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Exaggerated male traits that have evolved under sexual selection
include ornaments to attract mates and weapons to deter rivals.
Data from studies of many such traits in diverse kinds of organisms
show that they almost universally exhibit positive allometries.
Both ornaments and weapons increase disproportionately with
overall body size, resulting in scaling exponents within species that
are consistently >1.0 and usually in the range 1.5–2.5. We show
how scaling exponents reflect the relative fitness advantages of
ornaments vs. somatic growth by using a simple mathematical
model of resource allocation during ontogeny. Because the scaling
exponents are similar for the different taxonomic groups, it fol-
lows that the fitness advantages of investing in ornaments also are
similar. The model also shows how selection for ornaments influ-
ences body size at first reproduction and explains why interspecific
allometries have consistently lower exponents than intraspecific
ones.

optimal allocation � sexual selection � exaggerated trait � allocation
tradeoff � fitness function

A llometry is the study of how characteristics of organisms
vary or scale with body size. Such variation has been

described traditionally by a so-called allometric equation (1–3)
of the form

Y � Y0 X b, [1]

where Y is a dependent variable, such as antler size or heart rate,
Y0 is a normalization constant or ‘‘Y intercept,’’ X is a measure
of body size, typically mass, and b is an allometric or scaling
exponent. For physiological and life history traits, b is typically
�1 and often a simple multiple of 1�4, such as 1�4, 3�4, or �1�4
(4, 5). For morphological traits, however, so long as Y and X have
the same dimensions, b is typically close to 1. This condition is
referred to as isometry, whereas when b is �1 or �1, these
conditions are referred to as positive or negative allometry,
respectively. In 1931, Julian Huxley (6, 7) showed that horns and
antlers exhibit positive allometry. Several subsequent authors
have suggested that this observation also applies to most mor-
phological structures that function as ornaments to attract mates
or as weapons to combat rivals (e.g., 8–12). Indeed, Darwin (13)
and many subsequent authors have remarked that sexual selec-
tion favors the evolution of ‘‘exaggerated’’ male traits. In 1974,
S. J. Gould (6) wrote ‘‘The positive allometry of horns and
antlers is one of the most pervasive and poorly understood
regularities in the study of form and function.’’

These positive allometries raise the conceptual question, what
are the fitness consequences of allocating energy and materials
to ornaments or weapons during ontogenenetic growth and
development? It is necessary to understand why, as an individual
grows, it should allocate resources differentially to an ornament
or weapon, rather than in equal proportions to all structures,
which would result in isometric scaling. Additionally, positive
allometries often are observed across species of related organ-
isms that differ in average adult body size. The classic examples
of exaggerated sexually selected traits are the antlers of Irish elk
(Megaloceros giganteus), which are largest in the largest individ-
uals of this giant deer species. So it is also necessary to explain

why, as species have evolved larger bodies, they have evolved
simultaneously even more exaggerated ornaments and weapons.

The explanation for such positive allometries must lie with the
fitness consequences of allocating resources differentially to
ornaments or weapons rather than to overall body size. Several
authors have addressed this problem (e.g., 8, 9, 12, 14–18). Most
have made qualitative verbal arguments rather than mathemat-
ical models. Recently, Bonduriansky and Day (19) presented
models suggesting that any pattern, isometry or positive or
negative allometry, is possible. Here we summarize many of the
published empirical studies of ornament allometry, show that the
exponents are nearly always substantially �1, and develop a
mathematical model that can explain why sexual selection so
often leads to such positive allometries.

Patterns of Ornament and Weapon Allometry
We first synthesize data for sexually selected morphological
structures in different kinds of organisms. We address three
questions: (i) How do the exponents vary among individuals of
different sizes within populations, and among populations of
different average body size? (ii) How do the exponents vary
across traits and taxa? And (iii) are there consistent patterns
depending on whether the traits function as ornaments, weapons,
or both? Our analysis is based on 13 studies of 9 major taxa and
284 species (Table 1, which is published as supporting informa-
tion on the PNAS web site). Rather than exhaustively surveying
the literature, we focused on studies that present data on
multiple samples of individuals, populations, or species and that
use standardized methods to measure both body size and the
trait of interest. The database includes vertebrates and inverte-
brates, and terrestrial, freshwater, and marine (intertidal)
animals.

Fig. 1 and Table 1 summarize our compilation of data. Fig. 1
plots frequency distributions for the exponents for intraspecific
allometries for the extensive data for horns of stag beetles, claws
of fiddler crabs, forceps of earwigs, and dewlaps of Anolis lizards.
Table 1 gives additional examples, including the classic deer
antlers. Across the entire data set, allometric scaling exponents
for individuals within populations range from 0.93–15.7, with a
distinct mode between 1.5 and 2.5, so the vast majority of
intraspecific exponents are �1.

Interspecific allometries nearly always have lower exponents
than intraspecific ones for the same trait and taxon (Fig. 2 and
Table 1). Nevertheless, they are also consistently �1, ranging
from 1.1–3.4 with a mode between 1.5 and 2. Fig. 2 shows
examples of relationships for stag beetles, comparing allometries
within species of Neolucanus and Cyclommatus and to interspe-
cific allometries for these same two genera.

There seem to be no consistent differences in the exponents
for ornaments as opposed to weapons: Values for traits that
function exclusively as ornaments, e.g., Anolis dewlaps and
Poecilia and Xiphophorus fins, bracket most values for traits that
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function primarily as weapons or have a dual function. We
conclude that across a wide variety of traits and taxa, allometric
exponents for both ornaments and weapons almost invariably
show positive allometries, with exponents typically in the range
of 1.5–2.5 and consistently greater for intraspecific comparisons
than interspecific ones.

Modeling Investment Allocations and Fitness Payoffs
Fig. 3A presents a general model showing how energy or
limiting material resources (e.g., mineral nutrients for antlers)
are allocated during ontogeny to increase the relative size of
an ornament (z � Y�X) as a function of increasing body size
(X). While small, the male invests predominately in growth

with a concomitant increase in body mass. After reaching
reproductive size, in response to sexual selection to acquire
mates, the male begins to invest in an ornament or weapon as
well as in continued growth. We use the term ‘‘reproductive
size’’ loosely, to mean the size at which ornaments become
noticeable (e.g., z � 0.05). The outcome of sexual and natural
selection is the pattern of resource allocation that maximizes
overall fitness. Our model assumes that fitness increases with
increasing allocation to both ornament and body, but there is
a tradeoff between increasing the relative size of the ornament
and increasing overall body size. The tradeoff is specified by
the hypotenuse of the right triangle with sides z and log10 X.
The payoff is given by a fitness function, shown in the graphical
model by plotting contour curves of equal fitness, with in-
creasing fitness toward the upper right (Fig. 3A).

Our model uses the framework developed by Sibly and Calow
(24) and builds on recent theoretical treatments by Bonduriansky
and Day (19) and Lindström et al. (25). Fitness, f, is presumed
to increase with body mass X and relative ornament size z
according to a mathematical function f � f(x, z), where x � log10X
and z � Y�X. The model makes the following assumptions: (i)
during some period (e.g., 1 year), an individual of body size x and
ornament of relative size z has the option of increasing its body
size by an amount �x and its relative ornament size by �z, subject
to; (ii) an allocation tradeoff in which the total energy and
material content of body plus ornament is conserved; this
principle of allocation gives a negative relationship between Y
and X, and a negative relationship between �x and �z, so that the
options lie on a line that we approximate as the hypotenuse of
a right triangle (see gray triangles in Fig. 3A); and (iii) the
triangle has a geometrically similar shape (ratio of �x to �z)
regardless of its position in the (x, z) plane. The absolute sizes of
the triangles decrease with increasing body size, because whole-
organism production rate scales as the 3�4 power of body mass
(e.g., refs. 4 and 26).

To motivate the formal mathematical treatment, we now
analyze the example in Fig. 3A. The optimal strategy is that which
gives the greatest increase in fitness, given that tradeoffs are
constrained to lie on the negatively sloped hypotenuse of the
options triangle. The optimal strategy is to allocate resources to
the point where a fitness contour just touches the negatively
sloped tradeoff line. For immature animals of small size (at the
bottom left-hand corner of Fig. 3A), the optimal strategy is to
allocate almost all resources to growth. Consequently the options
triangle initially moves horizontally to the right. Upon reaching
reproductive size, however, the hypotenuse becomes parallel to
one of the fitness contours and, thenceforth, resources are
increasingly allocated to ornament, so that in each successive
year, the options set follows the fitness contours up and to the
right (Fig. 3A). Mathematically, this is given by the equation
condition

fx � t�fz � 0, [2]

where fx and fz denote partial differentiation with respect to x and
z respectively, and t is the slope of the hypotenuse (Supporting
Text, which is published as supporting information on the PNAS
web site). This equation defines the optimal strategy in terms of
x and z (see example in Fig. 3A). The quantities fx and fz in Eq.
2 indicate the strength of selection on body size and relative
ornament size, respectively. Technically fx is the rate at which
fitness increases with x, so it measures the fitness advantage of
unit investment in increased body size. Similarly fz indicates
the net benefit of increasing the relative size of the ornament.
The slope, t, of the options triangle indicates the terms of the
tradeoff: the more negative the slope, the larger the relative
allocation to ornament.

Fig. 1. Frequency histograms of allometric exponents obtained by various
authors by fitting power functions to data for intraspecific variation in orna-
ment size as a function of body size in different groups of animals: horns of
stag beetles (Lucanidae; ref. 20), claws of Uca fiddler crabs (21), forceps of
earwigs (Dermaptera; ref. 22), and dewlaps of Anolis lizards (23).
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In the hypothetical example shown in Fig. 3 A–D, fitness is
characterized by a particular mathematical function

f � �10�0.8 x � 0.1 loge z . [3]

In this example, partial differentiation of f with respect to x and
y yields

fx �
�f
�x

� 1.84 10�0.8x and fz �
�f
�z

� 0.1�z

(see Appendix 2), and we assume that t � �0.08. Inserting these
values into Eq. 2 yields, after simplification, Y � 0.00434 X 1.8.
So, as the animal grows, its allocation strategy follows the dashed
line, which in this example corresponds to an allometric expo-
nent b � 1.8. In general, applying Eq. 2 to the fitness function

f � �10�1�b�x � Y0�1 � b� loge(10) loge z� t [4]

gives Y � Y0 Xb, which is Eq. 1. Then, Eq. 4 specifies a fitness
function that depends on the parameters x, z, t, Y0, and b, for
which the optimal strategy is the allometric equation. Is the
fitness function of Eq. 4 unique in this respect? In fact, any
monotonically increasing transformation of f yields Eq. 1 as the
optimal strategy, but we conjecture that there are no others.
Note that the fitness function f and the parameter values for t,
Y0, and b used in this example (Fig. 3; see also Table 2, which is
published as supporting information on the PNAS web site) have
not been derived from first principles. Additional research could

profitably be devoted to exploring the mechanistic basis and
mathematical form of the fitness payoff.

The above model is developed for organisms that continue to
grow after reaching reproductive size. In such organisms, it also
accounts for within-population variation among individuals,
because most of the variation in body size within such a
population will be due to variation in age. The same model also
can be applied to organisms in which different males start
reproducing at different body sizes and do not grow thereafter.
Examples include holometabolus insects, such as the stag and
rhinoceros beetles in Figs. 1 and 2 and Table 1. In such cases, the
tradeoff options are given by a nested series of similar triangles,
all with the right angle at the smallest size of reproduction (Fig.
3B). An individual that has accumulated more resources has a
proportionately larger options triangle, and the optimal alloca-
tion again is given by the point where the hypotenuse is parallel
to a fitness contour. So the intraspecific allometric exponent is
the slope of a line running through the points of optimal
allocation as before. Note that the model for determinant growth
gives the same exponent as the version for indeterminant growth
so long as the allocation tradeoff and fitness function remain the
same (compare Fig. 3 A and B).

What happens if the allocation tradeoffs change? Fig. 3 C and
D show the effects of changing the terms of the allocation
tradeoff between ornaments and somatic growth, while keeping
the fitness functions the same as in Fig. 3 A and B. In Fig. 3C,
relative allocation to ornament is greater than before, i.e., a
larger ornament for a given sacrifice of somatic growth. The
result is taller options triangles than in Fig. 3 A and B. Con-

Fig. 2. Comparison of intraspecific and interspecific allometries for the horns of stag beetles. (A and B) Intraspecific variation in 11 species of Neolucanus (A)
and 10 species of Cyclommatus (B), where each line represents the allometric relationship for a different species, and the average exponent for these relationships
is 2.12 for Neolucanus and 2.58 for Cyclommatus. (C and D) Interspecific allometries for the 11 species of Neolucanus (C) and 10 species of Cyclommatus (D), where
each data point represents an average value of horn and body length for all measured individuals in a species, and the exponents are 1.37 for Neolucanus and
1.82 for Cyclommatus. Each of the symbols represents a different species: The symbol in the interspecifc plots represents the mean, and the pair of identical
symbols connected by a line in the intraspecific plots represents the range of variation (�2 SD). Data were replotted and exponents were recalculated from
Kawano (20). In A and B, note that the relationships for larger species are displaced to the right (lower Y0), reflecting increasing size at first reproduction.
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versely, in Fig. 3D, relative allocation to ornament is reduced, so
the options triangles are shorter. Despite these differences in
allocation, however, the allometric exponents remain the same,
b � 1.8. Mathematically this relationship is because the fitness
contours and Eq. 4 remain the same. In order for this condition
to happen, the normalization constant Y0 has to vary to com-
pensate for the changes in t (see Table 2 for details). The result
is that in Fig. 3C, the trajectory starts at z � 0.027 when x � 0,
whereas in Fig. 3D, the trajectory does not reach z � 0.027 until
body size is 100 times larger and x � 2. So, as the relative
allocation to ornament decreases, the optimal strategy is to
attain a larger body size before reproducing and investing in
ornament.

Now, what happens when the fitness payoffs change? In Fig. 3 E
and F, the shapes of the fitness contours change, but the shape of
the options triangle remains the same as in Fig. 3A. In Fig. 3E, small
animals can get more fitness payoffs from ornaments of a given size
than in Fig. 3A. Consequently, the optimal strategy is to start
growing ornaments at a smaller size, decreasing the size at first
reproduction. The triangles intersect more fitness contours verti-
cally and follow a steeper trajectory, resulting in a higher allometric
exponent (b � 3.8 for this example compared with b � 1.8 in Fig.
3A). In contrast, in Fig. 3F, ornaments differentially increase the
fitness of larger animals. This relationship leads to increased body
size at first reproduction but no change in the allometric exponent,
b � 3.8, as in Fig. 3E.

In summary, �t represents the tradeoff between ornament and
body, and fx and fz indicate the strength of selection on body size and
relative ornament size, respectively. The general rule characterizing

the optimal strategy is given by Eq. 2. This condition is the
mathematical formulation of the rule that optimal allocation occurs
when the slope of the fitness contour equals the slope of the tradeoff
between ornament and body.

The model above was developed to describe optimal allocation to
ornament size within the same individual as body size increases
during ontogeny. We now show how it also can be applied across
populations that differ in adult body size to explain why interspecific
exponents are lower than intraspecific ones. Consider one species
that exhibits the fitness contours and allocation tradeoffs shown in
Fig. 3E. Now consider a closely related species that has a similar
allocation triangle but cannot obtain fitness payoffs from ornaments
until it has grown to a larger body size. Its optimal strategy is
depicted in Fig. 3F. This second species will be selected to defer
reproduction and allocate resources to somatic growth for a longer
period. The allometric exponent, b, remains the same, but the
normalization constant, Y0, is decreased, and the allocation trajec-
tory is shifted to the right compared with the closely related species
in Fig. 3E. For further details see Supporting Text. Shifting the
normalization constant to a lower value in a species of larger body
size also reduces the degree of ornament exaggeration in the largest
males. Consider the classic case of the Irish elk: The antlers of the
largest individuals are indeed very large, but they would have been
even larger had the interspecific trajectories simply extended an
intraspecific relationship. Others of many possible examples are the
stag beetles depicted in Fig. 2, where the interspecific exponent for
each genus is the slope fitted to the average values of ornament and
body size for each species (see also refs. 20 and 27). The shifts in
normalization constants across species may not appear to be very

Fig. 3. Diagram showing how the optimal strategy (dashed line) for allocation to an ornament is calculated. Axes are x � log10 (body size) and z � (ornament
size)�(body size) as defined in the text. The triangles indicate allocation tradeoffs between ornament and body, the curved contour lines connect points of equal
fitness, and the optimal strategy occurs when the slope of the contour is exactly equal to the slope of the hypotenuse, as derived mathematically in the text.
Parameter values are given in Table 2. (A) The case for organisms that continue to grow throughout life. The allocation options each successive year are shown
as gray triangles. (B) The analogous case for organisms that start reproducing at different body sizes with different quantities of resources and do not grow
thereafter. The similarly shaped allocation triangles comprise a nested set, so that males with fewer resources and smaller body sizes have options triangles that
are smaller (darker shading) than males with more resources. Consequently, the optimal allometry (dashed line) is the same as in A. (C and D) Holding the fitness
function constant but allocating relatively fewer resources to ornament (C to D) reduces the height of the options triangle and leads to increased body size at
first reproduction but does not change the exponent (b � 1.8; see Modeling Investment Allocations and Fitness Payoffs). (E and F) Holding the tradeoff options
constant as in A but changing the fitness function can change both size at first reproduction and the allometric exponent. Increasing the relative fitness of males
expressing ornaments at large body size (E to F) leads to increased body size at first reproduction, but in this comparison, does not change the allometric exponent.
However, changing the shape of the fitness landscape (A to E) changes the allometric exponent, increasing it here from b � 1.8 to b � 3.8.
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large, but this seemingly small effect is largely a consequence of
plotting body size on a logarithmic axis. So the model also can
explain why interspecific allometric exponents are consistently
lower than intraspecific ones.

Recent models of Bonduriansky and Day (19) and Lindström et
al. (25) also develop a framework in which fitness is a mathematical
function of trait size and body mass. Bonduriansky and Day’s
assumptions regarding allocation tradeoffs translate directly into
ours: their parameter k is our parameter –t. There are, however,
important differences in assumptions, and their model makes
different predictions. For example, they predict an irrevocable
switch from somatic growth to allocation to the trait at some point
in development, rather than the continuous allocation to both that
is optimal in our model. More generally, Bonduriansky and Day’s
models suggest that sexual selection can give rise to a wide variety
of both positive and negative allometries. Lindström et al. (25) do
not use their model to derive allometric exponents. In contrast to
these models, our model not only accounts for the consistently
positive allometries of ornaments and weapons but also predicts
how allometric exponents and body size at first reproduction vary
with allocation tradeoffs and fitness payoffs.

Why Do Ornaments and Weapons Exhibit Positive Allometries?
The empirical evidence shows that the ornaments and weapons
used by males to acquire mates almost universally exhibit positive
allometries. The exponents of Eq. 1 relating some dimension of
ornament size to a comparable measure of overall body size are
�1, often in the range of 1.5–2.5, and in a few cases �3. We
develop a very simple, general mathematical and graphical
model to explain the evolution of such exaggerated structures.
The model quantifies the resource allocation tradeoffs and
associated fitness payoffs of allocating energy or material re-
sources to increase differentially the size of an ornament or
weapon rather than allocating equally to all structures so as to
increase overall body size. The main insights provided by the
model are that (i) the allocation tradeoff has no effect on the
allometric exponent (e.g., compare Fig. 3 A, C, and D, which
have the same fitness contours but differ in the shapes of the
options triangles). (ii) Instead, the allometric exponent is deter-
mined entirely by the shape of the fitness contours (e.g., Fig. 3
E and F have contours of a similar shape, but those of Fig. 3F
are displaced to the right. Because the contours have similar
shapes, the allometric exponents end up the same; because those
of Fig. 3F are displaced to the right, the resultant optimal
strategy has a lower normalization constant (Y0). (iii) The
normalization constant is sensitive to both the allocation
tradeoff and the position of the fitness contours (compare Fig.
3 C and D). If the tradeoff is invariant, the larger species
necessarily have lower normalization constants than smaller
ones (Supporting Text). In sum, the shapes of the fitness contours
determine the allometric exponent, whereas the normalization
constant (Y0) is determined jointly by the position of the
contours and the allocation tradeoff to ornament vs. body. Thus,
the allometric exponents alone reflect the relative fitness ad-
vantages of ornaments vs. somatic growth for the fitness func-
tions specified by Eq. 4. Turning the argument around, because
the allometric exponents are similar for the different taxonomic
groups, the fitness advantages of investing in ornaments should
also be similar. The suggestion is that in all of the diverse taxa
considered here, similar mating advantages are obtained by
ornaments of similar cost, in terms of somatic growth, irrespec-
tive of the type of the ornament.

The model incorporates, explicitly or implicitly, several im-
portant features of biology. First, ornaments and weapons are
not cheap. The costs of allocating resources to these traits and
to the muscles and other structures required to display the
ornaments or wield the weapons are substantial. These costs
trade off to limit growth in overall body size. These resource
costs and the associated fitness consequences keep the sexually
selected structures honest, so they are not subject to cheating
(e.g., refs. 14–16). Indeed, comparison of Fig. 3 C and D shows
how it is possible to have steep positive allometries, even when
only a small fraction of resources is allocated to the ornament.
Second, by definition, exaggerated structures exhibit positive
allometries. In terms of the model, this exaggeration means that
z increases exponentially with x, and relative ornament or
weapon size increases exponetially with increasing body size and
resources. Note that isometry results when z remains constant as
body size increases throughout ontogeny. Third, the exponential
scaling of ornament size produces a much more effective signal
than if the scaling were isometric. Sensory systems are typically
tuned on exponential scales (ref. 28; for example, loudness of
sound is measured in decibels, a log10 scale). So, the exponential
scale of the male’s ornament signal tends to match the expo-
nential scale of the female’s sensory response. Fourth, the
previous points must be true, even though the size of the
ornament or weapon itself represents only a part of the cost of
allocating resources to such a structure. Additional anatomical
and physiological attributes, not included in the measurement of
the ornament or weapon, are required to use the structure in
intersexual display or intrasexual combat. These muscles and
other traits invariably contribute to the apparent increase in
overall body size, so they are often incorporated implicitly in the
measurement of the body size variable. So, the z dimensions of
the tradeoff triangles underestimate the full cost of allocating to
the ornament; additional costs are often hidden in the x dimen-
sions. Fifth, for the above reasons, the positive allometries
provide clear examples of condition-dependent, sexually se-
lected traits. Males with more resources produce both absolutely
and relatively larger ornaments. Therefore, large ornaments
provide an easily detected signal of male condition. Sixth, the
model specifies how sexual selection for optimal resource allo-
cation to ornaments affects both the allometric exponent, b, and
the normalization constant, Y0, in Eq. 1. Factors that affect Y0
cause the intraspecific exponents to be consistently greater than
interspecific ones. So, the above fundamental features of allo-
cation tradeoffs and fitness payoffs not only explain positive
allometries of ornaments and weapons during the ontogenetic
growth of an individual, they also explain the scaling relation-
ships between individuals of different body sizes, both within and
between populations of closely related organisms.

To paraphrase Gould (6), the positive allometries of horns and
antlers are indeed one of the most pervasive regularities of
biological form and function. After several decades of empirical
and theoretical investigation, however, these positive allometries
are no longer poorly understood. They are the inevitable result
of differential allocation to structures that enhance mating
success.
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