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An oligonucleotide microarray detecting 189 Escherichia coli virulence genes or markers and 30 antimicro-
bial resistance genes was designed and validated using DNA from known reference strains. This microarray
was confirmed to be a powerful diagnostic tool for monitoring emerging E. coli pathotypes and antimicrobial
resistance, as well as for environmental, epidemiological, and phylogenetic studies including the evaluation of
genome plasticity.

Escherichia coli, which is commonly found in the environ-
ment as well as in the intestinal tract of common animal spe-
cies, including humans, is the causative agent of several dis-
eases worldwide. Depending on their virulence properties and
the types of clinical infection elicited, E. coli strains are clas-
sified into various pathotypes (17). Generally, strains belonging
to the same pathotype possess the same virulence determi-
nants, but some virulence factors can be associated with several
pathotypes. Therefore, establishing the virulence gene content
found within an E. coli isolate is critical in determining its
pathogenic potential. As many virulence genes are located on
mobile elements, such as plasmids, phages, or transposons
(24), determining the virulence gene profile of a given E. coli
isolate would help also in monitoring gene transfer between
strains and would be consequently of great value in epidemi-
ological and phylogenetic studies. Like virulence genes, many
antimicrobial resistance genes can be acquired by horizontal
transfer. Therefore, antimicrobial resistance profiling of a
given E. coli isolate would be useful for antimicrobial resis-
tance surveillance programs. It could also be of great diagnos-
tic value and should be indispensable for designing effective
antibiotic policies.

Although various molecular methods can be used to identify
either virulence or antimicrobial resistance genes harbored by
E. coli strains (11, 19, 25, 29, 31), there is still a lack of practical
and cost-effective methods able to detect rapidly and simulta-
neously all these genes in a given isolate. Microarray technol-
ogy offers a powerful alternative for determining simulta-
neously the presence of a wide diversity of genes within a given

E. coli strain. DNA microarrays have been used successfully in
various studies, involving taxonomy (9), genotyping of micro-
bial strains (13), detection of environmentally important genes
(28, 34), and, recently, detection of E. coli antimicrobial resis-
tance genes (6, 16, 35) or virulence genes (1, 8, 18, 30). In this
study, a DNA microarray was developed combining oligonu-
cleotides designed to detect a complete set of virulence genes
representative of all E. coli pathotypes and antimicrobial re-
sistance genes representative of different antimicrobial families
characteristically found in pathogenic E. coli strains (20, 22).
The capacity of this microarray to detect all virulence and
antimicrobial resistance genes in reference and clinical E. coli
isolates was investigated, and the results were validated with
other molecular techniques.

The microarray prototype was designed from a previous
amplicon-based microarray developed in our laboratory (1).
Oligonucleotides were preferred to longer double-stranded
DNA amplicons due to the potential of the latter for cross-
hybridization, while oligonucleotide probes, due to their short
length, are generally considered to be more specific. Apart
from the amplicon-to-oligonucleotide redesign, the prototype
was also updated by adding oligonucleotides specific for re-
cently characterized and new putative E. coli virulence genes
and by coupling the determination of the virulence gene con-
tent with the detection of antimicrobial resistance genes. The
newly designed microarray prototype was thus composed of
348 70-mer oligonucleotides that were designed either using
the OligoPicker software program (32) or from published PCR
primers (20) which were lengthened to 70 bases. Two hundred
sixty-three of them correspond to 189 virulence genes or mark-
ers from all known E. coli pathotypes as well as, within some
particular genes, to their genetic variants (see Table S1 in the
supplemental material). Among these oligonucleotides, three
were specific for the phylogenetic markers chuA, yjaA, and
tspE4.C2 used in the PCR-based method described by Cler-
mont et al. for the determination of the main E. coli phyloge-
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netic groups (10). Thirty-three other oligonucleotides were
designed to target 30 antimicrobial resistance genes conferring
resistance to six well-known gram-negative antimicrobial fam-
ilies and the class 1 integron (see Table S2 in the supplemental
material). The selectivity of each oligonucleotide sequence was
individually verified through BLAST searches in GenBank and
then simultaneously in the public BLAST server Goldorak
(http://www.bioneq.qc.ca; BioneQ, Montréal, Québec) for a
final global BLAST analysis. A complete array was composed
of four subarrays, in which each oligonucleotide was printed in
triplicate, as previously described (1), on Corning Ultra GAPS
slides (Corning Canada, Whitby, Ontario). Positive and nega-
tive controls (see Table S1 in the supplemental material) as
well as three printing buffer spots were added in each subarray
(see Fig. S1 in the supplemental material). Three complete
independent arrays were printed on the same slide, thus min-
imizing variations resulting from fluctuations in external pa-
rameters.

The three reference strains EDL933, CFT073, and MG1655,
for which the genomes have been completely sequenced (4, 26,
33), and 18 well-characterized strains coming from a previous
study performed in our laboratory (1) and representing most of
the E. coli pathotypes were used to validate the specificity of
the virulence oligonucleotides. A collection of 55 E. coli strains
coming from studies performed by Maynard et al. (20, 22) was

used for the validation of the antimicrobial resistance oligonu-
cleotides. Citrobacter freundii strain ATCC 8090 was used as a
negative control.

To validate the microarray prototype, three independent
hybridizations were performed for all strains described above.
A 2-�l sample of a lysate from an E. coli overnight culture in
Luria-Bertani broth grown at 37°C under agitation was labeled
with a simple random-priming protocol based on Invitrogen’s
Bioprime DNA labeling system (Invitrogen Life Technologies,
Burlington, Ontario). In a total volume of 50 �l, 20 �l of a
2.5� random primer solution (from the kit) and 1 �l of high-
concentration Klenow polymerase (40 U/�l) were added to 5
�l of a deoxynucleoside triphosphate mix (1.2 mM dATP, 1.2
mM dGTP, 1.2 mM dTTP, and 0.6 mM dCTP in 10 mM Tris
[pH 8.0] and 1 mM EDTA). Two microliters of 1 mM Cy5-
dCTP were added to fluorescently label the DNA. The reac-
tion was incubated in the dark at 37°C for 2 h, and the labeled
samples were then purified on QIAquick columns (QIAGEN
Inc., Mississauga, Ontario) according to the manufacturer’s
protocol. Microarrays were hybridized overnight at 50°C in a
slide hybridization chamber (Corning Canada) with 500 ng of
labeled DNA previously resuspended in 6 �l of prewarmed
(37°C) DIG Easy Hyb buffer (Roche Diagnostics, Laval, Que-
bec) and denatured by heating for 5 min at 95°C. Stringency
washes, three in 0.1� SSC (15 mM NaCl and 1.5 mM tri-

FIG. 1. Signal-to-noise fluorescence ratios obtained for the E. coli reference strain EDL933. The signal-to-noise ratios (log2) presented in this
graph are the means of the ratios obtained by three independent replicate hybridizations performed with DNA from strain EDL933. All
oligonucleotides which had a signal-to-noise fluorescence ratio of greater than 2.0 (log2 � 1) were considered positive. Oligonucleotides with a
signal-to-noise ratio less than 2.0 (log2 � 1) were considered negative. For the negative results, only those for oligonucleotides specific to the green
fluorescent protein (GFP) gene, Arabidopsis spp., Shigella flexneri, and C. freundii are shown.
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sodium citrate, pH 7.0) with 0.1% sodium dodecyl sulfate and
one in 0.1� SSC, were then performed at 37°C for 5 min under
agitation. Data acquisition and analysis were performed as
previously described (21).

For all hybridizations performed with E. coli DNA, positive
results (signal-to-noise fluorescence ratio of greater than 2.0
[21] [Fig. 1]) were obtained for all the oligonucleotides used as
positive controls, and no fluorescence (signal-to-noise fluores-
cence ratio of less than 2.0 [21] [Fig. 1]) was observed for those
used as negative controls. Expected results were also obtained
for the C. freundii negative control strain. The microarray re-
sults were shown to be reproducible since, for each of the 76 E.
coli strains tested, no missing spot was observed between the
three independent replicate hybridizations. As shown in the
example in Fig. 1, where the microarray results obtained for
strain EDL933 are presented, oligonucleotides giving positive
results always showed a signal-to-noise ratio clearly greater
than 2.0 and, on the other hand, oligonucleotides giving neg-
ative results always showed a signal-to-noise ratio of less than
2.0. Expected results were obtained for the three reference
strains MG1655, EDL933, and CFT073 and for the collection

of 18 well-characterized E. coli isolates from the study of Bekal
et al. (1). Among the 263 virulence-specific oligonucleotides,
only the astA-specific probes gave unexpected positive results.
BLAST searches in GenBank revealed the presence of a short
truncation (24 nucleotides) in the astA sequences of various E.
coli strains which cannot be differentiated from complete se-
quences with a 70-mer oligonucleotide probe. Consequently,
positive results obtained with astA-specific oligonucleotides
have to be confirmed by PCR with primers described previ-
ously (1). For all the other virulence-specific oligonucleotides,
a perfect concordance was observed between microarray re-
sults and (i) BLAST searches against the sequenced genomes
of the three reference strains and (ii) previous characterization
of the 18 E. coli strains with an amplicon-based virulence
microarray (1). The virulence gene content and the phyloge-
netic groups determined by our microarray of nine E. coli
reference strains are presented in Table 1. For the 55 clinical
E. coli isolates coming from the study of Maynard et al. (22),
some discrepancies were observed comparing both microarray
results and membrane hybridizations previously performed
(22) (Table 2). Contrary to membrane hybridizations, where

TABLE 1. Determination of the virulence gene content of E. coli reference strains and strains representing most E. coli pathotypes

Strain
identification Pathotypea Virulence genes for which a signal-to-noise fluorescence ratio of

greater than 2.0 was obtainedb

Associated
phylogenetic

groupc
Reference

EDL933d EHEC (O157H7) stx1A, stx1B, stx2A, stx2B-1, eae, eae(gamma2), espA1, espA2, espB1, tir2,
ehxA, nleA, paa, wzy(O157H7), artJ, astA, ccdB, chuA, csgE, Ecs1282,
efa1, espP, etpD, fepC, fimA, fimH, fliC, fliC(H7), gad, hlyE, ibeB,
iha, katP, l7095, lacY-Ec, lacZ, lpfA(O157), mviM, mviN, ompA,
ompT, rfbE, rtx, set, tlrA, tnaA, uidA, ureD

D 26

CFT073d UPEC papA(7-1), papA(7-2), papC, papGII, chuA, fepC, irp1, irp2, fyuA, iroN, usp,
agn43, artJ, astA, b1121, b1432, ce1a, csgE, fimA, fimH, fliC, focA, focG,
gad, hlyA, hlyE, ibeB, iha, iss, iucD, kpsM-II, lacY-Ec, lacZ, malX,
mchB, mviM, mviN, ompA, ompT, pic, sat, sfaD, tnaA, tspE4.C2,
uidA, wzx(O6), yjaA

B2 33

MG1655d K12 agn43, artJ, b1121, csgE, fimA, fimH, fliC, gad, hlyE, ibeB, lacY-Ec, lacZ,
mviM, mviN, ompA, ompT, tnaA, uidA, yjaA

A 4

E2348/69 EPEC eae, eae(alpha), espA1, espB2, tir3, bfpA, bfpA(alpha), artJ, astA, b1121,
ccdB, chuA, csgE, eaf, efa1, espC, fepC, fimA, fimH, fliC, gad, hlyE,
ibeB, lacY-Ec, lacZ, malX, mviM, mviN, ompA, ompT, set, tnaA,
traT, uidA, yjaA

B2 14

H-10407 ETEC esta1, st, toxA, toxB, tia, tibA, leoA, agn43, artJ, astA, b1121, cfaB, csgE,
fimA, fimH, flmA54, fyuA, gad, hlyE, ibeB, irp1, irp2, lacY-Ec, lacZ,
mviM, mviN, ompA, tnaA, uidA, yjaA

A 23

17.2 EAEC capU, shf, virK, aap, aggA, agn43, artJ, astA, b1121, ccdB, csgE, fimA, fimH,
fyuA, gad, hlyA, hlyE, ibeB, iha, irp1, irp2, iss, iucD, kpsMII, lacY-Ec,
lacZ, mviM, mviN, ompA, papA(16), papC, papGII, sat, tnaA, uidA, yjaA

A 27

J96 UPEC papA(13), papC, papGI, papGIII, chuA, fepC, irp1, irp2, fyuA, iroN, usp,
agn43, artJ, b1121, b1432, ce1a, cnf1, csgE, fimA, fimH, fliC, focA, focG,
gad, hlyA, hlyE, hra1, ibeB, iss, kpsMIII, lacY-Ec, lacZ, malX, mchB,
mviM, mviN, ompA, ompT, rfc, sfaD, tnaA, uidA, yjaA

B2 5

2787 DAEC aidaI, agn43, artJ, astA, b1121, ccdB, csgE, fimA, fimH, flmA54, fyuA, gad,
hlyE, ibeB, irp1, irp2, lacY-Ec, lacZ, mviM, mviN, ompA, tnaA, traT,
uidA, yjaA

A 2

31A ExPEC (septicemia) papA(11), papC, irp1, irp2, fyuA, iucD, iutA, agn43, artJ, b1121, clpG, csgE,
espP, f165(1)A, F17cA, fimA, fimH, fliC, gad, gafD, hlyE, hra1, ibeB, iss,
lacY-Ec, lacZ, lpfA(O113), lpfA, mviM, mviN, ompA, ompT, tnaA, traT,
uidA, yjaA

A 3

a A pathotype is attributed to clinical strains according to their set of virulence genes or markers: EHEC (Shiga-like toxin-encoding genes, genes from the LEE, ehxA),
EPEC (genes from the LEE, bfpA), ETEC (heat-stable and heat-labile toxin-encoding genes, F4 and F18 fimbria-encoding genes), EAEC (capU, shf, virK, aggregative
adherence fimbria-encoding genes), DAEC (aidaI), UPEC (P pili-encoding genes, chuA, fepC, irp1, irp2, fyuA, iroN, usp).

b All virulence genes targeted in this study are described in an exhaustive list in Table S1 in the supplemental material.
c As previously described, according to the presence or absence of the three phylogenetic markers chuA, yjaA, and tspE4.C2 (10).
d Reference strains for which the genome has been entirely sequenced (4, 26, 33).
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cross-hybridizations between tet(A) and tet(C) probes were
observed (data not shown), the absence of such ambiguity with
the microarray, as confirmed by PCR, underscores the high
level of specificity. In the few other cases of discrepancies, PCR
analysis and DNA sequencing performed as previously de-
scribed (22) confirmed all the microarray results. Expected
results were also obtained for the 29 positive control strains as
well as the negative control reference strain MG1655, which
lacks all the antimicrobial resistance genes targeted by the
microarray.

In comparison with previous microarray-based studies (6–8,
16, 18, 30), we have developed a powerful molecular tool by
coupling the detection of an exhaustive set of virulence genes
and the detection of numerous antimicrobial resistance genes.
This oligonucleotide microarray is a valuable tool not only for
the assessment of the pathotype and the determination of the
pathogenic potential of E. coli strains, but also for monitoring
the transfer of virulence genes between strains (15). It should
thus facilitate the identification of emerging pathotypes as well
as the evaluation of genome plasticity by investigating the
capacity of a strain to acquire virulence genes from other
pathotypes, as shown in previous studies (1, 12, 18). This mi-
croarray also represents a valuable tool for diagnostic-based
studies, surveillance programs of antimicrobial resistance, and
monitoring of resistance gene dissemination between E. coli
isolates. The presence in the microarray of oligonucleotides
specific for the three phylogenetic markers used by Clermont
et al. (10) for the determination of the main E. coli phyloge-

netic groups is of great help in epidemiological and phyloge-
netic studies (K. Hamelin et al., unpublished data). Finally, this
microarray should not only be applicable in veterinary and
medical diagnosis but should also find widespread use in mi-
crobial quality control of food and water and in environmental
studies (K. Hamelin et al., unpublished data).

Work is under way to further improve the performance of
this microarray (i) by coupling microarray technology with
bioinformatics software to automate pathotype determination
from an isolate’s virulence gene content directly from the hy-
bridization image and (ii) through array updating by adding
oligonucleotides specific for newly recognized virulence genes.
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