik � 1 �

M (l )
i k

n�1

Z (l )
n |ik(Z (l )

n |ik)�, D̂ � �j�i(1, 2 � 4q̂ j1|ik)are independent.
Let T̂j|ik and T̂ik be as before but with P̂ jI|ik , P̂ jII|ik , and

andq̂ j1|ik replaced by the above versions. Let S�|ik � MikT̂�ikT̂ik .
Now it is clear that the �̂ in (4) can be replaced by the

Z (l )
n |ik � ((I (l )

n,j I |ik � I (l )
n,j II |ik � P̂ (l )

j I |ik � P̂ (l )
j II |ik,

J (l )
n,j1|ik

2
�q̂ (l )

j1|ik) : j � i),consistent estimator for this case as

l � 1, . . . , L.�̂ �
1

Mik � 1 �
Mik

m�1
Zm |ikZ �m |ik ,

For the test of Hi, or the case of case-control data, testing
statistics and the corresponding asymptotic variance ma-where
trices can be obtained in a similar way; we omit the
details here.Zm |i k � �� I jI |i k(m) � I jII |i k(m) � P̂ j I |i k � P̂ j II |i k ,

J j1|i k(m)

2
� q̂ j1|i k � : j � i �

and �̂ik � D̂�̂D̂�, and D̂ is the same as in (4).
SIMULATION STUDY

More generally, suppose that there are L different fa-
Here we use simulated data to illustrate our method.milial structures in the data set, with size Ml each, and the

To exhibit the applicability of our method, we use single-lth structure has Sl individuals per family (l � 1, . . . , L).
ton data, which is out of the scope of the IBD-basedLet
methods. We simulate the data G1, . . . , GN, where Gn �
(Gn1, . . . , GnJ) (n � 1, . . . , N ) and Gnj � (gnj1, gnj2), theP̂ (l )

jr|ik �
1

M (l)
ik

�
M (l )

i k

m�1
�
Sl

s�1

s
Sl

I (l)
jr|ik(s, m) (r � 1, 2; l � 1, . . . , L),

two alleles at SNP site j for the nth individual. The gnjk’s
are coded as 1, 2 for its possible two alleles. We assume

where M (l )
ik � �Ml

m�1�Sl
s�1 I (l )

ik (s, m) is the total number of phase is known to simplify the simulation process, so
families with the structure l in which at least one individ- that for each n, the two haplotypes (gn11, . . . , gnJ1) and
ual with SNP type k at locus i, I (l )

ik (s, m) and I (l )
jr |ik(s, m), (gn12, . . . , gnJ2) are independent. In this example, we

is the counterpart of Iik(s, m) and jr |ik(s, m), respectively, take J � 6, so all the vectors Gn � (Gn1, . . . , Gn6) are
for familial structure l. Let I(l )

jr|ik(m) � �Sl
s�1(s/Sl)I(l )

jr|ik(s, m). random samples from the population genotype S � (S1,
. . . , S6), and S j � (sj1, sj2) is the genotype at the jth site.Then for fixed (l, jr, ik), {I (l )

jr |ik(m) : m � 1, . . . , M} is an
IID sequence, and for different (l, jr, ik) and (l�, j�r�, i�k�), We assume genotype (1, 1) at the third SNP site is
{I(l )

jr|ik(m) : m � 1, . . . , M} and {I(l� )
j�r�|i�k�(m) : m � 1, . . . , M} responsible for all the LD with the disease allele A; the

other first alleles, sj1(j � 3), in this region are tightlyare independent. Let Mik � �L
l�1 M (l )

ik define the estimate
linked to s31.of Pjr |ik as

Now the haplotypes S (1) � (s11, . . . , s61) and S (2) � (s12,
. . . , s62) are independent and the sj2’s are independentP̂ jr |ik � �

L

l�1

M (l )
ik

Mik

P̂ (l )
jr |ik (r � I, II ).

within themselves. Denote G (1)
n � (gn11, . . . , gn61) and

G (2)
n � (gn12, . . . , gn62) as the two haplotypes of the nth

Similarly, let individual. To sample such data, for each n we need
only to sample G (1)

n from S (1) and G (2)
n from S (2) indepen-

q̂ (l )
jr |ik �

1
M (l )

ik
�
M

(l )
i k

m�1
�
2Sl

s�1

s
2Sl

J (l )
jr |ik(s, m) (r � 1, 2), dently. Let qA � 0.8 be the frequency of the disease

allele allele A � 1 among the affected individuals, q (1) �
(q11, . . . , q61) be the frequencies of S (1) � (1, . . . , 1),where J (l )

jr |ik(s, m) is the counterpart of Jjr |ik(s, m) for famil-
and q (2) � (q12, . . . , q62) be that of S (2) � (1, . . . , 1). Toial structure l. Let J (l )

jr |ik(m) � �2Sl
s�1(s/2Sl) J (l )

jr |ik(s, m), and
sample from S (2) is trivial; i.e., just sample gnj2 indepen-define
dently from B(q j2), the Bernoulli distribution with prob-
ability q j2 of getting 1 and probability 1 � q j2 of getting

q̂ j1|ik � �
L

l�1

M (l )
ik

Mik

q̂ (l )
j1|ik . 0. To sample G (1)

n , we need to sample from a joint Ber-
noulli distribution with probability q (1). Such a joint dis-
tribution can be specified in the formNow for this general pedigree data, let T̂j |ik and T̂ik be

as before but with P̂j1|ik , P̂j2|ik , and q̂ j1|ik replaced by P(S (1)) � exp{��S (1) � ��W � A(�, �)}
the above versions. Let S�|ik � MikT̂ �ikT̂ik , and we assume
�(l )

ik :� lim M (l )
ik /Mik � 0 (l � 1, . . . , L), then a consis- (Cox 1972; Fitzmaurice and Laird 1993), where �

and � are parameters and exp {�A(�, �)} is the nor-tent estimate of �ik is given by
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TABLE 4

Affected individual data: values of observed S�|j1 (P value) for different q

q � j � 1 j � 2 j � 3 j � 4 j � 5 j � 6

0.1 16.120 (0.000) 16.586 (0.000) 0.205 (0.639) 17.233 (0.000) 20.783 (0.000) 19.001 (0.000)
0.3 36.984 (0.000) 46.335 (0.000) 0.851 (0.440) 50.917 (0.000) 44.753 (0.000) 49.209 (0.000)
0.5 35.772 (0.000) 30.164 (0.000) 1.339 (0.311) 25.618 (0.000) 32.761 (0.000) 33.267 (0.000)
0.7 9.051 (0.000) 8.849 (0.000) 0.753 (0.562) 12.694 (0.000) 7.736 (0.000) 9.531 (0.000)
0.9 1.455 (0.0114) 1.184 (0.0218) 0.218 (0.420) 1.938 (0.0026) 0.299 (0.310) 0.264 (0.352)

malizing constant and W is all the cross-product terms i. Draw a sample X � (xA, x1, . . . , xJ) from the normal
distribution N(0, �); if xj � ��1(q j1), we assign gnj1 �of S (1), including all the second- and higher-order terms.

This distribution can be sampled using the Gibbs sam- 1; otherwise gnj1 � 03 ( j � 1, . . . , 6). Then we get
the sample G (1) � (gn11, . . . , gnJ1).pler (Geman and Geman 1984). But the specification

of the joint Bernoulli distribution has some subjectivity ii. If gn31 � 1, set q32 � P(s32 � 1|s31 � 1) � 0.8, else
q32 � 0.1. For each j � 1, . . . , J, draw X from U(0, 1),and the sampling scheme is not simple. Instead, we use

a normal discretization method to sample it. We use the uniform distribution on [0, 1]; if X � q j2 assign
gnj2 � 1; otherwise assign gnj2 � 0. Then we get ahigh correlation for linkage. Let � be the corresponding

correlation matrix of the J � 1-dimensional normal dis- sample G (2) � (gn12, . . . , gnJ2).
iii. Gn � (G (1), G (2)) is a sample from S.tribution for (A, S (1)),

When the two alleles at each locus are in Hardy-Wein-
berg disequilibrium, we use a two-dimensional normal
with mean (0, 0) and variance matrix � � (1, r ; r, 1)
with r � 0.2 to model their dependence. For each n,

� �
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.
we first get the sample G (1) � (gn11, . . . , gnJ1) from (x1,
. . . , xJ) as before, then for each j � 1, . . . , J separately,
sample y j from the conditional distribution N(rxj, 1 � r2).
If y j � ��1(qj2), assign gnj2 � 1, otherwise 0.

To simulate the case-control data, we choose q � 0.6Note that this matrix corresponds to a strong connec-
for the case and q � 0.25 for the control.tion between A and s31, but not between A and (s11, s21,

s31, s41, s51, s61); it also corresponds to a strong connection
between s31 and (s11, s21, s31, s41, s51, s61). Thus all the loci

RESULTS
have apparent linkage with the disease allele A.

To sample the composite genotypes from the above Simulated data: We constructed the test statistics S�|ik ,
(i � 1, . . . , J; k � 1, 2) and computed the correspondingdistribution, let X � (xA, x1, . . . , x6) be a sample from

the normal distribution N(0, �); if x j � ��1(q j1), we as- eigenvalues � � (�1, . . . , �J�1), using the method de-
scribed in the Remark after the Proposition to computesign gnj1 � 1; otherwise gnj1 � 0, ( j � 1, . . . , 6), where

��1(q) is the qth quantile of the standard normal distri- the �2 P value under the null hypotheses. Since in the
simulation the sole linkage with the disease allele comesbution. Since q31 is the proportion of allele 1, at locus

3, which is linked to the disease allele, in the affected from s31, we expect H31 will be accepted, and the other
Hjk’s will be rejected. Table 4 is a summary of the ob-population, the two alleles at locus 3 are in Hardy-Wein-

berg disequilibrium. The disease is recessive. We make served values of the S�| j1’s for the Hjk’s, for different
choices of q, with corresponding P values in parentheses.the corresponding conditional probability P(s32 � 1|

s31 � 1) high, say 0.8, among the affected individuals. We simulated and computed data for q � 0.1, 0.2, . . . ,
0.9; we display only part of them to save space.In the simulation, we used a high frequency of q j1 �

q � 0.1, 0.2, . . . , 0.9, ( j � 3) for allele 1 at each locus, For each testing statistic S�| jk , there is a set of nonnega-
tive eigenvalues � � (�1, . . . , �J�1). Their magnitudeto see how this affects the results.

By the same way we simulated control data, in which plays an important role in determining the asymptotic
P value of the observed S�| jk . For a given observed valuethe two haplotyes are sampled the same way as G (2)

n above.
Together with the previous affected data we have case- of S�| jk and fixed number of loci J, a roughly larger

eigenvalue total |�| (defined as �1 � . . . � �J�1) resultscontrol data, and the analysis is displayed in Table 6.
Specifically, the sampling scheme has the following in a larger P value, and vice versa. Although for two sets

of eigenvalues �1 � (�11, . . . , �1, J�1) and �2 � (�21, . . . ,three steps:
For each n � 1, . . . , N, (N � 1000): �2, J�1), even if |�1| � |�2|, the corresponding distributions
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TABLE 5

Affected individual data: values of observed S�|j1 (P value) for different r

r � j � 1 j � 2 j � 3 j � 4 j � 5 j � 6

0.05 10.922 (0.000) 12.735 (0.000) 1.371 (0.246) 12.479 (0.000) 11.419 (0.000) 14.138 (0.000)
0.1 8.524 (0.000) 11.361 (0.000) 1.390 (0.200) 13.723 (0.000) 8.770 (0.000) 9.066 (0.000)
0.2 15.131 (0.000) 14.726 (0.000) 3.186 (0.007) 17.919 (0.000) 15.174 (0.000) 10.718 (0.000)

�2(�1) and �2(�2) may not be equal, and they are equal is present, for example). In particular, in situations in
if and only if �(1) � �(2), where �(k ) � (�k,(1), . . . , �k,( J�1)) which nonrandom mating is a known confounder be-
is the ordered version of �k (k � 1, 2). cause of inbreeding or population structure, care should

We display in the following the eigenvalues � j � (� j1, be exercised.
. . . , � j5) for the S�| j1’s, for the case q � 0.7. For the case-control data, we used q � 0.6 for the case

and q � 0.25 for the control; HWE is assumed, and
�1 � (0.25, 0.23, 0.19, 0.17, 0.14), �2 � (0.24, 0.22, 0.17, 0.15, 0.13),

again locus 3 is the only connection to the disease allele.
�3 � (0.23, 0.21, 0.19, 0.18, 0.17), �4 � (0.25, 0.21, 0.18, 0.16, 0.11), The results are shown in Table 6. It is seen that again,

for the case-control data SNP locus 3 is correctly identi-and
fied, and all the other loci are rejected as sources of

�5 � (0.24, 0.21, 0.19, 0.15, 0.13), �6 � (0.23, 0.20, 0.16, 0.15, 0.13). cause for LD in the region.
The following is a tabulation of power of the test forWe find that in most cases the P values of S�|31 suggest

the above simulated data, using the above � and someacceptance of H31 with high confidence, and those for
combinations of �, �j � �( j � i), φ, and Dj |31 � d( j �S�| j1 ( j � 3), suggest rejection of Hj 1, except for the case
3). To get a sense of the power behavior of our methods,q � 0.9, in which the P values of S�|51 and S�|61 are also
we choose J � 6, � � �1 as shown before. The noncentral-significant, along with that of S�|31. We regard this last
ity parameter � involves 2 J � 1 parameters in it. It iscase as exceptional, in which the over-high proportion
impractical to investigate and tabulate the influence ofof allele 1 at each locus blurred the identifiability of the
each of the 2 J � 1 parameters to the power. Instead,problem (think of the extreme case of q � 1; the cor-
we investigate the influence of � to the power, with theresponding locus contributes nearly no information for
given genetic model. Each given value of �, correspond-the problem). Thus, in all these cases, the true hypothe-
ing to a 2( J � 1)-dimensional parameter subspace, issis H31 is accepted with high confidence, and the other
given by the formula for �. Table 7 shows the displayfalse ones, Hj1, are rejected; i.e., the true disease-linkage-
of power for both the affected individual data and therelated allele 1 at locus 3 is correctly identified among
case-control data, for some choices of the level � andall six loci that are all in LD with the disease locus.
the parameter �. We comment that for the above speci-To investigate the influence of the deviation from
fication of the parameter �, the power of the tests forHardy-Weinberg on our method, we simulated the data
both the affected individual data and that for the case-for this case, in which we use the allelic correlation r � 0
control data are the same.at each locus for the deviation from Hardy-Weinberg

Since the � in the power of the test for affected individ-equilibrium (HWE). The disease allele population fre-
ual data and that for the case-control data have differentquency is fixed at q � 0.7 and the results are displayed
expressions, more detailed power computation can bein Table 5.
obtained by the specification in terms of all the parame-In the non-HWE case, it seems that the true picture
ters involved.becomes more difficult to recover as the deviation from

Application to real data: Non-insulin-dependent diabetesHWE increases. In general, significant departures from
mellitus-1 data: We first apply our method to the non-HWE are not expected, but if observed, caution should

be taken in applying this method (if genotyping error insulin-dependent diabetes mellitus-1 (NIDDM1) data

TABLE 6

Case-control data: values of observed S�|j1 (P value)

j � 1 j � 2 j � 3 j � 4 j � 5 j � 6

2.2 (0.0016) 1.7 (0.0001) 0.16 (0.160) 3.3 (0.0001) 4.2 (0.000) 5.1 (0.000)



1455Identifying Susceptibility Genes

TABLE 7 Here it is too early to comment on the pros and cons
for the two types of methods. A formal assessment mayPower for some given parameter values
involve long-term and large-scale studies. At least our
method provides the user more options and a flexible�/� 0.1 0.5 1.0 1.5 2.0
tool for this problem. Also, more methods will give us

0.01 0.0182 0.1020 0.4536 0.8250 0.9820 more strength in the inference. If the methods give0.02 0.0332 0.1648 0.5684 0.8734 0.9880
consistent results, this will strengthen our confidence0.05 0.0934 0.2868 0.6987 0.9432 0.9977
in decision; if they do not or are contradictory, the
problem may need further investigation. We may per-
form the hypothesis tests on the current confidence set

used in Sun et al. (2002) and list our results along with and continue this way to get a final confidence set of
theirs in Table 8. We see that, for these data, the two SNPs, in which all of them are accepted as possible
methods yield quite different, although not contradic- sources of LD in the region. We do not pursue this in
tory, results. With the method of Sun et al., loci 2 and detail here because of space limitation.
12 are most likely responsible for the LD, while by our Diabetes data: Next, in a diabetes study, 280 individuals
method, loci 2, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, with type 2 diabetes were genotyped at a large number
19, 20, and 22 all likely contribute to the LD in the of SNP sites. First we find those SNPs with strong linkage
region. One possibility for the difference of the two to the trait and then use our method to identify the
methods might be that the calpain-10 region has some susceptible one(s). We use the measure of Nielsen et al.
patterns of LD that are not understood—violating one (1998) to detect the marker-disease association, which is
of the assumptions of the methods. Since the truth in given by
the data is unknown, we do not comment on the perfor-
mances of the two methods on these data. It is not

�2
HW � n�

m

i�1

(P̂ii |Affected � q̂ 2
i |Affected)2

q̂ 2
i |Affecteduncommon in the hypothesis test context, even for

methods based on the same type of data, that different
� 2n�

i�j

(P̂ij |Affected � 2q̂i |Affectedq̂j |Affected)2

2q̂i |Affectedq̂ j |Affected

,methods may have different results, even contradictory
ones. In principle, methods using genotype data have
no less power in inference than those using IBD data. where P̂ij |Affected and q̂i |Affected are the estimated frequencies

TABLE 8

Results from the NIDDM1 data

P value
Map Allele No. of Linkage
order Locus frequency families P value Sun et al. Ours

1 SNP20 0.85 153 3.57 � 10�5 0.0394 0.0164
2 SNP66 0.88 124 5.95 � 10�5 0.1048 0.3536
3 SNP45 0.94 163 1.58 � 10�5 0.0285 0.0176
4 SNP44 0.94 164 2.32 � 10�5 0.0376 0.1462
5 SNP43 0.73 160 2.01 � 10�5 0.0004 0.0120
6 SNP79 0.97 161 2.66 � 10�5 0.0247 0.1798
7 SNP78 0.94 162 2.03 � 10�5 0.0291 0.1428
8 SNP77 0.92 161 1.58 � 10�5 0.0228 0.0688
9 SNP56 0.57 149 4.40 � 10�5 0.0157 0.8596

10 SNP19 0.56 161 1.47 � 10�5 0.0042 0.0016
11 SNP48 0.55 154 1.64 � 10�5 0.0033 0.7572
12 SNP62 0.81 125 6.27 � 10�5 0.1174 0.5374
13 SNP63 0.76 130 3.50 � 10�5 0.0197 0.1154
14 SNP26 0.92 162 2.04 � 10�5 0.0137 0.2748
15 SNP25 0.50 156 4.07 � 10�5 0.0054 0.0080
16 SNP24 0.98 162 1.92 � 10�5 0.0201 0.0874
17 SNP23 0.85 158 1.67 � 10�5 0.0084 0.0636
18 SNP22 0.61 158 1.56 � 10�5 0.0253 0.3362
19 SNP53 0.90 155 6.80 � 10�5 0.0161 0.1728
20 SNP38 0.62 154 5.62 � 10�5 0.0196 0.1198
21 SNP29 0.77 151 1.48 � 10�5 0.0074 0.0392
22 SNP28 0.56 156 0.46 � 10�5 0.0057 0.1868
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TABLE 9

Values of observed �2
HW

j � 86,781 j � 146,317 j � 4,249,771 j � 4,169,573 j � 93,115 j � 3,116,000

34.09 (5.26 � 10�9) 8.035 (0.0046) 16.51 (0.00005) 11.728 (0.0006) 85.25 (0.0000) 31.17 (2.36 � 10�8)

of marker genotype AiAj and allele Ai from the observed Our method requires only the genotype information
and allele counts at each locus. It does not requireaffected individuals and m is the total number of alleles.

They showed that this marker Hardy-Weinberg dis- phase information in diploids, which is a difficult task
in contemporary sequencing and genotyping methodsequilibrium measure is proportional to the square of the

disease-marker LD measure. Under the null hypothesis (Lin et al. 2002). Thus this method is practical to use
in applications.that there is no disease-marker LD, �2

HW is approximately
distributed as a �2 variable with degrees of freedom By forming a hypothesis that one of these sites is the

sole cause and the others subordinate, we constructedm(m � 1)/2.
After computing the value of �2

HW at each marker and testing statistics by conditioning successively on each of
the sites. They can be constructed using any marker-their corresponding P values, we found that 13 of the

markers significantly indicate strong evidence of dis- disease LD measure based on genotype data. For illustra-
tion, our testing statistic is based on a conditional ver-ease-marker disequilibrium. To apply our method, we

choose a set of six SNPs, and we code them as sites 1–6 sion of part of the quantity in Feder et al. (1996) and
Nielsen et al. (1998), in which the relationship betweenfor simplicity. The �2

HW values are displayed in Table 9,
along with their P values in parentheses. marker genotype and the marker-disease LD is estab-

lished. Under the true hypothesis, the testing statisticWe see from this table that all six loci are very tightly
linked to the trait. Now we use our method to identify follows a mixture �2 distribution, with which the P val-

ues of these statistics can be obtained easily via simula-which one of the six SNPs is the sole true cause of
linkage, if any. The computed values of the conditional tion.

It is likely that the exact relevant variation goes un-testing statistics and their P values are in Table 10.
From this table we see that all the P values, except typed in practice; there are two possibilities for the set

of SNPs under study. Some of them in the set are thethat of S�|31, are significant at the 1% level. This shows
that site 3, or SNP 4249771, is most likely to be the sole susceptibility SNPs to the disease linkage, although they

may not be directly disease related. Our method is de-cause of disease linkage for all six SNP sites.
signed to identify SNPs that are in tight linkage with
the relevant untyped variation. When more than one

DISCUSSION SNP is identified (selected), they are not necessarily in
high LD with each other, since different sources mayWe developed a method using the conditional LD
contribute to their linkage. The other possibility is that,approach to identify the true linkage-susceptible SNP
although showing strong disease linkage, none of themin a region tightly linked to a qualitative trait, if any,
are the cause for it, or all of them are carry-ins by someusing genotyping data. Simulation studies show that this
untyped SNP(s) or background factors. In this case ourmethod can accurately identify the true susceptibility
method is expected to reject all the SNPs in the set,site among a region of tightly linked loci. Application
and a more refined scan around the region spanned byto the real data also leads to the finding of one locus,
this set is suggested.among a set of tightly linked loci, being the leading

Our method is based on a set of well-chosen markers.cause of linkage to the trait, while the rest of the loci
They are chosen as a result of optimization of the corre-are merely in tight linkage to the susceptibility locus.
sponding model. So it is reasonable to assume the back-We illustrated the method using singleton data. This
ground LD to be random and negligible, and asymptoticmethod can be applied to general pedigree data sets, in
approximation is relatively robust for such a level of noisewhich the pedigrees are required to have homogeneous

familial structure. as long as the sample size is fairly large. When some pat-

TABLE 10

Values of observed S�|j1

j � 86,781 j � 146,317 j � 4,249,771 j � 4,169,573 j � 93,115 j � 3,116,000

5.256 (0.000) 5.415 (0.000) 1.889 (0.018) 3.080 (0.001) 5.037 (0.000) 3.626 (0.0004)
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466 in Handbook of Statistics 1, edited by P. R. Krishnaiah. North-terned background is nonnegligible, one should build
Holland, Amsterdam.

this effect into the model to improve the accuracy. We Khatri, C. G., 1982 A theorem on quadratic forms for normal
do not pursue this line here. variables, pp. 411–417 in Statistics and Probability: Essays in Honor

of C. R. Rao, edited by G. Kallianpur, P. R. Krishnaiah andSimulation indicates our method is relatively sensitive
J. K. Ghosh. North-Holland, Amsterdam.to large deviation of HWE. In general, significant depar- Lazzeroni, L. C., and K. Lange, 1998 A conditional inference

tures from HWE are not expected in practice, but if framework for extending the transmission/disequilibrium test.
Hum. Hered. 48: 67–81.they are observed caution should be taken in applying

Lehesjoki, A.-E., M. Koskiniemi, R. Norio, S. Tirrito, P. Sistonenthis method. In particular, in situations in which non- et al., 1993 Localization of the EPM1 gene for progressive myoc-
random mating is a known confounder because of in- lonus epilepsy on chromosome 21: linkage disequilibrium allows

high resolution mapping. Hum. Mol. Genet. 2: 1229–1234.breeding or population structure, care should be exer-
Lin, S., D. J. Cutler, M. E. Zwick and A. Chakravarti, 2002 Haplo-cised. How to modify our method to be robust against

type inference in random population samples. Am. J. Hum.
deviation from HWE will be a topic of our future re- Genet. 71: 1129–1137.

Nielsen, D. M., M. G. Ehm and B. S. Weir, 1998 Detecting marker-search.
disease association by testing for Hardy-Weinberg disequilibrium
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�̂ �
1

Nik � 1 �
Nik

n�1
Zn |ikZ �n |ik ,

ii. Keep notations in i, then A1/2 � 	1/2P. Let Y � 
�1/2

PX (or X � P�
1/2Y). Then

Cov(Y) � 
�1/2P Cov(X)P �
�1/2 � Id ; and
i.e., the Yj’s are independent standard normal ran-

Zn |ik � ((In,j I |ik � In,j II |ik � P̂jI |ik � P̂jII |ik ,
Jn,j1|ik

2
�q̂ j1|ik) : j � i).dom variables. Now

X �(A1/2)�	�1
�1X � Y �
1/2PP �	1/2 	�1
�1	1/2PP �
1/2Y Derivation of (5): Let �A,ik and �U,ik be the asymptotic
� Y �Y � � 2

d . variance matrices of √NA,ik(q̂ jr |A,ik) and √NU,ik(q̂ jr |U,ik) under
Derivation of (2): Since Xik � (Xj |ik : j � i) � N(0, �ik) their corresponding null hypothesis. Assume NA,ik/Nikasymptotically, in the limit → �A,ik and NU,ik/Nik → �U,ik � 1 � �A,ik . Since q̂ jr |A,ik and

q̂ jr |U,ik are independent, we have asymptotically, under
S�|ik � �

j�i

X 2
j

�j

� X �
�1X, their corresponding null hypothesis,

where the Xj’s are standard normal random variables, √Nik(q̂ jr |A,ik, q̂ jr |U,ik)� →d
N(0, �jr |ik),

with Cov(X) � �ik . Since for fixed i, the Xj |ik’s are not
wherea function of each other, neither does their distribution

limit the Xj’s; i.e., X is a nondegenerate normal vector,
�ik � ���1

A,ik�A,ik

0
0

��1
U,ik�U,ik

� .and the conclusion comes from ii of the Proposition with
A � I J�1.

Let g(x, y) � (x � y)/(1 � y); then �g(x, y) :� (�g/�x,Derivation of (4): To get the asymptotic variance ma-
�g/�y) � (1/(1 � y), (x � 1)/(1 � y)2). Under Hik,trix �ik, and hence �, first consider the asymptotic distri-
R(jr|ik) � 0, thus by the delta method,bution of √Nik(P̂jI |ik � P̂jII |ik, q̂ j1|ik); then that of √NikT̂j |ik �

√Nik(P̂jI |ik � P̂jII |ik � q̂ 2
j1|ik � q̂ 2

j2|ik) � √Nik(P̂jI |ik � P̂jII |ik �
√Nik R̂( jr|ik) →d

N(0, �jr |ik),2q̂ j1|ik � 2q̂ 2
j1|ik � 1) and that of √NikT̂ik and thus that of

S�|ik are obtained. Note that (P̂jI |ik � P̂jII |ik, q̂ j1|ik) can be where
written as an average of Nik IID random variables, so its

�jr |ik � �g(q jr |A,ik, q jr |U,ik)�jr |ik�g(q jr |A,ik, q jr |U,ik)�asymptotic normality is asserted by the central limit the-
orem. Let � ��1

A,ikq 2
jr |A,ik�A,ik � ��1

U,ikq 2
jr |U,ik�U,ik .

g(x, y) � x � 2y � 2y2 � 1, Similarly,

�g(x, y) :� (�g/�x, �g/�y) � (1, 2 � 4y);
√NikR̂ik →d

N(0, �ik),
then under Hik, g(PjI |ik � PjII |ik, q j1|ik) � 0,

for some �ik, where
√NikT̂j |ik � √Nikg(P̂jI |ik � P̂jII |ik, q̂ j1|ik),

R̂ik � (R̂( j1|ik) : j � i).
and

Let
�g(PjI |ik � PjII |ik, q j1|ik) :� D j , �g(P̂jI |ik � P̂jII |ik, q̂ j1|ik) :� D̂ j . JA

n |ik � ( J A
n,j1|ik : j � i), J U

n |ik � ( J U
n,j1|ik : j � i),

Now using the delta method (Serfling 1980), under Jn |ik � ( J A
n |ik, J U

n |ik).
Hik, √Nik(P̂jI |ik � P̂jII |ik � q̂ 2

j1|ik � q̂ 2
j2|ik) is asymptotically

Let �A, �U, and � be the asymptotic variance matricesN(0, Dj�j |ikD�j ), where �j |ik � Cov(In,j I |ik � In,j II |ik, Jn,j1|ik).
for √NA,ik J A

n |ik , √NU,ik J U
n |ik , and √Nik Jn |ik . LetSimilarly, under Hik, √NikTik is asymptotically N(0,

D�ikD�), and �ik is given by
D � �j�i � 1

1 � q j1|A,ik

, q j1|A,ik � 1
(1 � q j1|U,ik)2 � .

�ik � D�D�,

The same way as before,where � � Cov(In |ik), and In |ik is the 2( J � 1)-dimensional
column vector �ik � D�D�.

In |ik � ((In,j I |ik � In,j II |ik, Jn,j1|ik/2) : j � i), Derivation of (6): Let R̂i � (R̂i1, R̂i2). Under Hi , asymp-
and totically √NikR̂i � N(0, �i) for some matrix �i . Let

D � �j�i(1, 2 � 4q j1|ik), J A
n,r |ik � ( J A

n,jr |ik : j � i) (r � 1, 2)

JA
n |ik � ( J A

n,1|ik , J A
n,2|ik), J U

n |ik � ( J U
n,1|ik , J U

n,2|ik),where � means matrix direct summation, which results
in a ( J � 1) � 2( J � 1)-dimensional matrix, and D is Jn |ik � ( J A

n |ik , J U
n |ik).

estimated by its empirical version D̂ in which q j1|ik is
replaced by q̂ j1|ik . And � is estimated by Let Ni � Ni1 � Ni2, NA,i � NA,i1 � NA,i2, NU,i � NU,i1 � NU,i2,
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�A,i � NA,i/Ni, �U,i� NU,i/Ni � 1 � �A,i. Let �A, �U, and � (l )
j � Cov(I (l )

n,j I |ik � I (l )
n,j II |ik , J (l )

n,j1|ik/2),
� be the asymptotic variance matrices for √NA,i J A

n |i , by Slutsky’s theorem, (A1) is asymptotically N(0, �j)√NU,i J U
n |i , and √Ni Jn |i . Let with

D � �j�i,k�1,2 � 1
1 � q j1|A,ik

, q j1|A,ik � 1
(1 � q j1|U,ik)2 � .

�j � �
L

l�1
�(l )

ik �(l )
j .

Then similarly as the derivation of (4) we have Let g(x, y) be the same as in the derivation of (4),
and�i � D�D�.

Derivation of (7): We need only to derive, under Hik , Dj � �g � �
L

l�1

�(l )
ik (P (l )

j I |ik � P (l )
j II |ik , q (l )

j1|ik)� � (1, 2 � 4q j1|ik).
the asymptotic distribution of √MikT̂ik . We first derive
that of Under Hik , g (�L

l�1 �(l )
ik (P (l )

j I |ik � P (l )
j II |ik , q (l )

j1|ik)) � 0, and

√MikT̂j |i k � √Mik ��
L

l�1

M (l )
i k

Mik

(P̂ (l )
j I |i k � P̂ (l )

j II |i k) � ��
L

l�1

M (l )
i k

Mik

q̂ (l )
j1|i k �

2

� ��
L

l�1

M (l )
i k

Mik

q̂ (l )
j2 |i k �

2

�
√MikT̂j |ik � √Mikg � �

L

l�1

M (l )
ik

Mik

(P̂ (l )
j I |ik � P̂ (l )

j II |ik , q̂ (l )
j1|ik1)� .

for each j. Again, we first get the asymptotic distribu-
tion of So √MikT̂j |ik is asymptotically normal with zero mean vec-

tor and variance matrix
√Mik �

L

l�1

M (l )
ik

Mik

(P̂ (l )
j I |ik � P̂ (l )

j II |ik , q̂ (l )
j1|ik). (A1)

�j |ik � Dj�jD �j � Dj �
L

l�1
�(l )

ik �(l )
j D�j .

The summands above are independent of each other,
Now the final conclusion follows the same way as in theand recall �(l )

ik � lim M (l )
ik /Mik . Since √M (l )

ik (P̂ (l )
jI|ik � P̂ (l )

jII|ik ,
q̂ (l )

j1|ik) is asymptotically N(0, �(l )
j ), with derivation of (4).




