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INTRODUCTION intestine is lined by a simple columnar epithelium that is folded

The mucosal surface of the intestinal tract is the largest body
surface in contact with the external environment (200 to 300
m?). It is a complex ecosystem combining the gastrointestinal
epithelium, immune cells and resident microbiota (249). The
mucosa of the intestinal tract is exposed to various microbial
pathogens. These potentially harmful enteric microorganisms
can hijack the cellular molecules and signaling pathways of the
host and become pathogenic. In the first step in the infectious
process, some enteric bacterial pathogens adhere to the brush
border of intestinal cells (46, 380), enabling them to exploit the
underlying signaling pathways. Moreover, some enteric micro-
bial pathogens have developed specialized systems that, after
this essential step of adhesion, produce virulence factors. After
normal host-cell processes have been subverted, these systems
enable the pathogen to cross the epithelial barrier (74). The
host cell cytoskeleton is commonly used and targeted by en-
teric microbial pathogens during the cell penetration step; it is
exploited for purposes that include gaining entry into cells,
moving within and between cells, and forming and remodeling
vacuoles in order to create a specialized niche, which enhances
the pathogen’s chances of survival (131).

The host is protected from attack by potentially harmful
enteric microorganisms by the physical and chemical barriers
created by the intestinal epithelium (Fig. 1). The surface of the
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to form a number of invaginations, or crypts, which are em-
bedded in the connective tissue. The intestinal cells (192, 228,
271) that make up the epithelium provide a physical barrier
that protects the host against the unwelcome intrusion of mi-
croorganisms (Fig. 1). The intestinal epithelium is a model of
tissue renewal, since intestinal cells are constantly generated
from a source of multipotent stem cells located in the crypts of
Lieberkiihn, and these provide new precursor cells permitting
a high rate of cell turnover. In the intestinal villi, the polarized
epithelial cells that form the epithelium separate two different
compartments. This epithelial barrier is composed of four ep-
ithelial cell lineages, including the enterocytes, enteroendo-
crine, goblet, and Paneth cells present in the intestinal villi. In
addition, M cells are present in the follicle-associated epithelia.
The integrity of the layer of epithelial cells is maintained by
intercellular junctional complexes composed of tight junctions
(TJs), adherens junctions (AJs), and desmosomes, whereas gap
junctions allow intercellular communication to occur. TJs, the
most apical components of the junctional complex (9, 344),
create a semipermeable diffusion barrier between individual
cells, which can be regulated and serves as the permeability
barrier. Forty different proteins have been shown to be located
in TJs, including, for example, ZO-1, ZO-2, and ZO-3 pro-
teins, members of the membrane-associated guanylate kinase
protein family, occludin, claudins, cingulin, 7H6, and several
unidentified phosphoproteins (59, 267). Interestingly, the bio-
genesis of the TJs appears to be regulated, in part, by classic
signal transduction pathways, such as those involving hetero-
trimeric G proteins, Ca>*, and protein kinase C, and raft-like
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FIG. 1. Architecture of the intestinal epithelium lining the intestinal tract. (A) Crypt-villus cell organization. The cell renewall is achieved from the
pluripotent intestinal stems cells are up from the crypt base in the small intestinal and at the crypt base in the colon. Epithelial cells migrate up the crypt
where they perform their differentiation, acquiring specific intestinal functions of absorption and secretion. Three cell types differentiate as they migrate:
the predominant enterocytes, the mucus-secreting Goblet cells, and the peptide hormone-secreting enteroendocrine cells. Oppositely, the Paneth cells
migrate down to the base of the crypt. (B) The assembly of the polarized epithelial-cell types results from an epithelium that provides a permeability
barrier between the external and internal compartments. This barrier function is assumed by the junctional domain, including well-defined gap junctions,
desmosomes, adherens junctions, and tight junctions. Four polarized epithelial cell lineages were present in the intestinal epithelium: the enterocytes
expressing at the apical domain a dense, well-ordered brush border consisting of organized microvilli in the membrane of which oriented proteins support
specific functions; the mucus-secreting goblet cells (cell with large yellow granules) producing membrane-bound mucins and containing mature storage
granules in which secreted mucins are packaged; the enteroendocrine cells (cells with small, dark granules) containing small, oriented secretory granules

in which different peptide hormones should be stored, although a same granule may store more than one peptide hormone; and the Paneth cells (cell
with small, red granules) containing apically oriented granules in which AMPs and antimicrobial proteins were packaged as pro or mature forms. Enteric
pathogens (red bacteria with flagella) interact with the intestinal epithelial cells, enter the cells, affect the cell architecture or organization, and disturb
the cell functions. The commensal bacteria (blue and green bacteria) mainly reside in the lumen outside the mucus layer. Secreted mucins (in yellow,
coating the epithelial surface) in association with the membrane-bound mucins act as a physicochemical barrier for the protection of the epithelial cell
surface against undesirable harmful pathogens.
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membrane microdomains that act as a platform for signaling
molecules (81, 246, 286, 416). Downstream from the TJs are
the AJs, composed of a cadherin-catenin complex and its as-
sociated proteins, and membrane and PDZ proteins (277, 377).
In both TJs and AlJs, interactions among their specific compo-
nents seem to be dynamically regulated during the formation
of the junctional complex in epithelial cells. Importantly, it has
been noted that TJs and AJs play a pivotal role in maintaining
cell polarization. Indeed, recent evidence suggests that cell
polarization operates regardless of whether TJs are present,
since they form an intramembrane barrier to diffusion that
restricts mingling between the apical and basolateral mem-
brane components (245, 382). It is of interest that many patho-
genic enteric bacteria target and exploit the TJ domain to
accomplish their pathogenic strategies by modulating intestinal
permeability (105, 156). It has also been established that some
enteric pathogens use the M cells overlying the organized mu-
cosal-associated lymphoid system (204, 282) as a route of in-
vasion and that after passing through these cells, the bacteria
face phagocytic cells, particularly the macrophages that are
present in the follicle dome (60, 186, 339).

Host defense systems against unwelcome intrusion of patho-
genic enteric microorganisms include adaptive and innate im-
munity. Adaptive immune responses are typically observed 4 to
7 days after infection, and this mechanism involves the gener-
ation of immunological memory and the expansion of recep-
tors with relevant specificities. In contrast, the innate immune
system is mobilized within the first few days in order to control
infection (258). Unlike the adaptive immune system, which
uses a clonal, random, and highly diverse repertoire, the innate
immune system uses nonclonal sets of recognition molecules.
The intestinal epithelium provides a surface where the host can
sense the microbial environment in order to trigger a strong
defense response, when this is required, by releasing signaling
molecules such as cytokines and chemokines. These in turn
trigger the recruitment of leukocytes and initiate the attraction
of immune cells. However, the intestinal epithelium, unlike
that of the lung, tolerates bacterial colonization by members of
the resident microbiota. Indeed, although consistently exposed
to commensal bacteria, the normal mucosa exhibits only a
minimal inflammatory status in response to the abundant prod-
ucts of the normal flora triggered by resident gram-negative
and gram-positive bacteria. These products include substances
such as lipopolysaccharide (LPS) (for gram-negative bacteria)
and lipoprotein and peptidoglycan (for gram-positive bacte-
ria). Investigating how the host gut distinguishes between its
commensal microbiota and unwelcome enterovirulent micro-
organisms has revealed that hosts possess highly sophisticated
systems for detecting antigens (6, 14, 89). The endogenous
bacterial species of the microbiota all share “self” signature
molecules, known as microbe-associated molecular patterns.
In contrast, following infection, the host innate mucosal im-
munity response is activated mainly as a result of the specific
recognition by pattern recognition receptors of conserved
“non-self” molecular structures found in large groups of patho-
gens, known as pathogen-associated molecular patterns (180).
For example, epithelial cells sense the environment within the
gut by means of their pattern recognition receptors, which include
Toll-like receptors (TLRs) and the NOD (nucleotide-binding oli-
gomerization domain) proteins (93, 181, 191, 281, 310). TLRs are
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evolutionary conserved proteins characterized by having an extra-
cellular leucine-rich repeat domain involved in ligand recognition
(1, 181, 257, 258) and an intracellular Toll/interleukin 1 (IL-1)
receptor-like domain involved in signal transduction (4, 191).
Moreover, two mammalian nucleotide-binding, leucine-rich, re-
peat proteins (NOD1 and NOD2) function as intracellular sen-
sors of bacterial products in the induction of inflammatory re-
sponses (125, 155, 176). Biochemical studies have revealed that
NOD?2 is in fact a protein involved in the innate immune detec-
tion of bacterial products (201, 311). More specifically, NOD2
recognizes a fragment of peptidoglycan, known as muramyl
dipeptide, which is found in the cell walls of both gram-negative
and gram-positive bacteria.

The intestinal epithelium is not just a physical barrier that
prevents unwanted bacteria from gaining access to essential
organs; it also provides a surface covered by specialized cells
producing mucus, antimicrobial peptides (AMPs), and antimi-
crobial molecules, such as lysozyme, which together with resi-
dent microbiota provide the front line of defense against
pathogenic microorganisms (118). The aim of this review is to
analyze what we know about this first line of defense. Our
analysis focuses on the two cell lineages present in the intes-
tinal epithelium: the goblet cells and the Paneth cells, both of
which play a pivotal role in this front line of enteric defense
(Fig. 1). We also discuss recent insights into the mechanisms by
which the intestinal microbiota acts as a barrier to enteric
pathogens.

MUCUS

The intestinal mucosa has a surface coating of mucus that is
secreted by the specialized goblet cells, also known as mucin-
secreting cells (72, 108, 207).

Mucin-Secreting Cells

Mucin-secreting cells have a polarized phenotype character-
ized by the fact that the apical and basolateral domains of the
cell membrane are separated by TJs that are also involved in
connections with adjacent cells (Fig. 1). In the apical domain,
the mucin-secreting cells have a brush border, an ordered
structure consisting of organized microvilli. As in the entero-
cytes, the microvillus of the brush border is organized by a
cytoskeleton containing a bundle of actin filaments combined
with various actin-bundling proteins, including villin and fim-
brin. The cytoskeleton of the brush border plays a pivotal role
in organizing and maintaining specialized intestinal functions
in both enterocytes and mucin-secreting cells. The microtubule
cytoskeleton localized within the cell is also specifically orga-
nized to facilitate vesicle trafficking between the Golgi network
and the apical domain facing the luminal compartment (331),
which is under the control of apical sorting signals. Mucin-
secreting cells contain numerous high-electron-density, secre-
tory granules containing packaged mucins located above the
nucleus and below the brush border.

Mucin-secreting cells mature from the proliferative zone
located at the base of the crypt, and they are all derived from
stem cells located at the base of the crypt (18, 42, 241) (Fig. 1).
Mucin-secreting cells mature as they migrate along the crypt-
villus axis. The short-lived mucin-secreting cells ascend the
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villus, differentiate, and then exfoliate into the lumen within
~5 to 7 days after they have been produced as a result of cell
division, as do enterocytes and endocrine cells. Investigations
of the regulation of stem cell proliferation and differentiation
on the villus have revealed that they are controlled by several
systems, including the Wnt and Hedgehog signaling pathways,
the morphogenic proteins of bone, and intestinal transcription
factors, CDX1, CDX2, and HNF1 (402, 403). For example, the
canonical Wnt signaling cascade (312, 313) comprises 20 dif-
ferent secreted proteins, which interact with about 10 different
Frizzled receptors. Wtn signaling is transduced via B-catenin/
TCF4 (390) and is known to control multiple biological phe-
nomena in vertebrates, including cell fate determination and
maintaining stem/progenitor cells with predefined fates in spe-
cific compartments (241). Wnt signaling plays a key role in the
intestinal epithelium (38, 202) in driving a stem cell/progenitor
gene program that is crucial for maintaining undifferentiated
progenitors near the bottom of the crypts of Lieberkiihn. In
addition, it has recently been reported that the Notch signaling
(12) plays a critical role in intestinal development, since mu-
crosecreting goblet cells are severely depleted in the double
transgenic Rosa-Notch/Cre* mouse (110). Exfoliation of ma-
ture intestinal cells from the tip of the villi results from a
particular cell death program, known as “anoikis,” that subject
to both positive and negative control by focal adhesion kinase-
or B,-integrin-related events, protein-kinase signaling path-
ways including phosphatidylinositol 3-kinase/Akt, mitogen-ac-
tivated protein kinase, stress-activated protein kinase/Jun ami-
no-terminal kinase, and certain Bcl-2 and Bcl-2-related
proteins (113, 385, 423).

Changes in goblet cell function and in the chemical compo-
sition of the intestinal mucus have been detected in response to
a broad range of luminal insults, including changes in the
normal microbiota and the intrusion of harmful enteric patho-
gens, but the mechanisms involved are poorly understood (82).
Studies have shown that germfree mice can exhibit changes in
mucin gene expression, mucus composition, and mucus secre-
tion in response to intestinal microbes or host-derived inflam-
matory mediators. For example, when germfree mice were
conventionalized by the oral administration of microorganisms
prepared from the feces of genetically identical mice, bacterial
colonization led to a time-dependent change in the number of
rectal goblet cells and mucin composition (115).

Mucins

Mucin-type molecules consist of a core protein moiety (apo-
mucin) within which a number of carbohydrate chains are
attached to serines, prolines, and threonines by glycoside
bonds. O-linked and N-linked oligosaccharides form up to
80% of the molecule, and the lengths of the carbohydrate side
chains range from 1 to more than 20 residues (348). Mucin-
type oligosaccharides play a pivotal role in their hydroscopic
properties, by binding various small molecules and proteins,
and in specific ligand-receptor interactions. Mucins are synthe-
sized as nascent peptides and form oligomers in the endoplas-
mic reticulum (108). Core- and end-glycosylations occur in the
Golgi apparatus, and the mature mucins are then moved from
the condensing granules to mature storage granules. Mucins
can be divided into three distinct subfamilies on the basis of
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their structure: gel-forming, soluble, and membrane-bound
mucins (Table 1). Moreover, the mucins secreted can be subdi-
vided into two groups: gel-forming mucins and non-gel-forming
mucins (51, 80, 121, 157). Eighteen genes encoding human mu-
cin-type glycoproteins have so far been assigned to the MUC gene
family, MUCI, MUC2, MUC3A4, MUC3B, MUC4, MUC5B,
MUC5AC, MUC6 through MUCI3, and MUCI5 through
MUC1I7, with the approval of the Human Genome Organiza-
tion Gene Nomenclature Committee (http://www.gene.ucl.ac
.uk/nomenclature) (51, 79, 80, 269). A cluster of four mucin
genes (MUC2, MUCS5B, MUC5AC, and MUC6) located on
chromosome 11p15.5 encodes secreted mucins. Nine genes,
MUCI (1q21), MUC3A (7q22), MUC3B (7q22), MUC4 (3q29),
MUCI1 (7q22), MUCI2 (7q22), MUCI3 (3q13), MUCI6
(19p13.3), and MUC17 (7q22), encode membrane-associated
mucins. There are also some products of MUC genes, includ-
ing those of MUC7 (4q13 to 4q21), MUC8 (12q24), MUC9
(1p13), and MUC15 (11p14.3), that do not fit well into either
class.

The secreted mucins MUC2, MUC5AC, MUCS5B, and
MUCG6 assemble via interchain disulfide-forming, disulfide-
linked oligomers/multimers with molecular weights in the mil-
lions (307). They express specific mucin domains (51, 157),
including VNTE (variable number of tandem repeat) domains
that are rich in serine, threonine, and proline residues; VWD
sequences homologous to von Willebrand factor D domains
(which are thought to be involved in the oligomerization of mucin
to form gel); C-terminal CK (Cys-rich [cystin-rich]/CK [Cystin-
Knot]) domains (which are thought to be involved in the initial
dimerization of apomucin monomers); and VWC domains (ho-
mologous to von Willebrand factor C domains), which are
thought to be involved in binding trefoil factors (315, 338).

The mechanism(s) by which the apical exocytosis of granule
content occurs has not been fully elucidated. It has been pro-
posed that mucus exocytosis may develop after the granule and
plasma membrane fuse to form a fusion pore and that an
expulsive force then extrudes the viscous mucins from the
granules into the luminal space. It has also been suggested that
electrolyte secretion may provide the osmotic driving forces
(140, 261, 262). There are two possible secretory pathways for
secreted mucins in intestinal mucin-secreting cells (108, 206,
207). The first of these is the regular vesicular constitutive
pathway of mucin exocytosis, also known as baseline secretion,
in which no storage occurs, since the small vesicles transporting
the mucins through the constitutive pathway are guided di-
rectly to the cell surface via microtubules and undergo imme-
diate exocytosis of their contents. The second pathway for
mucin exocytosis involves the packaging and storage of mucins
in large vesicles, from which mucin release is regulated by
specific stimuli involving the activation of signaling pathways
by a number of secretagogues, including neuroendocrine me-
diators (such as acetylcholine, vasoactive intestinal peptide,
and neurotensin [15, 44, 208, 314]), and inflammatory/immune
mediators (such as interleukin-1 [184] and nitrite oxide [48]).
Purinergic stimulation by extracellular ATP leads to an in-
crease in mucin secretion (33, 138, 260). Both Ca®*- and
cAMP-mediated second messenger cascades acutely regulate
mucin secretion from human colonic epithelial cells (44, 47,
183). Cholera toxin that binds with high affinity to apically
localized receptors on mucin-secreting cells (215) is a strong
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TABLE 1. Membranous and secreted mucins
Reference(s)
Gene Type Expression
Mucins Mucins/pathogens
MUCI Membranous  Gastrointestinal epithelium, genitous tract, 51, 52, 182, 217, 222, 293, 356, 398, 405 52, 276, 396
ocular, respiratory tract
MUC3A Membranous  Gastrointestinal epithelium, genitous tract, 51, 75, 79, 205, 405, 411 210, 220, 231, 232
respiratory tract
MUC3B Membranous  Gastrointestinal epithelium, genitous tract, 51, 75, 79, 405, 411 210, 220, 231, 232
respiratory tract
MUC4 Membranous  Gastrointestinal epithelium, genitous tract, 50, 51, 54, 79, 187, 270, 285, 308, 316, 356, 220
ocular, respiratory tract 358, 410, 424, 427
MUCI2 Membranous  Gastrointestinal epithelium, genitous tract 51, 220, 410 220
MUCI3 Membranous  Gastrointestinal epithelium, genitous tract 51, 73, 412
MUC17 Membranous  Gastrointestinal epithelium 51, 73, 134
MUC2 Secreted Gastrointestinal epithelium, genitous tract, 51, 79, 133, 356, 378 216, 231, 232
respiratory tract
MUC5AC  Secreted Gastrointestinal epithelium, genitous tract, 50, 79, 220, 287, 316, 350, 359, 388, 390 52, 64, 67, 90, 220, 276,
respiratory tract 321, 388, 390
MUCS5B Secreted Gastrointestinal epithelium, genitous tract, 51, 79, 220, 316, 359
respiratory tract
MUC6 Secreted Gastrointestinal epithelium, genitous tract, 51, 79 52,276

respiratory tract

activator of mucin exocytosis (96, 214, 272, 273, 284, 332). In
contrast, Clostridium difficile toxin A is able directly to affect
the intestinal epithelial barrier function and down-regulates
stimulated mucin exocytosis (48).

Membrane-bound mucins MUC1, MUC3A, MUC3B, MUC4,
MUCI12, MUCI13, MUCI16, and MUC17 are associated with
the cell membrane by an integral transmembrane domain and
are characterized by having relatively short cytoplasmic tails
that associate with cell cytoskeletal proteins. Membrane-bound
mucins express specific mucins domains, including EGF (Epi-
dermal Growth Factor)-like domains, the SEA (Sea urchin
sperm protein, Enterokinase, and Agrin) domain, and the tan-
dem repeat domain rich in serine, threonine and praline resi-
dues. Matsuo et al. (244) reported two distinct mucus layers.
An elegant model of the functional organization of the mucus
layer associating secreted mucins and membrane-bound mu-
cins, has recently been proposed by Hollingsworth and Swan-
son (157). Membrane-bound mucins associate with the se-
creted mucins by both covalent and noncovalent bonds in
order to create a high local concentration of specific molecular
structures and to develop functions including binding sites for
lectins, selectin, and adhesion molecules, stoichiometric power
that enables them to exclude larger molecules and microor-
ganisms, hygroscopic effects that influence the degree of hydra-
tion at the cell surface, ion exchange effects, and an area in which
growth factors, cytokines, and chemokines are sequestered. Re-
cent studies have also implicated membrane-bound mucins in
cellular signaling, suggesting that they may have an important
function as sensor mechanisms in response to invasion or damage
of the epithelia (55). In this function, the cytoplasmic tails of
membrane-bound mucins associate with adaptator proteins in the
cytosol. For example, MUCH4 acts as a receptor ligand and MUC1
as a docking protein for signaling molecules. MUC1 has been
found to be associated with lipid rafts that function as a platform
for signaling molecules. It expresses a highly conserved cytoplas-
mic tail, which binds beta-catenin, a key component of adherens
junctions and a regulator of transcription, in a process that is

tightly regulated by MUC1 phosphorylation. MUC4 is a novel
intramembrane ligand for the receptor tyrosine kinase ErbB2/
HER2/Neu, triggering specific phosphorylation of the ErbB2 in
the absence of other ErbB ligands, and potentiating phosphory-
lation and signaling through the ErbB2/ErbB3 heterodimeric re-
ceptor complex that is formed in the presence of neuregulin.
Some of the MUC7, MUCS8, MUCY, and MUC15 mucins do
not fit easily into either the secreted or membrane-bound class
but do share some characteristics of these classes. For example,
MUCIS has a transmembrane domain and a cytoplasmic tail.

Barrier Effect against Pathogens

For a long time, it was thought that the sole function of
mucins was to protect and lubricate the epithelial surfaces (72);
however, it has recently been established that they are also
involved in other important functions, such as growth, and are
directly implicated in fetal development, epithelial renewal,
differentiation and integrity, carcinogenesis, and metastasis
(71, 269). The mucus gel could be useful to enteric bacteria in
at least two ways. First, the intestinal mucus offers numerous
ecological advantages for both resident microbiotic bacteria
and some pathogenic bacteria present within the lumen and in
the intestinal epithelium, since it can provide nutrients for
bacterial growth, thus promoting intestinal colonization by the
adhering bacteria, which have the ability to survive and multi-
ply in the outer regions of the mucus layer (11). Mucins do
indeed provide a source of energy by producing the saccharides
used for the sustained growth of both the indigenous enteric
microbiota (27, 230) and the pathogens that adhere to the
mucus (151, 197, 222, 323, 395). The second role played by the
mucus layer is linked to its generally accepted role in cytopro-
tection (392). A discontinuous, thinner layer of mucus gel
covers the epithelial cells that line the epithelium of the small
intestine. Mucus thicknesses differ in the large intestine, grad-
ually increasing from the colon to the rectum, and Peyer’s
patches apparently have no mucus covering (244). The mucus
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layer creates a physical barrier that acts as a dynamic defense
barrier against enteric microbial pathogens (Fig. 1) (268). Con-
sistent with this, bacteria associated with the outer layer of
mucus have been observed. Several gastrointestinal pathogens
have developed specific pathogenic factors and/or ways of in-
terfering with mucin production in order to enable them to
cross the mucus barrier. The prototype of such pathogens is
Helicobacter pylori, which colonizes the gastric mucous gel
layer by means of a very close association with MUC5AC
mucin (388, 389) and probably also with the membrane-bound
mucin MUC1 (396). H. pylori uses its flagella for motility
within the mucus layer in the acid-secreting stomach (296). In
addition, H. pylori reduces mucin exocytosis (264), decreases
gastric mucin synthesis by inhibiting UDP-galactosyltrans-
ferase (374), and causes an aberrant expression of the gastric
mucins MUC1, MUC5AC, and MUCG6 (52, 276). It is interest-
ing that mucins play also a role in Pseudomonas aeruginosa
pathogenesis since an upregulated transcription of the MUC2
(216) and MUC5AC (90) mucin genes follows infection. The
fact that upregulation of the MUC5AC gene can be mimicked
by LPS indicates that there must be a general mechanism by
which epithelial cells respond to the presence of bacteria by
increasing mucin synthesis.

Secreted mucus has already been reported to act as a barrier
to enteroinvasive Yersinia enterocolitica (239), rhesus rotavirus
(58), and Shigella flexneri (287). It has also been reported that
the bovine, mammary-associated, serum amyloid A3 increases
the membrane-bound mucin MUC3, which in turn inhibits the
adherence of enteropathogenic Escherichia coli (EPEC) (210).
Resident intestinal bacteria are able to inhibit the adherence of
pathogenic bacteria to intestinal epithelial cells as a result of
their ability to increase the production of intestinal mucins.
For example, Lactobacillus plantarum strain 299v increases the
levels of expression of the mRNA of mucins MUC2 and
MUCS, thus in turn inhibiting the cell attachment of EPEC, an
effect that can be mimicked by adding purified exogenous
MUC2 and MUC3 mucins (231, 232). Moreover, it has been
observed that LPS of gram-negative bacteria increases the
expression of the mRNA of MUC5AC and MUCS5B and stim-
ulates the secretion of MUCS5AC and MUCSB mucins (359). It
has been recently demonstrated that the secreted mucins in-
cluding MUCS5AC together with membrane-bound mucins,
contributes to host defense by preventing bacterial invasion of
the intestinal cells. Indeed, both in vivo (321) and in vitro (64)
infections by the gram-positive, facultative intracellular human
pathogen Listeria monocytogenes are associated with the mas-
sive release of mucus by goblet cells. This increase in mucin
secretion develops through a listeriolysin-dependent mecha-
nism that appears to be related to the binding of the toxin to
multiple membrane-associated lipid receptors, which allows
the toxin monomers to oligomerize and requires the toxin to be
internalized through the caveolae (67). Listeriolysin also in-
creases the transcription of the MUC3, MUC4, and MUCI2
genes that encode membrane-bound mucins (220). In contrast,
the MUCS5AC gene encoding a secreted mucin is not upregu-
lated. Whereas secreted mucins or membrane-bound mucins
alone were unable to prevent the cell entry of L. monocyto-
genes, both secreted and membrane-bound mucins have been
shown to be necessary to inhibit cell entry (221). This is con-
sistent with the fact that membrane-bound mucins, including
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MUC3, MUC4, and MUCI12, are associated with secreted mu-
cins, in particular, with the gel-forming mucin MUCSAC, by
both covalent and noncovalent bonds (157). The fact that the
MUCS5AC gene can be upregulated by LPS (90) but not by L.
monocytogenes (220) suggests that for this MUC gene, epithe-
lial cells respond to the presence of gram-negative bacteria by
a general mechanism.

ANTIMICROBIAL PEPTIDES

It is known that both nonvertebrates, such as insects and
plants, and vertebrates, ranging from fish and frogs to humans,
produce AMPs and that these peptides are the effectors of the
innate immune response. The AMPs present in the gastroin-
testinal tract of the host constitute one of the partners involved
in the front line of chemical defense against harmful microor-
ganisms (Fig. 2) (35, 93, 117, 154, 172, 212, 235, 345, 379). This
chemical antimicrobial defense system functions in the airways,
gingival epithelium, cornea, reproductive tract, and urinary
and gastrointestinal tracts. AMPs play a major role in the
innate immune system, enabling it to respond in a matter of
hours, well before the adaptive immune system can be suffi-
ciently mobilized. The main advantage of the innate immune
system is that it permits the host to curb, delay, or avoid the
growth of undesirable intruding bacteria shortly after an infec-
tion, in a way that is not highly specific and does not involve
memory. AMPs were first identified in polymorphonuclear
neutrophils and macrophages. AMPs are gene-encoded pep-
tides that have a broad spectrum of antibiotic activity.

Intestinal Cells That Produce Antimicrobial Peptides

AMPs are produced by specialized cells known as Paneth
cells (Fig. 1 and 2) (303, 347). These cells, one of the four
major epithelial cell lineages present in the intestine, are
present at the base of the crypts of Lieberkithn in mammals
and play a pivotal role in the enteric defense against patho-
genic harmful bacterial intruders. Paneth cells, like the entero-
cytes, goblet cells, and enteroendocrine cells, originate from
intestinal epithelial stem cells (18, 42, 241). The maturation of
Paneth cells has been investigated in mice. Recently, it has
been demonstrated that the canonical Wnt signaling cascade
(312, 313) plays a pivotal role in the maturation of Paneth cells
(391). In addition, it has been reported recently that, consistent
with the fact that Notch signaling (12) plays a critical role in
intestinal development, the double transgenic Rosa-Notch/
Cre™* mouse exhibits compromised differentiation of the Pan-
eth cells (110). Paneth cells are pyramid-shaped, columnar,
exocrine cells, and they have been identified within a few days
after birth in mice and as early as 24 weeks of gestation in
humans. The ultrastructure of Paneth cells (317, 340) shows
that they have a basally located nucleus with a nucleolus, a
perinuclear region containing the rough endoplasmic reticu-
lum and Golgi apparatus, and a supranuclear region containing
numerous high-electron dense, apically located, eosinophilic
secretory granules containing AMPs and other antimicrobial
molecules, including lysozyme, phospholipase A,, a,-antitryp-
sin, and AMPs (91, 116, 212, 300) (Fig. 1). One of the functions
attributed to Paneth cells is the control of the bacterial milieu
in the intestine (16). It is possible that AMPs may influence the
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FIG. 2. The chemical front line of enteric host defense against unwelcome intrusion of harmful bacterial pathogens. Enteric invasive and noninvasive
bacterial pathogens (red bacteria) expressing pathogenic factors (adhesive factors, invasines, and toxins, etc.) interact with the host epithelial cells lining
the villi. At the base of the crypt, the Paneth cells containing antimicrobial-rich granules, released AMPs (red and yellow spike rings) upon exposure of
intestinal epithelium to undesirable harmful pathogens and/or their bacterial products (LPS and toxins, etc.). Moreover, other intestinal cells lining the
villi also secreted antimicrobial proteins (orange spike rings). In parallel, the commensal gram-negative (green bacteria) and gram-positive (blue bacteria)
intestinal bacteria that reside in the lumen produced antibacterial molecules (green triangles and blue circles).
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TABLE 2. Human intestinal AMPs

AMP Family Expression Storage/processing References

HD-5 a-Defensin Paneth cells Propeptide; during or after release 76, 77, 223, 318, 319

HD-6 a-Defensin Paneth cells 36, 100, 223, 237, 409

hBD-1 B-Defensin Intestinal epithelial cells 26, 93, 188, 223, 294, 406, 425, 428

hBD-2 B-Defensin Intestinal epithelial cells Mature peptide, endoplasmic reticulum? 21, 93, 100, 143, 223, 291, 294, 346, 372,
383, 400, 401, 404, 406-408

hBD-3 B-Defensin Gastrointestinal cells 120, 145

hLL37 Cathelicidin Intestinal epithelial cells Propeptide; during secretion process 22, 23, 148, 149, 152, 153, 295, 342, 417,
418

composition of the enteric microbial flora under physiological
conditions, but this remains to be demonstrated (297). More-
over, because certain AMPs stimulate cultured epithelial cells
to secrete the chloride ion, these peptides appear to be capable
of interacting directly with the apical membranes of neighbor-
ing cells and, perhaps, of influencing crypt physiology (298).
Under physiological conditions, the continual release of pre-
formed AMPs allows the chemical defense system to contrib-
ute directly to the innate immunity of the crypt microenviron-
ment, and it probably also does this by diffusing the peptides
secreted into the lumen (Fig. 2). Interestingly, it has been
reported that AMP activity can be compromised by inadequate
dissolution of Paneth cell granules within the crypt lumina
(61). Moreover, the maintenance of the release of granule
constituents into the lumen of the crypt is important, since it
has been recently demonstrated that compromised Paneth cell
function is detrimental to host defense against E. coli infection
in the neonatal small intestine (351).

Other observations have suggested that AMPs could be pro-
duced by intestinal cells other than Paneth cells lining the
epithelium (Fig. 2). Cunliffe et al. (77) have identified dis-
persed epithelial cells expressing AMPs that resemble goblet
cells. Little is known about the relationship between the ex-
pression of AMPs and the differentiation of polarized intesti-
nal epithelial cells. Alteration in enterovirulent, diffusely ad-
hering E. coli C1845 has been observed following the infection
of human enterocyte-like Caco-2 and HT-29 Glc™/* cells (ob-
tained by culturing the parental HT-29 cell line in culture
medium deprived of glucose and then being adapted for
growth in the presence of glucose), whereas this phenomenon
is not observed in infected human, embryonic undifferentiated
INT407 cells (31). Hase et al. (148) reported that hLL-37
mRNA and protein expression paralleled the spontaneous dif-
ferentiation of Caco-2 human colon epithelial cells. Moreover,
in HCA-7 human colon epithelial cells treated with the cell
differentiation-inducing agent sodium butyrate, there is an in-
crease in the expression of hLL-37 mRNA and protein (148).
Similarly, sodium butyrate increased the level of hLL-37 tran-
scripts in both colon and epithelial SW620 and SW480 cells,
that do not express hLL-37, and in colon carcinoma Gek-12
and HT-29 cells, which do exhibit a basal level of hLL-37
expression (342).

Antimicrobial Peptides

AMPs are small peptides, 20 to 40 amino acids in length
(Table 2). Two major families of AMPs have been identified:
the defensins (119, 213) and the cathelicidins (419). Defensins

were first identified by Ouellete (298) in mouse small intestinal
cells. The mouse cryptin gene family encodes at least 19 dif-
ferent cryptdin proteins. The first murine Paneth cell defensin,
known as cryptdin-1, which displays anti-Salmonella activity,
has been identified by Ouellette (301). The mouse cryptdins
(cryptdin-1 to cryptdin-5 and cryptdin-16) have been particu-
larly investigated (167, 297-299, 302). In mammals, defensins
are found in the phagocytic leukocytes and in various epithelial
cells, including Paneth cells (35, 37, 41, 116).

AMPs have been classified on the basis of their secondary
structure. Magainins and numerous cathelicidins (419) contain
an a-helical structure (a-defensins), other AMPs have a
B-sheet that contains three disulfide bonds (B-defensins), and
the first circular AMP has recently been identified (6-de-
fensins) (Table 2). Cathelicidins comprise mammalian proteins
that are expressed by mammalian leukocytes (23, 203, 212, 324,
355, 418). The cathelicidin-derived AMPs are generally char-
acterized by conserved propeptide sequences, include a-heli-
coidal, proline-rich, disulfide bonds, and/or a B-sheet, and tryp-
tophan-rich peptides, but cathelicidins themselves have a
linear, non-a-helical structure (Table 2) (212, 418).

To date, a-defensins (HD) and B-defensins (hBD) (35, 76,
117), as well as cathelicidins (23, 212, 418-420), in humans
have been identified (Table 2). In contrast, 6-defensins are not
expressed, although humans express mRNA encoding 6-defen-
sin orthologs and mutations that introduce stop codons abolish
peptide production. Certain defensin genes are expressed in
phagocytic cells of hematopoietic origin, whereas others are
expressed in Paneth cells, and in the epithelial cells of the small
intestine. The genes encoding the o- and B-defensins are lo-
cated in a cluster at chromosome 8p23 (223). For example, the
gene encoding hBD-1 has been mapped to chromosomal re-
gion 8p23.1-8p23.2, which is in close proximity (within 100 to
150 kb) to the gene for the human neutrophil a-defensin
HNP-1 (224). a-Defensins are small polypeptides with 29 to 35
residues and a six-cysteine motif that forms three intramolec-
ular disulfide bounds (Cys1-Cys6, Cys2-Cys4, and Cys3-Cys5).
Among the six a-defensins identified, four designated as hu-
man neutrophil peptides (HNPs) 1, 2, 3, and 4 form part of the
armory of the neutrophils, where they are involved in systemic
innate immunity. The remaining HDs (HD-5 and HD-6) are
expressed in intestinal cells and contribute to the innate de-
fense of the intestinal mucosal surface. The levels of HD-5 and
HD-6 transcripts are not high in the duodenum and increase
distally (36). HD-5 is expressed in Paneth cells and also in
some villous epithelial cells in healthy duodenum, jejunum,
and ileum, but in contrast, it is not expressed in the healthy
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stomach or colon (318). B-Defensins differ from a-defensins in
size (38 to 42 amino acid residues) and cysteine motifs (Cys1-
CysS, Cys2-Cys4, and Cys3-Cys6). Six B-defensins (hBD-1 to
hBD-6) have been identified in humans. Human p-defensin-1
(hBD-1), consisting of a short basic peptide of 36 amino acid
residues containing six cysteines forming three intramolecular
disulfide bonds, has been found in epithelial cells of the small
and large intestine (425). B-Defensin-2 (hBD-2) has been iso-
lated from the skin and is expressed mainly in the respiratory
tract (146) but also in the epithelial cells of both the small and
large intestine (21). B-Defensin-3 (hBD-3), which exhibits mi-
crobicidal activity against E. coli, has been detected in the
epithelia of the gastrointestinal tract (120, 145). Consistent
with the fact that the a- and B-defensins are located in a cluster
at chromosome 8p23 (223), B-defensin-4 (hBD-4) has been
recently identified by screening genomic sequences and found
to be highly expressed in the testis and gastric antrum (120). In
addition, it has recently been reported that polypeptides have
been isolated from the human colon: three antimicrobials had
previously been identified as ribosomal polypeptides (L30 and
ubiquicidin), and two were members of the histone family
(H1.5 and H2B) that exhibited bactericidal activity against E.
coli (168). The levels of HD-5 and HD-6 transcripts are not
high in the duodenum and increase distally. Both hBD-1 and
hBD-2 mRNAs have been detected in some, but not all, biopsy
specimens from healthy small intestines (86). HD-5 is ex-
pressed in Paneth cells and also in some villous epithelial cells
in healthy duodenum, jejunum, and ileum, but in contrast, it is
not expressed in the healthy stomach or colon (318). The
cathelicidin hLLL-37 has been shown to be expressed within
epithelial cells located at the surface and upper crypts of
healthy human colon (148) and gastric cells (149).

All AMPs are generated as prepropeptides, and all need to
be processed to be activated. However, some are processed
intracellularly and packaged in their processed forms, while
others are processed after being secreted. It has been reported
that some AMPs need to be processed to be activated. For
example, HD-5 is present in Paneth cells only in the form of a
precursor that does not have any antimicrobial activity against
a defensin-sensitive Salmonella sp. and is processed to reach its
mature form by a trypsin-dependent mechanism during and/or
after being secreted inside Paneth cells (77, 124). Like de-
fensins, some cathelicidins are fully processed before storage,
whereas others are stored as precursors that still require fur-
ther processing (212). Indeed, some cathelicidins are produced
as inactive precursors containing a C-terminal cationic antimi-
crobial domain that becomes active after being freed from the
N-terminal cathelin portion of the holoprotein. Signal peptidase
removes the N-terminal signal sequence, whereas peptidylglycine
a-amidating monooxygenase often amidates and cleaves the C-
terminal region. Removal of the cathelin domain liberates the
active antimicrobial peptide. The hLL-37/hCAP-18 propeptide is
present in the secondary granules, specific to neutrophils, and
its C-terminal antimicrobial peptide, hLL-37, is liberated by
proteinase 3 during degranulation and secretion. The bacteri-
cidal activity of cryptdins requires proteolytic activation of
precursors by matrix metalloproteinase-7 (matrilysin), which is
present in Paneth cells and known to be involved in innate host
defense, since matrilysin-null mice have an impaired ability to
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activate prodefensins and to kill exogenous bacteria in their
small intestines (413).

Antimicrobial Activities

AMPs have a wide spectrum of microbicidal activities
against a wide variety of gram-negative and gram-positive bac-
teria, fungi, protozoa, and even enveloped viruses. AMPs ei-
ther induce membrane damage that is a lethal event for target
bacteria or bind to several targets in the cytoplasmic region of
the bacteria. All the evidence indicates that the action of the
AMPs does not involve stereospecific protein-receptor recog-
nition, since the interactions of AMPs with their targets are
generally considered to be nonspecific. To a large extent, bio-
physical studies have been performed using membrane model
systems demonstrating that AMPs use several distinctive dif-
ferent mechanisms to kill bacteria (185, 226, 305). The amino
acid composition, amphipathicity, cationic charge, and size of
AMPs allow them to attach to and insert into membrane bi-
layers to form pores by “barrel-stave,” “carpet-like,” or “toroi-
dal-pore” mechanisms. It has been demonstrated that the
tridisulfide structure of mature a- and B-defensins was essen-
tial for the microbicidal activity of the folded molecules. These
defensins are microbicidal at concentrations in a range of 0.5
to 5 pM. Various isoforms of hBD-1 showing bactericidal or
basteriostatic activities exist. Studies of the microbicidal effect
of a-defensins HNP1 to HNP3 have provided evidence that
bacterial inner and outer membranes are permeabilized as the
consequence of voltage-dependent channels created by the
AMP. LL-37, a cationic, amphipathic a-helical AMP, targets
the bacterial membrane, destroys the chemical gradients over
the membrane by forming stable or transient pores (152, 153)
and produces a detergent-like effect via a “carpet-like” mech-
anism (295). However, it has recently been speculated that
transmembrane pore formation may not be the only mecha-
nism by which AMPs kill microbes. In fact, several observa-
tions suggest that translocated AMPs can alter cytoplasmic
membrane septum formation, reduce the synthesis of the cell
wall, nucleic acid, and protein, and inhibit enzymatic activity. It
should be noted that some AMPs also display lytic activity
against various eukaryotic cells, but these AMPs have two
distinct physical states of binding to lipid bilayers (169).

Recent observations indicate that in response to attack by
pathogenic bacteria, the host engages its front line of chemical
defense by increasing the production of AMPs, such as the a-
and B-defensins (16, 17). Ayabe et al. (17) report that LPS,
LTA, lipid A and muramyl dipeptide were all able to elicit
cryptdin secretion. In HD-5 transgenic mice, in which endog-
enous enteric defensin gene expression has been found in
Paneth cells, there is a marked resistance to an oral challenge
with virulent S. enterica serovar Typhimurium (337). It has
been recently reported that expression of LL-37/hCAP-18, a
human cathelicidin antimicrobial peptide, by gene transfer into
C57BL/6 mice results in an increase in the innate immune
response, providing support for the hypothesis that vertebrate
antimicrobial peptides provide protection against microorgan-
isms in vivo (22). The cathelicidin-related antimicrobial pep-
tide, the only murine cathelicidin to be expressed in the intes-
tinal tract, displays antimicrobial activity against the murine
enteric pathogen Citrobacter rodentium, which produces lesions
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in the intestinal cells similar to those produced by EPEC and
enterohemorrhagic E. coli (EHEC) (173). Indeed, greater pen-
etration of C. rodentium into the colonic mucosa occurs in
cathelicidin-knockout mice. Moreover, infection of HCA-7
cells with S. enterica serovar Dublin or enteroinvasive E. coli
modestly upregulated hLL-37 mRNA expression (148). The
expression, regulation, and production of AMPs in human
intestinal epithelial cells are modulated in response to LPS and
enteric pathogens. Although TLR-mediated B-defensin ex-
pression has been best investigated in lung tissues (114), LPS-
and peptidoglycan-stimulated hBD-2 production by activation
of TLR4 and TLR2 in cell lines that constitutively or trans-
genically express TLRs has been reported (399). Moreover, S.
enterica serovar Enteritidis flagellin using TLRS and ganglio-
sodes as coreceptors increases hBD-2 expression in Caco-2
cells (291, 292, 372). A mutation in the NF-«kB or AP-1 site
within the hBD-2 promoter eliminated this response. In addi-
tion, inhibition of Jun kinase prevents the up-regulation of
hBD-2 protein expression in response to LPS. It has been
found that human colon epithelial cell lines constitutively ex-
press hBD-1 mRNA and protein but not hBD-2 (294). In
contrast, the expression of cathelicidin hLL-37 mRNA is not
upregulated in response to tumor necrosis factor alpha (TNF-
a), IL-1a, gamma interferon, LPS, or IL-6 (148). Caco-2 cells
produce two hBD-1 isoforms and an hBD-2 peptide that is
bigger than previously reported hBD-2 isoforms. Interestingly,
hBD-2 expression is rapidly induced by infecting human colon
epithelial Caco-2 cells with S. enterica serovar Enteritidis, S.
enterica serovar Typhimurium, and S. enterica serovar Typhi. S.
enterica serovar Dublin induced hBD-2 mRNA expression in
human carcinoma cells, and hBD-2 expression, but not hBD-1,
is up-regulated in xenografts infected intraluminally with Sal-
monella (291, 294). The flagellar filament structural protein
FliC of S. enteritidis has been identified as inducing hBD-2
expression in Caco-2 cells via NF-kB activation (291, 292, 372).
The myeloid ELF-1-like factor (MEF) is involved in innate
immunity responses, such as the activation of perforin and
lysozyme transcription (368, 370), and also increased the level
of endogenous hBD-2 transcription (229, 369). In addition, it is
interesting that elevated levels of hBD-2 and hBD-3 transcripts
have been found in Helicobacter pylori-infected gastric cells
(20, 122, 143, 400, 401, 408).

Enteric pathogens have developed sophisticated strategies
to survive in the gastrointestinal tract by evading the host
defenses. It is significant that some of the major enteric patho-
gens have developed resistance to AMPs as a way of evading
innate mucosal defenses. Bacterial pathogens have evolved
counter-measures to limit the effectiveness of AMPs, including
the repulsion of AMPs by reducing the net negative charge of
the bacterial cell envelope through covalent modification of
anionic molecules; expelling AMPs by means of energy-depen-
dent pumps; altering membrane fluidity; and cleaving AMPs
with proteases (309). Oral inoculation of mice with wild-type S.
enterica serovar Typhimurium results in a decrease in the ex-
pression of a-defensins and lysozyme (336). Moreover, the
expression of antibacterial peptides LL-37 and hBD-1 has been
found to be reduced in biopsy specimens from patients with
bacillary dysenteries and in Shigella-infected cultures of epi-
thelial cells (177). Moreover, the intracellular survival of Sal-
monella depends on the bacterium’s ability to resist the activity
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of cationic AMPs within the phagolysosome (128, 137, 266).
Indeed, S. enterica serovar Typhimurium can sense sublethal
concentrations of AMPs and induces various mechanisms of
AMP resistance. The Salmonella PhoP/PhoQ regulators sense
host environments to promote remodeling of the bacterial
envelope that results in the modification in LPS-promoting
bacterial survival by increasing resistance to AMPs, and by
altered host recognition of LPS (97, 135, 136, 138, 139, 279,
353, 354). In particular, it has been observed that sublethal
concentrations of AMPs activate the PhoP/PhoQ and RpoS
virulence regulons, while repressing the transcription of genes
required for flagellum synthesis, for the invasion-associated,
type III secretion system, and for inducing RpoS-dependent
protection against hydrogen peroxide (19). It should be noted
that the intestinal production of the antimicrobial agent nitric
oxide (104) generated by the inducible nitric oxide synthase
that mediated the conversion of L-arginine to L-citrulline (95)
is stimulated following infection by certain enteric pathogen
including invasive E. coli and S. enterica serovar Dublin (414).
Interestingly, it has been recently demonstrated that EPEC
infection in Caco-2 cells can inhibit the inducible nitric oxide
synthase expression at transcriptional and posttranscriptional
levels by direct and indirect type III secretion system-depen-
dent mechanisms (240).

RESIDENT MICROBIOTA

The gastrointestinal tract is a complex ecosystem that asso-
ciates a resident microbiota (27, 230, 422) and cells of various
phenotypes lining the epithelial wall (Fig. 1). The term “mi-
crobiota” was defined by Savage (341) to describe the collec-
tive societies of bacteria assembled on the mucosal surfaces of
an individual. Mammals are born without these microorgan-
isms (233).

Species Composition

The resident microbiota in the digestive tract constitutes a
heterogeneous microbial ecosystem containing up to 1 X 10**
CFU of bacteria (27, 144, 230, 274, 376, 394). Resident bacte-
ria localize “off-shore” from the epithelial cells within the mu-
cus and seem to be content to catabolize mucin components
(Fig. 1). Aerobic, facultative, and anaerobic bacteria all form
part of the gastrointestinal microbiota. The microbial profile of
the digestive tract is typified by the absence of anaerobic mi-
croorganisms in the stomach and, conversely, their overwhelm-
ing predominance in the distal colon. The proportion of an-
aerobic bacteria gradually increases from the proximal to distal
regions, and 99% of the inhabitants located in the large intes-
tine are anaerobes. Moreover, facultative anaerobes tend to
associate along the epithelial layer, where oxygen diffusing
from the tissues can be efficiently utilized. This is crucial for E.
coli and probably also for other organisms. Different microbial
communities may be located in the intestinal lumen, in the
mucus covering the epithelium, in the crypt spaces and in the
various cells lining the epithelium, and in addition, some spe-
cies adhere, whereas others do not. It has been estimated that
there are about more than 400 bacterial species in the intesti-
nal microbiota. Currently, only 20 to 40% of the bacterial
species present in the gastrointestinal tract have been cultured
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or characterized due in particular to the precise oxygen re-
quirements of some species, the largely unknown nutrient re-
quirements for growth and the fact that some species develop
for growth a high level of mutualism, since in the microbiota,
they live in close proximity and benefit from one another.
Molecular biological methods help in analyzing the structural
and functional complexity of the microflora and in identifying
its components. Identification of the species present in the
gastrointestinal microbiota is in progress, as a result of the
introduction of higher resolution molecular techniques based
on 16S rRNA or rRNA genes, and of technological innova-
tions, such as the selective media that now make it possible to
grow bacteria that could not previously be cultured (243, 376).

The colonization of gastrointestinal tract starts immediately
at birth. In adults, the intestinal microbiota consists of an
enormous biomass of >100,000 billion bacteria. The composi-
tions of the bifidobacterial microbiotas differ in infants and
adults and indeed during other stages in the host’s life (166).
For example, the fecal microbiota of children has been found
to be bacteriologically less complex, whereas advancing age is
associated with a decrease in bifidobacteria and increasing
species diversity of the Bacteroides genus. It has been postu-
lated that changes in the microbial composition of the gut with
age may alter the metabolic capacity of the gut microbiota and
that this has important implications for the occurrence of dis-
ease. The intestinal microbiota, which can be considered to be
a postnatally acquired organ, is composed of a wide diversity of
bacteria that perform important functions for the host and can
be modulated by environmental factors, such as nutrition (40,
87, 94, 103). The first bacteria to colonize the gut originate in
the birth canal, and include both aerobic and anaerobic bac-
teria, such as E. coli, Clostridium spp., Streptococcus spp., Lac-
tobacillus spp., Bacteroides spp., and Bifidobacterium spp. The
upper part of the small intestine has relatively low bacterial
densities and the distal portion of the small intestine, the
ileum, shows higher bacterial densities. The lower intestine is
colonized predominantly by anaerobes, particularly the Bacte-
roides spp., bifidobacteria, fusobacteria, and peptostreptococci,
and aerobes and facultative aerobes such as Enterobacteriaceae
and lactobacilli are present at moderate densities. Analyzing
the E. coli commensal microbiota, Escobar-Paramo et al. (98)
have observed that the E. coli isolates of intercontinental pop-
ulations distribute into the four phylogenetic groups A, B1, D,
and B2 with major differences between the geographical pop-
ulations. Lactobacillus and Bifidobacterium spp., all of which
are autochthonous species in the intestinal microbiota, have
attracted interest (248, 274, 375). Reuter (326) has recently
gained new insights into the species of these microorganisms
that are present within the human intestinal microbiota. In
humans, the autochthonous Lactobacillus and Bifidobacterium
remain stable throughout life. Lactobacillus gasseri and L. reuteri
are predominant autochthonous Lactobacillus species in both
infants and adults. Marked interindividual variations have
been found in microbial composition at the genus and species
levels (166). The compositions of the bifidobacterial micro-
biota differ in infants and adults and during different stages of
the host’s life (326). Species typically found in infants are
Bifidobacterium bifidum, B. infantis, B. breve, and B. parvulo-
rum. According to Matsuki et al. (243), the Bifidobacterium
catenulatum group is the most commonly found taxon, fol-
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lowed by B. longum and B. adolescentis, in the adult intestinal
bifidobacterial flora, and B. breve, B. infantis, and B. longum are
frequently found in the intestinal tracts of infants.

Intestinal Functions

The intestinal microbiota plays an important role in normal
gut function and in maintaining host health. All the compo-
nents of the gastrointestinal ecosystem seem to be necessary
for the gut to develop its specific intestinal functions (249, 422).
Little is known about how members of the indigenous micro-
biota interact with their mammalian hosts to establish mutually
beneficial relationships. Midtvedt et al. and Gordon et al. (49,
102, 158-165, 227, 365, 415) have recently gained important
new insights into the mechanism by which members of the
intestinal microbiota influence intestinal functions by means of
cross talk with epithelial cells. For example, some observations
lend support to the hypothesis that the capacity for synthesiz-
ing diverse carbohydrate structures may have arisen in part
from our need both to evade pathogenic relationships and to
coevolve in symbiotic relationships with our nonpathogenic
resident microbes (161). The intraluminal microbiota influ-
ences the release of biologically active gastrointestinal pep-
tides, and contributes to regulating gastrointestinal endocrine
cells and the epithelial structure (384). Bacteroides thetaio-
taomicron is one such bacterial symbiont that is a dominant
member of the intestinal microbiota of mammals, including
human beings (70, 159). Colonization of germfree mice by B.
thetaiotaomicron VPI-5482, a component of the intestinal flora,
has revealed that this commensal bacterium modulates the
expression of genes involved in several important intestinal
functions, including nutrient absorption, mucosal barrier for-
tification, xenobiotic metabolism, angiogenesis, and postnatal
intestinal maturation (160, 164). The colonization of germfree
mice with the VPI-5482 strain of B. thetaiotaomicron restored
the fucosylation program, whereas an isogenic strain carrying a
transposon insertion that disrupts its ability to use L-fucose as
a carbon source did not (49, 165). Colonization of germfree
mice with B. thetaiotaomicron has shown how this anaerobe
modifies many aspects of intestinal cellular differentiation/
gene expression to the benefit of both the host and the microbe
(162). In line with this observation, comparison of gut glyco-
sylation patterns in germfree and conventional mice have re-
vealed both quantitative and qualitative differences in the cel-
lular and subcellular distribution of glycans (111). It has been
observed that this strain also has the capacity for changing the
galactosylation process in cultured human mucin-secreting
HT29-MTX cells as a result of posttranslational regulation, via
a mechanism that involves a soluble, heat-labile, low-molecu-
lar-weight factor (112). Interestingly, in colonized germfree
mice, a strain of B. thetaiotaomicron increased the production
of matrilysin (227), a matrix metalloprotease expressed in Pan-
eth cells and shown to be involved in innate host defense, as
matrilysin-null mice have an impaired ability to activate pro-
defensins and to kill exogenous bacteria in their small intes-
tines (413). It has also been reported that the normal coloni-
zation of the mammalian intestine with commensal microbes
influences the development of the humoral and cellular mu-
cosal immune systems during neonatal life and maintains the
physiologically normal steady state of inflammation in the gut
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throughout life (56, 373). In connection with microbiota, it has
been observed that the introduction of germfree mice into a
conventional environment results in the enhanced expression
and secretion of the goblet cell-specific protein RELMB, pro-
viding evidence that colon-specific gene expression can be reg-
ulated by colonization with normal enteric bacteria (150).
The host is highly adapted to the presence of commensal
intestinal bacteria by a phenomenon termed “mucosal immune
adaptation.” In addition, a second adaptive phenomenon
termed “systemic immune ignorance” has been investigated
(196, 251, 253, 254). McPherson and Uhr (256) have showed
that commensal bacteria are rapidly killed by macrophages and
intestinal dendritic cells (DCs) can retain small numbers of live
commensals for several days. This allows DCs to selectively
induce immunoglobulin A through a pathway that was inde-
pendent of T-cell help and of follicular lymphoid tissue orga-
nization, which helps protect against mucosal penetration by
commensals and the specific anticommensal immunoglobulin
A induction (251, 256). Because DCs loaded with commensal
bacteria do not penetrate further than the mesenteric lymph
nodes, immune induction to commensals is confined to the
mucosa, which ensures that immune responses to commensal
bacteria are induced locally, without potentially damaging sys-
temic immune responses (252, 255). However, the resident
microflora contains a number of components able to activate
innate and adaptive immunity (288). In consequence, immune
responses to mucosal microbiota require a precise regulatory
control and unlimited immune activation in response to signals
from commensal bacteria could pose the risk of inflammation
(193, 194, 196, 250). Importantly, resident microbiota bacteria
are recognized to suppress unnecessary inflammatory re-
sponse, thereby helping to maintain immune homeostasis
(194). An improved understanding of commensal bacteria-host
interactions has been obtained employing germfree animal
models with selective colonization strategies combined with
modern molecular techniques. For example, the potential role
of the intestinal microbiota in facilitating the development of
tissue injury and systemic inflammation has been examined by
Souza et al. (360) showing that there was marked edema for-
mation, hemorrhage, and production of tumor necrosis factor
alpha (TNF-a) and monocyte chemoattractant protein 1 in
intestine of conventional mice compared with germfree mice.
Moreover, pathogenic E. coli organisms, including EPEC
(426), enteroaggregative E. coli (147, 198), and EHEC (28,
198), and nonpathogenic organisms, including diffusely adher-
ing E. coli (34), commensal E. coli strain MG1655 (24), and B.
vulgatus (142), have been observed to be able to promote
activation of NF-«B nuclear translocation and, thereafter,
proinflammatory gene expression in intestinal cells. Generally,
only Lactobacillus spp. were not able to promote proinflam-
matory response; however, in the presence of underlying leu-
kocytes, challenge of Caco-2 cells with L. sakei induces expres-
sion of IL-8, monocyte chemoattractant protein 1, IL-1B, and
TNF-a mRNA (141). Interestingly, it has been recently dem-
onstrated that commensal bacteria could inhibit the proinflam-
matory responses (40, 343). For example, Kelly et al. (193, 195)
have shown that B. thetaiotaomicron inhibits proinflammatory
cytokine IL-8 expression (195) and attenuates the flagellated
pathogen-induced proinflammatory cytokine expression by
promoting nuclear export of NF-kB subunit RelA, through a
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peroxisome proliferator-activated receptor-y-dependent path-
way (193). Similar inhibition has been observed with the Lac-
tobacillus acidophilus strain LB of intestinal microbiota origin
against the Salmonella-induced IL-8 expression (66). More-
over, the B. breve strain BbC50 isolated from the fecal flora of
a healthy breast fed infant has been found able to display a
TNF-a inhibitory capacity (259). The host appears also
adapted to the deleterious effects promoted by commensal
intestinal bacteria. Indeed, alterations in the intestinal barrier
that resemble those promoted by enteric pathogens have been
observed induced by species of the intestinal microbiota. For
example, the E. coli strain EM0, a human fecal strain express-
ing hemolysin and cytotoxic necrotising factor, induced a lytic
effect against cultured human intestinal cells (170). The pro-
totype translocating E. coli strain C25 isolated from human
feces, induces a loss of transepithelial electrical resistance,
changes in distribution of TJ-associated proteins ZO-1 and
claudin-4, and vacuolation of mitochondria (421). Observation
that these deleterious effects were not promoted by the com-
mensal E. coli strain F18 (421) is indicative that only certain
strains of the intestinal microbiota have the capacity for devel-
oping pathogen-like effects. It is possible that species of the
intestinal microbiota, including Lactobacillus, function as reg-
ulators against the pathogen-like commensal strains since, as
described below, they have the capacity for blocking the patho-
gen-induced deleterious effects in host cells.

Barrier Effect against Pathogens

One of the basic physiological functions of the resident mi-
crobiota is that of providing a microbial barrier against micro-
bial pathogens (Table 3). For exemple, Nicaise et al. (283) have
recently documented the mechanism(s) of the immune re-
sponse of the intestinal microbiota by examining the regulation
of interleukin-1 (IL-1), IL-6, TNF-a, and IL-12 production in
macrophages from germfree and from flora-associated mice,
conventional, conventionalized and E. coli-monoassociated
mice. The findings show that the intestinal flora can modulate
bone marrow and spleen macrophage cytokine production in a
differential manner. Enhanced IL-12 production in the spleen by
the intestinal flora is also potentially important, since this cytokine
is implicated in determining the relative levels of Th1l and Th2
responses, and plays a pivotal role in defending the host against
intracellular microorganisms. Recent reports have provided new
insights into how members of the intestinal microbiota develop a
barrier effect and produce antimicrobial activity against entero-
pathogens.

Cecal microflora of hamster is able to develop an anti-C.
difficile barrier effect (367). Interestingly, a C. cocleatum strain
has been found involved in this anti-C. difficile barrier effect
(45). Ramare et al. (325) have observed that when a human
intestinal strain of Peptostreptococcus colonized the gut of gno-
tobiotic rats, it produced an antibacterial substance that was
active against several gram-positive bacteria, including poten-
tially pathogenic Clostridium spp. such as C. perfringens, C.
difficile, C. butyricum, C. septicum, and C. sordellii. Similarly,
the E1 strain of Ruminococcus gnavus, a gram-positive strictly
anaerobic strain isolated from a human fecal sample, was able
to produce an antibacterial substance, known as ruminococcin
A, that is also active against various pathogenic clostridia (78,
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TABLE 3. Bacterial strains of microbiota origin exerting
antibacterial effects against intestinal pathogens

Strain(s) Reference(s)
E. coli Nissle 1917 producing microcins 7,43
E. coli strains producing microcins............... 2, 25, 39, 84, 320, 328,
333, 335, 397
E. coli strains not producing microcins......... 170
Peptostreptococcus strain...................... ...325
Ruminococcus gnavus El... .78, 126
Clostridium cocleatum ..... .45
L. acidophilus 1B ..... .57, 62, 63, 65, 66, 68, 219
L. johnsonii Lal........ ....30, 32, 106
L. casei DN-114001..... ....106, 132, 175, 304
L. casei Shirota YT9029. ....13, 85, 106, 289, 290
L. rhamnosus GG........ ....106, 171, 211, 232, 357
L. plantarum 299v..... .232, 238
L. acidophilus HN017 . ..127
L. rhamnosus DR20.... 127
Bifidobacterium Strains..........c.coececveveeveenennene 29, 69, 218

126). As previously reported for some AMPs, including HD-5
(77, 124) and some cathelicidins (212), it is interesting that two
antibacterial substances produced by bacterial species in the
intestinal microbiota, Peptostreptococcus sp. (325) and the R.
gnavus E1 strain (78, 126), require processing to be activated,
after the proforms have been cleaved by trypsin.

It has been demonstrated that strains of E. coli of intestinal
microbiota origin have the capacity for protecting mice against
bacterial infection (Table 3). E. coli contributes to the antibac-
terial defense by producing antibacterial proteins, known as
colicins and microcins (83, 327). Microcins are a miscellaneous
group of low-molecular-mass antibiotics (molecular mass less
than 10 kDa), whereas colicins are much bigger, from 25 to 80
kDa. All colicins and some microcins are encoded by gene
clusters organized in operons, whereas other microcins are
encoded on the chromosome of produced bacteria (275). All
the bacteria encoding microcins or colicins have immunity to-
wards the antibiotics that they produce. Colicin immunity is
specific, but in some cases, other mechanisms are also involved,
such as pumping microcin out of the cells. The bactericidal
spectrum of activity was found to be restricted to Enterobacte-
riaceae and specifically directed against Escherichia (333) and
Salmonella (320, 397) species. The microcin inserts into the
inner membrane, whereupon the potential becomes destabi-
lized due to pore formation that leads to depolarization and
permeabilization of the E. coli cytoplasmic membrane (25, 84,
328). Another mechanism of antibacterial activity has been
reported for E. coli strain Nissle 1917 (129) that produces
microcins (7). This E. coli strain induces the expression of
hBD-2 in Caco-2 intestinal epithelial cells in a time- and dose-
dependent manner (407). This induction results of the activa-
tion of the hBD-2 promoter involving functional binding sites
for NF-kB and AP-1 via a signaling pathway involving c-Jun
N-terminal kinase, p38 mitogen-activated protein kinase, and
signal-regulated kinase 1/2. It is interesting that, as reported
above for AMPs, microcins have generated mechanisms of
resistance in Salmonella (53, 109). It should be noted that
Hudault et al. (170) have shown that resident E. coli that did
not produce microcin had also a barrier effect when colonizing
the gut of gnotobiotic C3H/He/Oujco mice orally infected by a
lethal strain of S. enterica serovar Typhimurium.

ENTERIC HOST DEFENSE AGAINST HARMFUL MICROORGANISMS 327

Lactobacillus and Bifidobacterium spp. of human intestinal
microbiotic origin produce antimicrobial substances that are
active in vitro and in vivo against enterovirulent microorgan-
isms involved in diarrhea disorders (Table 3) (349). For exam-
ple, Lactobacillus acidophilus 1B, L. johnsonii Lal, L. rham-
nosus GG, L. casei Shirota YT9029, L. casei DN-114 001, L.
acidophilus HNO17, and L. rhamnosus DR20 strains produced
antibacterial components that are active against a wide range
of gram-negative and gram-positive pathogens, such as EPEC,
EHEC, L. monocytogenes, S. enterica serovar Typhimurium,
and S. flexneri (32, 63, 65, 106, 127, 171). Moreover, antibac-
terial components produced by L. acidophilus strain LB were
able to inhibit the growth of S. enterica serovar Typhimurium
residing intracellularly in a vacuole in infected intestinal
Caco-2 cells (66). These components, although not character-
ized at the molecular level, do not share the characteristics of
bacteriocins and are different from lactic acid (106). L. rham-
nosus GG secretes a low-molecular-mass, heat-stable, inhibi-
tory substance which is distinct from lactic and acetic acids
(357). The molecules that support the antibacterial activity of
L. acidophilus 1B and L. johnsonii Lal have a low molecular
mass and are heat stable and insensitive to proteases (32, 65).
An antibacterial component produced by human Bifidobacte-
rium sp. CAl and F9 strains has been found to consist of one
or more lipophilic molecule(s) with a molecular mass of less
than 3,500 Da (218). A mechanism by which non-lactic acid
molecules secreted by Lactobacillus may kill gram-negative
pathogens has recently been identified (68). Evidence showing
that the bacterial membrane damage induced by the nonbac-
teriocin, non-lactic acid molecule(s) produced by the L. aci-
dophilus LB of human intestinal microbiotal origin are lethal
for S. enterica serovar Typhimurium has been provided. The
mechanism of action includes (i) the depletion of intracellular
ATP, (ii) an increase in membrane permeabilization, (iii) the
release of LPS from the bacterial membrane, and (iv) the
sensitization of the bacterial membrane towards the lytic ac-
tion of detergent. The mechanism by which L. acidophilus LB
kills S. enterica serovar Typhimurium resembles the mecha-
nism by which AMPs and several classes of antibiotics kill
bacteria. Indeed, intracellular K* and ATP depletion have also
been observed in EHEC strain O157:H7 subjected to AMPs
(10). Moreover, it has been reported that a release of LPS from
the membrane of gram-negative pathogens is triggered by sev-
eral antibiotics (99, 179, 278, 381, 393). Since AMPs are dis-
charged from Paneth cells at effective microbiocidal concen-
trations into the small intestinal crypts (116-118), it is tempting
to suggest that some commensal intestinal bacteria, including
E. coli and Lactobacillus, may discharge antimicrobial sub-
stance(s) into ecological niches within the intestine and thus
also contribute to the front line of the chemical defense against
enteric pathogens. In addition, metabolic end products of res-
ident microbiotic bacteria could have an antimicrobial effect
and so may potentiate the effects of other enteric antimicrobial
substances, such as those produced by members of the micro-
biota and/or AMPs.

Importantly, it has been demonstrated that Lactobacillus
and Bifidobacterium strains of intestinal microbiota origin that
exert in vitro antimicrobicidal activities have the capacity for
combatting infection in rodent models infected with human
enterovirulent bacteria. The first model used is that of gnoto-
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biotic mice, in which the microbiota is missing and the epithe-
lium is not fully differentiated. The L. johnsonii Lal (32) and
GG (171) strains, which colonize the gut of gnotobiotic C3H/
He/Oujco mice, develop antibacterial activity when the mice
are orally infected by S. enterica serovar Typhimurium C5, and
this increases the survival of the mice. The human Bifidobac-
terium sp. CA1 and F9 bacteria that colonize the intestinal tract
of axenic C3/He/Oujco mouse protect the mice against a lethal
infection of S. enterica serovar Typhimurium C5 (218). The
second model used is that of conventional mice, which have
both a microbiota and a fully differentiated epithelium. In this
mouse model, the spent culture supernatant of the human L.
acidophilus strain LB, which contains an antibacterial mole-
cule(s), given daily following infection is active against S. en-
terica serovar Typhimurium CS5 infection in conventional C3H/
He/Oujco mice, reducing the levels of viable Salmonella in the
feces (65; D. Fayol-Messaoudi, M.-H. Coconnier-Polter, V.
Lievin-Le Moal, C. N. Berger, and A. L. Servin, unpublished
data).

Inhibition of Pathogen-Host Cell Interactions
and Pathogen-Induced Cell Injuries

Bacteria that originated from the intestinal microbiota have
the capacity for interfering with or block the process of patho-
genicity of enteric bacterial pathogens. E. coli strain Nissle
1917 that produces microcin, was able to inhibit invasion of
epithelial intestinal INT407 cells by Salmonella spp., S. flexneri,
and L. monocytogenes without affecting the viability of the
invasive bacteria (7). This E. coli strain, independently of the
microcin production, is able to block the invasion process of
the Crohn’s disease-associated adherent-invasive E. coli LF82
(43). Similarly, the DN-114 001 strain of L. casei, indepen-
dently of this bactericidal effect, strongly inhibits interaction of
adherent-invasive E. coli LF82 with intestinal epithelial cells
(175). It has been reported that Lactobacillus inhibited the
internalization of S. enterica serovar Typhimurium within hu-
man intestinal cells, and this effect had been attributed to a
secreted molecule(s) that could affect the virulence factors
involved in cell entry and/or block the host cell signal trans-
duction necessary for bacterial internalization (32, 63, 65, 66).
An identical effect has been reported for Bifidobacterium
strains isolated from stools of infants (29, 218). The mecha-
nism by which some of the molecules produced by Lactobacil-
lus strains impair the internalization process has been recently
identified (Fayol-Messaoudi et al., unpublished). Indeed, com-
pound(s) secreted by L. johnsonii Lal and L. casei Shirota
YT9029 strains impair flagellum motility function in S. enterica
serovar Typhimurium, and this in turn reduces the capacity of
the pathogen to penetrate into human intestinal cells. This
finding is consistent with the fact that the flagella that provide
the motility of Salmonella (5, 234) have been found to be
involved in bacterial internalization within eukaryotic cells (88,
189, 209, 225, 306, 329, 330, 386, 387). It has been observed
that the expression of the FliC protein composing the full-
length filament of the flagellum (234) is not modified, suggest-
ing that the molecule(s) produced by Lactobacillus affect(s) the
functionality of S. enterica serovar Typhimurium flagella. In-
terestingly, the Salmonella flagellum-dependent production of
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the proinflammatory cytokine IL-8 (88, 92, 123) is blocked by
L. acidophilus 1LB.

Lactobacillus strains of intestinal microbiota origin have the
capacity for inhibiting the cellular lesions induced by enteric
pathogens within the intestinal epithelial barrier. For example,
L. acidophilus LB (219) and L. helveticus R0052 (352) antag-
onized the cytoskeleton rearrangements produced by entero-
virulent E. coli in T84 and Caco-2 cells. The decrease in brush
border expression of sucrase-isomaltase, dipeptidylpeptidase
IV, alkaline phosphatase, and fructose transporter induced by
the diffusely adhering Afa/Dr E. coli C1845 in Caco-2 cells was
inhibited by the L. acidophilus strain LB (219). L. helveticus
strain R0052 (352), L. plantarum 299v (238, 263), and L. casei
DN-114 001 (304) all reduce the pathogen-induced drop in
transepithelial electrical resistance in cultured colonic T84
cells forming monolayer infected by EHEC and EPEC.

CONCLUDING REMARKS

Mucins, AMPs, and members of the intestinal microbiota all
separately provide an effective front line of intestinal defense
against unwelcome harmful microorganisms (Fig. 1 and 2).
Mucins create a dynamic physical barrier, while Paneth cells
and intestinal microbiota produce AMPs and antimicrobial
molecules, respectively, which have the effect of killing enteric
pathogens and inhibiting pathogen-host cell interaction.
Whether these systems of defense act in partnership, and
whether they function synergistically to provide the host with
an efficient front line of defense against harmful, enteric patho-
gens, remains currently poorly documented.

It is conceivable that the resident intestinal bacteria may
affect goblet cell dynamics and the mucus layer both directly,
via the local release of bioactive factors, and indirectly, by
activating host cells. This hypothesis has been investigated in a
few studies. For example, it has been observed that the LPS
of gram-native bacteria increases the expression of the mRNA
of MUCSAC and MUCS5B and stimulates the secretion of
MUCS5AC and MUCS5B mucins (359). The quorum-sensing
signal molecule [N-(3-oxododecanoyl) homoserine lactone
(30-C,,-HSL)] of gram-negative bacteria could stimulate the
production of a major mucin core protein, MUCS5AC (174).
Moreover, Lactobacillus organisms, subdominant species of
the microbiota, increase the levels of expression of the mRNA
of mucins MUC2 and MUCS3 (231, 232). It seems likely that
the AMPs may influence mucin secretion, since AMPs stimu-
late the secretion of chloride ions (298), and both chloride
secretion and mucin exocytosis have been observed to be stim-
ulated in mucin-secreting cells (140, 260, 262).

How the microbiota can influence AMP production remains
controversial. Some reports suggest that in fact the microbiota
has no influence. Indeed, in the intestine of germfree mice, the
same set of mature enteric defensins (defensins 1, 2, 3, 4, and
6) has been found as in mice colonized by a normal microbiota
(322). Moreover, the expression of cathelicidin hLL-37 by the
colonic epithelium does not require the presence of commen-
sal bacteria, since the peptide is produced with a similar pat-
tern of expression by epithelial cells in human colon xenografts
that have no luminal microbiota (148). In contrast, it has been
reported that the intestinal commensal bacteria can influence
gut microbial ecology and shape innate immunity. Indeed, an-
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giogenin-4, a molecule with bactericidal activity produced by
mouse Paneth cells, is induced by B. thetaiotaomicron, a dom-
inant member of the gut microbiota (163). The B. thetaiotaomi-
cron strain that colonizes the intestine of germfree mice increased
the production of matrilysin (227), a matrix metalloprotease ex-
pressed in Paneth cells, and has been shown to be involved in
innate host defense (413). It has recently been observed that
Bifidobacterium or its cell wall proteins can induce AMP hBD-2
gene expression in cultured human intestinal epithelial cells (404).
In response to components of gram-negative bacteria, such as
LPS and peptidoglycan, hBD-2 expression is increased (399).
Moreover, the flagellum filament structural protein FliC of gram-
negative bacteria has been found to induce hBD-2 expression via
an NF-kB-dependent mechanism (291, 292, 372). It remains to be
determined whether activity by LPS or flagella of the resident
intestinal E. coli could contribute to activating the production of
AMPs, in turn regulating the intestinal microbiota.

It has recently been established that gram-negative patho-
genic bacteria are able to sense both the cell density and the
metabolic potential of their environment by a quorum-sensing
system, which is a cell density-dependent signaling system used
by bacteria to coordinate gene expression within a population
(3, 101, 265, 371). In particular, in pathogenic E. coli, quorum-
sensing involves a transcription regulator (LuxR homologue)
and an autoinducer, either AI-2 or AI-3, depending on the
function encoded by the luxS gene (8, 130, 190, 361-364). A
quorum-sensing system in gram-positive bacteria has been
identified (366). Autoinducing peptides are involved in inter-
cellular communication in gram-positive bacteria, and many of
these peptides are exported by dedicated systems and finally
sensed by other cells via membrane-located receptors. The
production-biosynthesis, maturation, and secretion of colicins
or microcins (83, 327) into the medium by E. coli are encoded
by gene clusters organized in operons that are silent/repressed
during exponential growth and are induced/derepressed when
cells sense nutrient starvation and stop their exponential
growth (275). It could be of interest in the future to find out
whether the E. coli strains that are resident in the intestinal
microbiota possess a quorum-sensing system that senses the
presence of these pathogens and in turn controls the produc-
tion and secretion of antimicrobial molecules. For gram-posi-
tive bacterial members of the intestinal microbiota an identical
investigation is of interest considering that the production of
bacteriocins, a type of bactericidal proteinaceous molecules
produced by Lactobacillus (178, 199, 247, 280, 334), has been
found to be regulated at the transcriptional level in a manner
dependent on cell-density (200) and appears to be controlled
by a peptide-based, quorum-sensing system that drives strong,
regulated promoters (236, 242). In addition, it has been re-
ported recently that the production of nonbacteriocin, non-
lactic acid antibacterial molecules that are active against gram-
negative enteric pathogens is temperature controlled (106).

Further progress is required to enable us to understand how
the three components of the front line of defense against
enteric pathogens are coordinated and whether the various
components modulate the functions of the others and/or act
synergically.
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