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We applied nucleic acid-based molecular methods, combined with estimates of biomass (ATP), pigments,
and microelectrode measurements of chemical gradients, to map microbial diversity vertically on a millimeter
scale in a hypersaline microbial mat from Guerrero Negro, Baja California Sur, Mexico. To identify the
constituents of the mat, small-subunit rRNA genes were amplified by PCR from community genomic DNA
extracted from layers, cloned, and sequenced. Bacteria dominated the mat and displayed unexpected and
unprecedented diversity. The majority (1,336) of the 1,586 bacterial 16S rRNA sequences generated were
unique, representing 752 species (>97% rRNA sequence identity) in 42 of the main bacterial phyla, including
15 novel candidate phyla. The diversity of the mat samples differentiated according to the chemical milieu
defined by concentrations of O2 and H2S. Bacteria of the phylum Chloroflexi formed the majority of the biomass
by percentage of bulk rRNA and of clones in rRNA gene libraries. This result contradicts the general belief that
cyanobacteria dominate these communities. Although cyanobacteria constituted a large fraction of the biomass
in the upper few millimeters (>80% of the total rRNA and photosynthetic pigments), Chloroflexi sequences
were conspicuous throughout the mat. Filamentous Chloroflexi bacteria were identified by fluorescence in situ
hybridization within the polysaccharide sheaths of the prominent cyanobacterium Microcoleus chthonoplastes,
in addition to free living in the mat. The biological complexity of the mat far exceeds that observed in other
polysaccharide-rich microbial ecosystems, such as the human and mouse distal guts, and suggests that positive
feedbacks exist between chemical complexity and biological diversity.

Microbial mats are benthic aquatic ecosystems fueled by
light energy and composed of microbial cells attached to ex-
tracellular polymeric material and mineralized scaffolds in vis-
ible millimeter scale layers (12). Unlike stromatolites, which
have a biotic mechanism for calcification (49), microbial mats
become layered because of occasional sedimentation and re-
growth. Microbial mats and stromatolites are found in the
fossil record dating back 3.4 billion years (60) and are thought
to have significantly influenced the composition of the atmo-
sphere with production of O2, H2, and CH4 (21). Ancient and
modern mats share properties inherent to their structure. For
instance, different wavelengths of light penetrate differentially,
gas exchange with the atmosphere occurs at the surface, an
organic carbon-based matrix provides a scaffold for growth,
and sedimentation occasionally buries the surface, which is
then overgrown, leading to layering. Comparisons of biosigna-
tures in modern and fossilized mats seek to describe ancient
biogeochemical cycles and the microbial activities of ancient
communities (34, 57, 58).

The microbial mats within the hypersaline lagoons of the
Exportadora de Sal SA saltern in Guerrero Negro, Baja Cali-
fornia Sur, Mexico, cover an extensive area of artificial shallow
lagoons protected from tidal disturbance by levees. Biogeo-
chemical studies of these mats have shown that oxygen and
light, as well as photosynthetic capacity, are rapidly depleted
with depth. Degradation of organic matter occurs largely by
two processes, fermentation and substrate oxidation through
sulfate reduction (12). Both processes take on unusual char-
acteristics in the mats. Fermentation contributes to molecular
hydrogen release into the overlying water column, even in the
presence of oxygen, such that bubbles of mixed oxygen and
hydrogen gases form on the surface of the mat (21). In addi-
tion, the highest rates of sulfate reduction occur in the upper,
oxygen-rich layers of the mat (5). Known sulfate-reducing bac-
teria of the delta group of proteobacteria occupy the anoxic
zone, however, which suggests that novel groups of sulfate-
reducing bacteria reduce sulfate in the mats aerobically (51).

Despite the intriguing biogeochemistry of hypersaline mi-
crobial mats and their importance as model systems for studies
of the early Earth (21), the composition of the microbiota has
not been surveyed comprehensively by culture-independent
molecular methods. Classic microbiological studies and limited
molecular studies have shown that cyanobacteria dominate the
surface layers and revealed five of the other main bacterial
phyla (phylogenetic divisions Chloroflexi, Spirochaetes, Pro-
teobacteria, Bacteroidetes, and Firmicutes) and thus indicated a
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relatively simple community with little deep evolutionary di-
versity (10, 39–42, 51, 57). The biological simplicity of the mats
was the basis for their recommended use as model systems for
metagenomic analyses (4). The dominance of cyanobacteria
and the biological simplicity of the community have not been
verified by culture-independent methods, however.

The aim of this study was a more comprehensive description
of the microbial diversity within the mats and how that diver-
sity is distributed in relation to depth and chemical gradients
characteristic of the depth profile. We studied a limited area of
one mat intensively. In situ gradients of O2 and H2S concen-
trations and pH, measured on a micrometer scale with micro-
electrodes, provided a backdrop of vertical chemical gradients
onto which we mapped the biological data. ATP concentra-
tions were measured to provide an estimate of living biomass
distribution throughout the mat. Pigment concentrations mea-
sured by high-pressure liquid chromatography (HPLC) offered
a view of the distribution of oxygenic chlorophyll a (Chl a)-
containing cyanobacteria in relation to bacteriochlorophyll
(BChl)-bearing anoxygenic photosynthetic bacteria. A survey
of rRNA genes provided a culture-independent assessment of
dominant organisms. For each of 10 layers that divided the mat
into a millimeter-centimeter scale depth profile, the composi-
tion and diversity of communities were determined by se-
quence analysis of 16S rRNA genes generated by PCR with
universal and bacterium-specific primers from community
genomic DNA. We used RNA extraction and quantitative hy-
bridization with group-specific probes as a PCR-independent
verification of the abundance of the dominant group identified
by sequence analysis and of the cyanobacteria. In addition, we
visualized the morphologies and associations of these bacteria
by fluorescence in situ hybridization (FISH) with tyramide
signal amplification to overcome the intrinsic fluorescence of
the mat. These studies collectively revealed unexpected diver-
sity, complexity, and structure within the mat.

MATERIALS AND METHODS

Sample collection. We studied the microbial mat underlying pond 4 (near 5)
of the Exportadora de Sal SA, a solar saltworks located at Guerrero Negro, Baja
California Sur, Mexico (see reference 38 for site details). The mat is covered by
�1 m of brine with a salinity of �80‰. Collections were made in June and
October of 2001 at 4 a.m. (night) and 1 p.m. (day). We collected replicate cores
(1 cm by 6 cm) from a 0.4-m2 area of mat harvested approximately 10 m from the
levee. Upon collection, cores were treated randomly in one of three different
ways. Cores destined for DNA extraction and ATP and pigment analyses were
sliced horizontally in 1-mm increments (from the top to a depth of 6 mm) and
1.5-cm depth increments (remainder of the core, to a depth of approximately 60
mm), and then the corresponding layers from five different cores were pooled,
homogenized manually with a polypropylene pellet pestle (Thomas Scientific,
Swedesboro, NJ), and frozen in liquid N2. Cores intended for RNA extraction
and analysis were sliced lengthwise and frozen in liquid N2. Those intended for
microscopy assays were fixed in 4% paraformaldehyde in pond brine for 4 h and
preserved in 50:50 10� phosphate-buffered saline–ethanol at 4°C.

In situ microelectrode measurements. The O2 concentration, H2S concentra-
tion, and pH within the microbial mat were measured at 200-�m intervals on the
sample collection days in October 2001 with a diver-operated microprofiler
(Unisense, Århus, Denmark). A total of 31 profiles were taken over the course
of the diel period; the data shown are representative of eight qualitatively similar
midafternoon profiles taken at three different mat locations. All profiles were
made within the same 0.25-m2 area from which the mat cores were taken. The
Clark-type oxygen microelectrode and amperometric sulfide microelectrode
were calibrated as previously described (3, 38). A three-point calibration (pHs 4,
7, and 10) was performed for the pH microelectrode.

ATP analysis. We measured ATP concentrations, a biomarker for biomass
(28), in each section of the October and June daytime mat by using the luciferase
enzyme assay (Molecular Probes, Carlsbad, CA). ATP was extracted from ho-
mogenized mat samples by treatment with 0.5 M H2PO4 for 20 min on ice,
followed by centrifugation at 420 � g to remove suspended material and neu-
tralization by addition of 1 M NaOH to a final pH of 7.4. Mat samples were
washed twice with a 1.7 M glucose solution by centrifugation at 420 � g, followed
by replacement of the supernatant with the glucose solution, prior to extraction,
to remove salts that were found to inhibit the luciferase reaction. Light emitted
from the ATP-activated luciferase reaction was quantified with a scintillation
counter (Beckman Coulter, Inc., Fullerton, CA).

Pigment analysis. Pigments were extracted from June and October daytime
samples by sonication in acetone-methanol (7:2, vol/vol) in the dark, followed by
centrifugation, filtration (0.45-�m pore size; Whatman), and injection into an
HPLC column (25 cm by 4.6 mm; 5-�m Discovery C18; Supelco, Bellefonte, PA)
as described in reference 37, with the following modifications. The time at 100%
solution B was extended to 16 min to ensure that all long-tailed quinones were
completely eluted. The HPLC diode array detection system consisted of an
Agilent 1100 series binary pump (model G1312A), a vacuum degasser (model
G1379A), a manual injector (model G1328A), and a diode array detector (model
G1315B). The data were analyzed with ChemStation for LC 3D software (ver-
sion A.08.03; Agilent Technologies, Waldbronn, Germany). Pigments were iden-
tified by absorption spectra and retention times. The concentrations of unde-
graded BChls were determined from the areas of the elution peaks with the
equation m � FA (emd)�1, where m is the mass of BChl in milligrams, F is the
rate of solvent flow through the column (1 ml min�1), A is the area of the elution
peak, em is the extinction coefficient in liters per milligram per centimeter, and
d is the detection length of the diode array detector (1 cm). The following
extinction coefficients (in liters per milligram per centimeter) were used: Chl a,
79.2 (33); BChl a, 60 (45); BChl c, 86 (55); BChl d, 82 (55).

DNA extraction, PCR, and cloning. DNA was extracted from frozen mat
samples by a bead-beating protocol (14). For each sample, six replicate 25-�l
PCR operations were performed, with each mixture containing 100 to 200 ng of
purified genomic DNA, 100 mM Tris-HCl (pH 8.3), 500 mM KCl, 20 mM
MgSO4, 200 �M deoxynucleoside triphosphates, 200 �M each forward and
reverse primer, 1 M betaine, 800 �g/ml bovine serum albumin, and 1 U of Taq
DNA polymerase (Invitrogen). We used the bacterium-specific forward primer
8F 5�-AGA GTT TGA TCC TGG CTC AG-3�, universal primer 515F 5�-GTG
CCA GCM GCC GCG GTA A-3�, and archaeon-specific primer 333Fa 5�-TCC
AGG CCC TAC GGG-3�, all coupled with universal reverse primer 1391R
5�-GAC GGG CGG TGW GTR CA-3� (31). Cycling conditions were 94°C for 2
min, followed by 20 cycles of 94°C for 1 min, 45 s at 55°C, and 2 min at 72°C, with
a final extension period of 20 min at 72°C. Replicate PCR products were pooled,
and amplicons were gel purified (QIAGEN, Valencia, CA), cloned into TOPO
TA pCR4.0, and transformed into Escherichia coli TOP10 cells (Invitrogen,
Carlsbad, CA). The majority of the sequences were generated from October
daytime samples after a pilot study of June day and night samples did not show
statistically significant diurnal differences due to the unexpectedly high diversity
(these sequences are included in the final data set). A subset of sequences was
generated with forward primer 333Fa, which is usually employed to amplify
archaea. Extraction controls (no mat material added) did not produce visible
PCR products or colonies. For each sample-primer pair combination, 96 colonies
were selected; strands of plasmids were sequenced with vector-specific primers
with an ABI 377 DNA sequencer (BigDye Terminator ready reaction mixture;
PE Applied Biosystems, Inc.).

Sequence and phylogenetic analysis. Small-subunit rRNA sequences were
edited and assembled into consensus sequences with PHRED and PHRAP aided
by XplorSeq (Daniel Frank, unpublished), and bases with a PHRAP quality
score of �20 were trimmed. Chimeras were detected with Bellerophon (23).
Nonchimeric consensus sequences were named according to the layer they orig-
inated from (01 to 10), the time of collection (D for day, N for night), the month
of collection (1 � June, 2 � October), the primer pair (X, Z, or ZZ � 8F-1391R,
Y or YY � 515F-1391R, B � 333Fa-1391R; different symbols for the same
primer pair indicate that different authors generated the sequence), and the
clone number (01 to 96). The layers correspond to specific depths (1, 0 to 1 mm;
2, 1 to 2 mm; 3, 2 to 3 mm; 4, 3 to 4 mm; 5, 4 to 5 mm; 6, 5 to 6 mm; 7, 6 to 13
mm; 8, 13 to 26 mm; 9, 26 to 39 mm; 10, 39 to 60 mm). For example, clone
08D2Z44 was collected during the day in October from a 13- to 26-mm depth and
generated with 8F-1391R.

Nonchimeric sequences were aligned with the Arb software package (36),
based on an initial alignment described in reference 26. The alignment is avail-
able at http://Pacelab.colorado.edu/Publications/publications.html. Distance ma-
trices generated in Arb (with Olsen correction) were used to cluster sequences
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into operational taxonomic units (OTUs) by pairwise identity (% ID) with a
furthest-neighbor algorithm and a precision of 0.01 implemented in DOTUR
(52). We used DOTUR to determine OTU frequencies in mouse cecal and
human colonic 16S rRNA gene sequence data sets with Arb alignments provided
by the authors (15, 32). Simpson’s diversity index and collector’s curves were
calculated with EstimateS (8).

Assignment of the majority of sequences to their respective phyla was based on
their position after parsimony insertion into the Arb dendrogram (omitting
hypervariable portions of the rRNA gene with the lanemaskPH provided with
the database; see http://Pacelab.colorado.edu/Publications/publications.html).
Sequences that did not fall within described phyla were further characterized.
Phylogenetic trees including the novel sequences and reference taxa (20) were
constructed by evolutionary distance (test version 4.0b2 of PAUP*, a neighbor-
joining algorithm with either Kimura two-parameter correction or maximum-
likelihood [ML] correction with an empirically determined gamma distribution
model of site-to-site rate variation and empirically determined base frequencies),
parsimony (test version 4.0b2 of PAUP*; heuristic search), and ML (fastDNAml)
analyses. Bootstrap resampling was used to test the robustness of inferred to-
pologies. Novel candidate phyla, designated GN01 to GN15, were defined by the
generally accepted criteria that (i) there must be three or more sequences from
independent PCR products, (ii) sequences must be a minimum of 1,000 bp, and
(iii) there must be high levels of support in phylogenetic analyses (20, 24, 46).
However, four of the novel candidate phyla (GN6, GN12, GN13, and GN14) met
only two of these criteria (the sequences were �1,000 bp) and await confirmation
with longer sequence reads.

To cluster the communities from each layer, we used the UniFrac computa-
tional tool (35). The Arb alignment (excluding hypervariable regions) containing
all 1,586 sequences was used to construct an ML tree with RAxML (54). The ML
tree was annotated according to the layer from which each sequence was derived,
and the fraction of tree branch length unique to any one layer in pairwise
comparisons (the UniFrac metric) was calculated. Microbial communities from
individual layers were clustered by application of the unweighted-pair group
method using average linkages (UPGMA) to the UniFrac metric matrix.

FISH of Chloroflexi. Mat samples were disrupted gently with a pestle, dehy-
drated in an ethanol series, and adhered to silane-coated glass slides with Cell-
Tak (BD Biosciences, Inc.). Cells were permeabilized with lysozyme (10 mg/ml,
30 min, 37°C), followed by achromopeptidase (60 U/ml, 1 h, 37°C) and mutalysin
(10�, 30 min, 37°C) (Sigma Aldrich, Inc.). Hybridizations were performed with
a buffer containing 30% formamide, 0.9 M NaCl, 20 mM Tris-HCl (pH 8.0),
0.01% sodium dodecyl sulfate, and 50 ng of biotin-labeled probe for 2 h at 46°C.
Signal intensity was boosted with TSA kit no. 22 with horseradish peroxidase-
streptavidin and Alexa Fluor 488 tyramide by following the manufacturer’s in-
structions (Molecular Probes, Carlsbad, CA). The probes used in this study were
Chloroflexi-specific ChloroflexiB941 (5�-AAA CCA CAC GCT CCG CT-3�) (18)
and bacterium-specific EUB338 (5�-GCT GCC TCC CGT AGG AGT-3�) (1).
Samples were counterstained with 10 �g of 4�,6�-diamidino-2-phenylindole
(DAPI)/ml and mounted with antifadent (CitiFluor Ltd., Leicester, England).
Images were generated by laser confocal microscopy (Leica Microsystems, Ban-
nockburn, IL) with a 488-nm excitation laser and a 350-nm excitation laser
(DAPI). Probes and protocols were tested against reference strains (Chloroflexi
Thermomicrobium roseum ATCC 27502, Chloroflexus aurantiacus ATCC 23779,
Roseiflexus castenholzii obtained from S. Hanada [19], and Herpetosiphon auran-
tiacus ATCC 23781; Chlorobium tepidum ATCC 49652; proteobacteria Pseudo-
monas aeruginosa ATCC 14205 and E. coli ATCC 29181; Firmicutes Clostridium
sporogenes ATCC 13663 and Bacillus subtilis ATCC 12432; and the archaeon
Sulfolobus acidocaldarius ATCC 33909).

Quantitative dot blot hybridization of rRNA from Chloroflexi and cyanobac-
teria. To extract bulk RNA from the mat, triplicate mat samples (100 mg) from
three depths (0 to 4 mm, 5 to 9 mm, and 20 to 30 mm) were washed with 1.7 M
glucose amended with RNase OUT (Sigma Aldrich, St. Louis, MO) to remove
excess salts and resuspended in 750 �l of pH 4.7 buffer containing 100 mM
EDTA, 20 mM Na-acetate, and 0.5 �l/ml RNase OUT. Aliquots (100 �l) were
further homogenized by bead beating (2 min on high with 0.1-mm zirconium
beads; Mini-BeadBeater-8; BioSpec Products, Inc., Bartlesville, OK) in Tri-
Reagent (Sigma Aldrich, St. Louis, MO). RNA was extracted similarly but
without the glucose wash from the pure cultures previously mentioned in the
FISH protocol. In addition, RNA was obtained from the following cyanobacte-
ria: Synechococcus sp. strain UTCC477, Lyngbya sp. strain UTCC592, and
Oscillatoria sp. strain UTCC487. To obtain small-subunit rRNA from reference
organisms without cultured representatives, RNA was synthesized by transcrip-
tion from rRNA gene clones. We transcribed RNA from two cyanobacterial
clones (01D2Z20 and 05D2Z68), and five Chloroflexi clones (10D2Z49,
08D2Z44, 05D2Z83, 05D2Z90, and 05D2Z56) chosen to represent the diversity

of those groups. Plasmids with cloned rRNA gene inserts were prepared from E.
coli cultures with a QIAGEN mini-prep kit. Plasmids were linearized by restric-
tion enzyme digestion (SpeI, 37°C, 2 h). Transcription reaction mixtures incu-
bated at 37°C overnight contained the following per 100 �l: 6 to 8 �g of
linearized plasmid, 52.5 U of yeast pyrophosphatase, 7 �l of RNase OUT T7
RNA polymerase, 28 mM each ribonucleotide, and 0.175 M MgCl2 buffer. Newly
synthesized RNA was ethanol precipitated and isolated by electrophoresis in
denaturing polyacrylamide gels, followed by nondenaturing ion-exchange chro-
matography on HiTrap Q HP Sepharose (Amersham Pharmacia) (29).

RNAs from mat samples and reference strains were blotted in triplicate onto
nylon membranes (Magna Charge; Micron Separation Inc., Westboro, MA) and
bound by baking at 80°C. Probes were labeled with 	-ATP and T4 polynucleotide
kinase by following the manufacturer’s instructions (Invitrogen, Carlsbad, CA).
Washing temperatures for each probe were determined empirically according to
reference 11, with modifications. We used 200-�l assay volumes in 96-well plates
and controlled the temperature with a thermocycler. Membranes were hybrid-
ized as described in reference 11. Signal intensity of the blots was determined
with a Phosphorimager (Molecular Dynamics, Carlsbad, CA) and the program
ImageQuant (Amersham Biosciences, Piscataway, NJ). Signal intensities were
analyzed as described in references 47 and 48.

Nucleotide sequence accession numbers. The sequences determined in this
study have been submitted to the GenBank database and assigned accession
numbers DQ329539 to DQ331020 and DQ397339 to DQ397511.

RESULTS

Depth gradients of H2S, O2, and pH. The in situ chemical
environment of the mat was profiled by microelectrode mea-
surements of O2 and H2S concentrations and of pH from the
surface of the mat to a depth of 6 mm in 200-�m increments.
The high spatial resolution of these measurements provides a
view of the variability of the local chemistry. Based on our
microelectrode measurement profiles, the mat can be divided
into three distinct habitats that serve as a backdrop for the
spatial organization of the microbial community (Fig. 1A).
These zones are the oxic zone, ranging from the top of the mat
to a depth of 2 mm and characterized by diurnally fluctuating
concentrations of O2; the low-H2S zone, ranging in depth from
2 mm to 6 mm, where H2S levels are drawn down diurnally;
and the H2S-rich zone, the largest zone, ranging from 6 mm to
the bottom (�60 mm), where concentrations of H2S are per-
manently high (Fig. 1A). The coefficient of variation for the O2

measurements was greatest at an average depth of 2.5 mm,
where the average O2 concentration was low (28 �M; Fig. 1A).
This is an indication that the deepest penetration of oxygen
into the mat is also the depth at which oxygen concentrations
are the most variable (measured range, 0 to 522 �M) during
the day. At night, the mat is completely anoxic.

Biomass and pigment distributions by depth. To determine
the depth distribution of biomass in the mat, we measured the
concentration of ATP per gram, from the top of the mat to the
bottom, in June and October. ATP is the energy currency of all
cells, and it therefore serves as a proxy for biomass (28). ATP
concentrations were highest in the oxic zone (1,343 
 400 ng of
ATP g�1; Fig. 1B) and tapered off rapidly with depth to 322 

50 ng of ATP g�1in the lower, H2S-rich, zone. Integrating by
depth, the substantially greater volume of the lower H2S-rich
zone results in fivefold greater overall biomass per unit of
surface area: 27.8 �mol of ATP cm�2 in the lower zone versus
5.0 �mol of ATP cm�2 for the combined oxic and low-H2S
zones. The ATP concentrations and depth profiles of the Oc-
tober and June sampling dates were similar.

We determined the concentrations and distributions of pho-
tosynthetic pigments by HPLC. Pigment concentrations were
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highest in the oxic zone, as expected, yet we detected pigments
at all depths (Fig. 1C). The cyanobacterial pigment Chl a was
an order of magnitude more abundant than BChls (BChls a, d,
and c) in the oxic zone.

Estimated richness and coverage. Two rRNA gene clone
libraries were constructed from each of the 10 layers, one with
bacterium-specific primers (8F and 1391R) and one with uni-
versal primers (515F and 1391R). Restriction fragment length
polymorphism screening revealed unexpectedly high levels of
diversity for each 96-clone library; therefore, all clones were
sequenced bidirectionally. When the universal libraries from
all layers were combined, the bacteria/archaea/eucarya ratio
was 57:7:1. In this report, we focus on the bacterial sequences.
Archaeal and eucaryal sequence data will be described else-
where (J. Spear, R. Ley, and N. R. Pace, unpublished). Bac-
terial sequences encountered in the libraries constructed with
archaeal primers were included in the final data set discussed
here. The two forward primers (515F and 8F) used to generate
the majority of the sequences yielded an equivalent proportion
of bacterial phyla (�2, P � 0.05), an indication that our cover-
age was not significantly biased by the primer pairs that we
used. For subsequent analyses, all sequences were combined
on the basis of the layer from which they originated.

To assess the coverage and the richness of clone libraries
combined by layer, we employed collector’s curves for cover-
age, the nonparametric estimators Chao1 and Ace1 for rich-
ness, and the computed Simpson index to estimate the even-
ness of community composition (see reference 52). The total
bacterial 16S rRNA gene sequences (n � 1,586) consisted of
1,336 unique sequences and 752 phylotypes defined by a min-
imum threshold of 99% ID. In all subsequent analyses, we
report masked sequence pairwise identities (% IDs). The hy-
pervariable regions of sequences were masked for alignment
purposes because these regions cannot be aligned with cer-
tainty, particularly across the large phylogenetic distances en-
countered in this data set. Generally, 99% ID is equivalent to
�97% ID when the entire sequence length is used (e.g., see the
data set of 11,831 bacterial 16S rRNA genes in reference 15),
often taken to indicate species level variation. Figure 2A shows

the frequency of observed taxa with % ID thresholds ranging
from 90% to 100%. The Chao1 and the Ace1 richness esti-
mates for phylotypes ranging from 90% ID to 100% ID yielded
equivalent richness curves (Fig. 2A). Both richness estimators
indicated �10,000 unique sequences based on the distribution
of observed sequences. Collector’s curves for taxa with �90%
ID indicate that our coverage of the diversity was not compre-
hensive, since the curves did not begin to become asymptotic
(Fig. 2B). Together, the richness estimators and the collector’s
curves indicate a high degree of diversity, most of which likely
remains undescribed. Bacterial diversity was uneven in the
upper layers sampled, which had a subset of dominant bacteria,
and became more even with depth (Simpson’s index versus
depth, R2 � 0.63, P � 0.005).

Bacterial diversity and distribution. The phylum Chloroflexi
dominated clone libraries numerically and included the highest
proportion of sequences, on average (Fig. 3A), from each
chemically defined zone (Fig. 3B, C, and D). Proteobacteria and
Bacteroidetes were the second most represented phyla in each
zone. Cyanobacterial sequences comprised, at most, 10% of

FIG. 1. Chemical and biochemical characteristics of the mat as a function of depth. (A) Microelectrode measurements of O2 and H2S
concentrations and pH. (B) ATP concentrations. Means of three independent measurements are plotted; the bars show standard errors.
(C) Pigment concentrations. For all measurements, October values are plotted; the June values were equivalent (data not shown).

FIG. 2. Bacterial diversity within the hypersaline microbial mat.
(A) Observed and predicted (Chao1, Ace1) numbers of taxa with
minimum thresholds ranging from 90 to 100% ID for masked se-
quences. (B) Collector’s curves for taxa (OTUs) with minimum thresh-
olds of 90, 95, 97, 98, 99, and 100% ID.
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the total sequences in a chemical zone (Fig. 3B) and were
obtained from the oxic zone only. Figure 4 shows the phyloge-
netic relationships of the Chloroflexi and cyanobacterial se-
quences obtained from the mat in relation to cultured represen-
tatives and clones obtained by culture-independent methods from
other environments. Twenty-four percent of the Chloroflexi se-
quences were obtained from the surface layers and were close
relatives of known photosynthetic organisms, such as Chloroflexus
and Chlorothrix spp., previously described for these mats (30, 41)
(Fig. 4A). Another group of Chloroflexi sequences (4.5% of
Chloroflexi sequences) with no cultured close relative was ob-
tained only from the surface layers (Fig. 4A). This result indi-
cates that the Chloroflexi may include additional unrecognized
photosynthetic members. The other Chloroflexi groups recov-
ered from the mat had average depth distributions extending
below the oxic zone. These groups include oxygen-tolerant
members, however, since members of all groups were obtained
from the oxic zone. The majority of sequences have no closely
related cultured representatives from which properties can be
inferred. Sixty-one percent of the cyanobacterial sequences
obtained from the mat were members of a novel group of
cyanobacteria whose closest relative was obtained from a hot

spring mat (Fig. 4B). Sixteen percent formed a group affiliated
with Leptolyngya spp.

In addition to Chloroflexi and Cyanobacteria, the 16S rRNA
gene sequence analysis revealed 28 other previously described
phyla (Fig. 3). Half of these were candidate phyla, so termed
because they are known only by 16S rRNA gene sequences and
do not contain representatives that have been cultured in the
laboratory and from which physiological and metabolic prop-
erties can be inferred. This study expanded the known habitat
space and diversity of several candidate phyla. For example,
candidate phylum KSB1, previously represented by �10 se-
quences encountered in surveys of brackish water sediments
(59), cave sediments (22), and a bioreactor treating 4-methyl-
benzoate (62), was expanded significantly with the addition of
35 sequences from the mat.

The majority of sequences could be assigned unambiguously
to known phyla; however, 119 sequences remained (7.5% of
the total) that were not affiliated with any known phylum.
Phylogenetic analysis of these unaffiliated sequences revealed
15 novel candidate phyla termed GN01 to GN15. Several of
the candidate phyla include sequences that were previously
deposited in GenBank and for which there is no described

FIG. 3. Bacterial diversity in the mat. Proportions of bacterial phyla in the total data set (A), in the oxic zone (0 to 2 mm) (B), in the low-H2S
zone (2 to 6 mm) (C), and in the H2S-rich zone (6 to 60 mm) (D) are shown. Others: cyanobacteria, KSB1, OP10, GN03, OP5, GN1, Firmicutes,
OP11, GN04, GN05, GN09, GN10, WS1, WS2, GN2, Deinococcus-Thermus, GN07, Haloanaerobiales, GN06, GN11, BRC1, OP8, OS-K, GN12,
GN13, GN14, actinobacteria, GN15, WS3, GN8, OP9, TM6, and VadinBE97. Abbreviations: Chloro., Chloroflexi; Cyano., Cyanobacteria; Verr.,
Verrucomicrobia; Planct., Planctomycetales; Spiro., Spirochaetales; Firm., Firmicutes, Bact., Bacteroidetes; Proteo., Proteobacteria. (E) Bacterial
community clustering by layer studied (UPGMA tree of UniFrac metric based on 1,585 16S rRNA gene sequences). Shaded areas refer to the
different chemical milieus identified by the microelectrode measurements in Fig. 1A.
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affiliation (Table 1; a dendrogram is available in the Arb database
at http://Pacelab.colorado.edu/Publications/publications.html).
Most of the novel GN candidate phyla include sequences de-
rived from several different layers and therefore several sepa-
rate PCR products. Novel GN candidate phyla were detected
in all layers of the mat, and more than half were detected in the
oxic zone (Table 1).

Figure 5 shows the depth distribution of members of the 14
most commonly observed bacterial phyla. The abundance of
each is shown as the percentage of sequences at each depth,
calculated as a fraction of the total number of sequences ob-
tained for any given phylum. The Chloroflexi bacteria are dis-
tributed fairly evenly with depth, except for a relative reduction
in abundance in the transitional low-H2S zone. The phyla that
were most abundant in the oxic zone included Cyanobacteria,
Proteobacteria, Bacteroidetes, Spirochaetes, Verrucomicrobia,
and candidate phylum GN01. Several known candidate phyla
(KSB1, OP10, OP5, and OD1) had their highest abundances in
the low-H2S zone, just below the oxic layer. Firmicutes exhib-
ited a marked bimodal distribution, abundant in the oxic zone
and in the lower portion of the mat.

Community similarities. In order to compare the commu-
nities within the chemical zones characterized by the micro-
electrode measurements of O2 and H2S, we used the recently
developed UniFrac metric analysis (35). UniFrac measures the
phylogenetic distance between pairs of communities repre-
sented by sequences in a phylogenetic tree as the fraction of
branch length of the tree that leads to descendants from either
one community or the other but not both (35). A phylogenetic

FIG. 4. Diagrammatic phylogenetic trees of microbial mat sequences
and their cultured and uncultured relatives with associated GenBank acces-
sion numbers. Reference sequences of cultured representatives are shown in
italics. Wedges represent groups of microbial mat sequences, and single se-
quences are indicated by their clone names. The length of the top and bottom
edges represents the range of sequence divergence. The average depth from
which sequences were obtained is indicated next to the wedge, with the total
depth range in parentheses. (A) Chloroflexi sequences. Percentages indicate
the fraction of Chloroflexi sequences within a given sequence cluster. “Oxic
zone” indicates clusters of sequences obtained from surface layers exclusively.
(B) Cyanobacterial sequences. Percentages indicate the fraction of cyanobac-
terial sequences within a given sequence cluster.

TABLE 1. Mat layers from which sequences forming candidate
phyla GN01 to GN15 were obtaineda

Phylum Depth(s) in mm (no. of
sequences)

Accession no. of clones
from other studies

GN14 0–1 (2)
GN07 0–1 (2), 3–4 (1), 4–5 (1)
GN03 0–1 (2), 2–3 (1), 4–5 (7), 5–6

(9), 6–13 (2), 13–26 (5)
GN10 1–2 (3), 2–3 (1), 3–4 (1),

4–5 (1)
GN01 1–2 (8), 2–3 (1), 3–4 (6), 4–5

(1), 5–6 (6)
GN05 1–2 (1), 2–3 (1), 3–4 (3), 4–5

(4), 5–6 (2), 26–39 (1),
39–60 (1)

DQ154857

GN09 2–3 (1), 3–4 (1), 4–5 (1), 5–6
(1), 26–39 (6)

GN08 3–4 (1) AJ441248
GN11 3–4 (1), 4–5 (1), 5–6 (1) AY255001
GN02 3–4 (2), 4–5 (2), 13–26 (1)
GN12 4–5 (1), 5–6 (1)
GN13 5–6 (1), 6–13 (1)
GN06 5–6 (2), 26–39 (1) AB089123, DQ154831,

AB218870
GN04 5–6 (3), 6–13 (1), 13–26 (3),

26–39 (4), 39–60 (2)
AF323768

GN15 26–39 (2) AJ567570

a Values indicate the depths in the mat from which candidate phylum clones
were obtained; the number of sequences from each depth is in parentheses. The
GenBank accession numbers are those of clones from other studies without prior
phylum affiliations that are included in GN candidate phyla. See http://Pacelab
.colorado.edu/Publications/publications.html for the Arb dendrogram showing
these phyla in the context of previously described phyla.

3690 LEY ET AL. APPL. ENVIRON. MICROBIOL.



tree containing all of the microbial mat sequences (n � 1,585)
was generated, each sequence was annotated according to the
analytical layer from which it was derived, and the UniFrac for
all combinations of pairs of communities (10 � 10) was com-
puted. The layers were then clustered according to their pair-
wise UniFrac metrics by UPGMA. This analysis revealed three
main clusters of related communities that match the zones
delimited by the chemistry of the mat. The communities in
layers 0 to 1 mm and 1 to 2 mm clustered together, as did the
four communities obtained from layers 2 to 6 mm, and the four
communities from the lower layers clustered together (6 to 60
mm; Fig. 3E). The robustness of the inferred UniFrac tree
topology to the presence of specific communities represented
was confirmed by jackknife analysis (P � 0.001).

Quantitative RNA hybridizations with probes specific for
Chloroflexi bacteria and cyanobacteria. In order to test the
abundances of Chloroflexi bacteria and cyanobacteria indicated
by the clone library results that may be subject to PCR and
other biases (24), we conducted quantitative rRNA dot blot
hybridizations with oligonucleotide probes based on the se-
quences. We used pure cultures of members of the phyla Chlo-
roflexi and Cyanobacteria to generate reference rRNAs. To
represent novel Chloroflexi clades detected by rRNA gene
analysis for which no cultures are available, we synthesized
rRNA by in vitro transcription from selected clones. Overall,
the majority of the community rRNA extracted from the mat
hybridized with the Chloroflexi-specific probe, confirming the
dominance of Chloroflexi observed in the rRNA clone libraries.
However, the majority of the total rRNA in the oxic zone was
cyanobacterial (87% 
 2.7%), while Chloroflexi likely com-
prised the majority of the remainder (22% 
 1.7%). Together,
these percentages exceed 100%, which indicates that some
nonspecific binding of the probes may have occurred. In the
low-H2S zone, the proportion of cyanobacterial rRNA
dropped to 28% 
 3.6% while the proportion of Chloroflexi
rRNA increased to 41% 
 0.8%. Deep in the H2S-rich zone of
the mat, cyanobacterial abundance declined further to 10% 

2.2%, while Chloroflexi remained a dominant proportion of the
overall biomass (32% 
 4.5%).

Visualization of Chloroflexi bacteria by FISH. Because of
their abundance, the Chloroflexi bacteria must have a major
influence on the nature of this mat. In order to gain insight into
the ecology and spatial organization of these organisms, we

visualized the Chloroflexi bacteria in the upper and lower
layers of the mat with Chloroflexi-specific fluorescent oligo-
nucleotide probes by in situ hybridization and confocal mi-
croscopy. Tyramide signal amplification combined with the
use of Alexa Fluors boosted the signal above the high levels of
background autofluorescence. Chloroflexi bacteria were seen
within the exopolysaccharide sheaths of the conspicuous fila-
mentous cyanobacterium Microcoleus chthonoplastes in the up-
per layers of the mat (Fig. 6A, B, and C). The invasion of the
trichomes seemed specific for Chloroflexi bacteria. No other
bacteria were seen within the sheaths, although many were
visualized by DAPI staining on the outside of the sheaths
(not shown). The filaments of cyanobacterial cells were of-
ten observed disrupted in the presence of the Chloroflexi
bacteria (Fig. 6B). In the lower, anoxic zones of the mat, the
Chloroflexi bacteria were visualized as filamentous bacteria
pervading the polymeric matrix of the mat, but they were not
observed inside sheaths (Fig. 6D).

DISCUSSION

Microbial mats occur worldwide in shallow aquatic environ-
ments where high salinity or temperature precludes the estab-
lishment of algae or aquatic plants that may overgrow the mats
or of grazers that may otherwise consume them (17). Prior to
the evolution of such organisms, microbial mat-like structures
were widespread around shallow seas and lakes and are
thought to have contributed significantly to the evolution of
Earth’s atmosphere (21). The biogeochemical cycling of car-
bon, oxygen, and hydrogen has been studied extensively in the
hypersaline mats of Guerrero Negro, Baja California Sur,
Mexico (5, 12, 13, 61), yet the identities of the organisms that
drive these cycles are known primarily from culture and mi-
croscopy studies (9) and only limited molecular analyses have
been performed (39–41, 51). This study is the most extensive
rRNA-based survey of a microbial mat so far conducted. Fur-
thermore, we integrated a variety of molecular and chemical
analytical approaches to characterize the depth profile of the
mat. In contrast to the long-held view that these mats are
dominated by cyanobacteria and are biologically simple, our
results indicate an overall unexpected dominance of Chloroflexi
bacteria and a remarkably high level of diversity. We found
that cyanobacteria dominate the biomass in the upper 2 mm;

FIG. 5. Depth distributions of the 10 most abundant phyla in the mat. Points indicate the percentage of sequences within each phylum
(not the percentage of total sequences) obtained at each depth. The bar indicates 20% of sequences within each group. Shaded areas: see
legend to Fig. 2E.
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however, the dominance of Chloroflexi bacteria below 2 mm,
where the majority of the biomass resides, makes them the
most abundant type of bacterium overall. In the upper 2 mm,
the Chloroflexi bacteria can be seen intertwined within the
exopolysaccharide sheaths of the dominant cyanobacterium.
Together, our results indicate that the photosynthetic activity
of the cyanobacteria sustains a highly diverse and structured
community.

Chemically defined niches and biomass distribution. Our
microelectrode measurements of H2, O2, and pH provided a
detailed view of the chemical environment in the upper 6 mm
of the mat. These chemical profiles defined three distinct
chemical niche spaces onto which to map the biological diver-
sity of the mat. These three zones, the oxic zone, the low-H2S
zone, and the H2S-rich zone, have been described previously
with coarser spatial resolution (5).

In previous studies, the density of the cells was observed
qualitatively to be highest in the upper few millimeters and to
taper off with depth (10). Bulk RNA concentrations have also
been shown to be higher by an order of magnitude in the upper
1 mm than in the underlying layers (51). We measured ATP
concentrations in the mat as a proxy for biomass. ATP con-

centrations approached those of pure cell paste in the upper-
most millimeters of the mat. The upper few millimeters are
considered to be the highly active zone of the mat, where
carbon flux driven by photosynthesis is highest. However, even
though ATP concentrations were lowest below the oxic zone,
the total amount of ATP present per unit of area in the lower
portion of the mat is highest below the oxic zone. Therefore,
more overall biomass resides in the dark sulfidic part of the
mat than in the cell-dense upper few millimeters, where most
photosynthesis occurs.

Pigment depth profiles showed that the cyanobacterial pig-
ment Chl a was by far the most abundant photosynthetic pig-
ment. It is therefore likely that cyanobacteria fix more inor-
ganic C than the nonoxygenic phototrophic bacteria (e.g.,
Chloroflexi bacteria and proteobacteria) and thus the cya-
nobacteria presumably provide the main sustenance of the
mat, as previously thought. We measured peak concentrations
of the BChls directly under the peak concentration of Chl a.
This segregation with depth is consistent with the specializa-
tion of BChls for longer, more deeply penetrating wavelengths
and the previously reported vertical stratification of different
phototrophic organisms (10, 56). The photosynthetic Chlo-

FIG. 6. Chloroflexi bacteria and the cyanobacterium M. chthonoplastes in the mat visualized by laser confocal microscopy. (A) Chloroflexi
bacteria (red, FISH Chloroflexi probe) entwined with M. chthonoplastes (green, DAPI) at a 1-mm depth. The arrow indicates the edge of the
polysaccharide sheath. (B) Chloroflexi bacteria (green, Chloroflexi probe) and M. chthonoplastes (green, autofluorescence of Chl a). (C) Chloroflexi
bacteria (thin filaments) and M. chthonoplastes (thick filaments), DAPI stained. (D) Chloroflexi filaments (red, Chloroflexi probe) and polysac-
charide material (dull green) at a 50-mm depth. Non-Chloroflexi bacteria are visible as bright green spots (arrow 1). Arrow 2 indicates a buried
M. chthonoplastes filament. Scale bars, 10 �m.
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roflexi bacteria (e.g., Chlorothrix halophila and relatives), which
are similar in properties to green sulfur bacteria by having
chlorosomes, may also contribute in a substantial way to the
primary productivity of the mat. Taken together, the biomass
and pigment depth distributions indicate that photosynthetic
activity within the oxic zone fuels the underlying, larger bio-
mass. Such an inverted pyramid model of trophic levels, where
consumer biomass apparently outweighs producer biomass,
has recently been described for the stromatolites (calcified
mats) of Sharks’s Bay, Australia (44) and may be common in
microbial ecosystems where primary producers exude polysac-
charides.

Diversity mapped onto chemical gradients. We generated
1,586 bacterial 16S rRNA gene sequences from the entire
depth profile of the mat, although this number appears to
undersample woefully the diversity present in the mat. To-
gether, the diversity estimates based on our sequence coverage
and the collector’s curves all indicate a highly diverse commu-
nity, most of which still awaits description. Despite the low
sampling coverage, the high proportion of known and new
bacterial phyla in this hypersaline mat makes it the most bio-
logically diverse environment yet characterized. This study has
encountered the highest number of confirmed and potential
candidate phyla so far observed in a single environment (25).
This is remarkable, particularly at a time when the discovery
rate of new phyla was thought to be tapering off (46), and
suggests that diversity and complexity are a feature of the
microbial mat ecosystem.

Previous microscopy-based studies have indicated a vertical
stratification of the microbial community with depth, down to
about 6 mm, the maximum depth studied (10). Cyanobacteria,
particularly the filamentous, exopolysaccharide sheath-forming
species M. chthonoplastes, were observed by microscopy in the
upper 2 mm. Other, anoxygenic photosynthetic bacteria such
as Chloroflexus-like Chloroflexi bacteria were observed below
the cyanobacteria along with other undefined microbiotas with
various morphologies (10). We found cyanobacterial rRNA
genes in the uppermost layers only, and the majority of the
RNA in the upper few millimeters was cyanobacterial. Fur-
thermore, cyanobacterial Chl a was far more abundant in the
upper few millimeters than BChls c and d, ascribed to the
Chloroflexi bacteria. The discrepancy between Chloroflexi bac-
terial and cyanobacterial representation in 16S rRNA gene
libraries versus bulk rRNA and pigment profiles in the upper
millimeters could be due to the comparatively large size of
cyanobacteria. For instance, M. chthonoplastes cells are two to
three times wider than Chloroflexi bacterial cells, which may
result in a higher ratio of expressed rRNA to rRNA gene copy
number. Nonetheless, overall, the Chloroflexi bacteria domi-
nated the mat biomass, with the exception the top 2 mm, where
cyanobacteria were a larger proportion of the biomass. Popular
reference to the mats as “cyanobacterial” reflects the focus of
most previous work on the top few millimeters.

The majority of the novel candidate phyla that we describe
from the mat were detected at a variety of depths. Candidate
phyla are known from their constituent 16S rRNA gene se-
quences alone, and therefore the physiological attributes of the
bacteria within them can be gleaned only from the context in
which they were discovered. The depth distributions of the
novel GN candidate phyla provide testable hypotheses about

the physiologies of the organisms. More importantly, the spa-
tial distribution of the candidate phyla can help direct efforts to
bring representatives into culture for physiologic studies. The
middle, low-H2S zone harbored 9 of the 15 GN candidate
phyla, indicating that such organisms are anaerobic and H2S
tolerant yet may rely on the diurnal variation in H2S levels and
the H2S-O2 interface. In contrast, candidate phyla GN4 and
GN12 were detected only well below the oxic layer and are
likely to be composed of strict anaerobes. GN14 was observed
only in the top layer (day and night libraries), which suggests
that it could be a novel photosynthetic group.

The three distinct zones delineated by concentration gradi-
ents of O2 and H2S harbored distinct bacterial communities.
The UniFrac analysis of the phylogenetic tree representing the
entire data set resulted in clusters of the 10 separate samples
according to the depth distributions of the three chemical
habitats delineated by our in situ microelectrode measure-
ments. This observation implies that related bacteria occupy
similar chemical niches. Therefore, despite the potential for
horizontal gene transfer to confer many physiological traits on
distantly related bacteria, phylogenetic groups appear to share
physiological properties that are manifested as chemical niche
preferences at particular depths in the mat. For many of the
novel phylotypes observed, the depth at which they were found
is consistent with what is known about the physiologies of their
close relatives. For instance, close relatives of known photo-
synthetic organisms, such as Chloroflexi relatives of the photo-
synthetic Chloroflexus and Chlorothrix spp. previously de-
scribed for these mats (30, 41), were abundant in the upper
zone, where light penetrates. Similarly, close relatives of
known sulfate-reducing members of the delta group of pro-
teobacteria were most abundant in the oxic zone, which also
is where rates of sulfate reduction are highest (39). Mem-
bers of the phylum Bacteroidetes, known to degrade polysac-
charide anaerobically (63), were abundant throughout the
dark anoxic zone.

Chloroflexi bacteria and cyanobacteria: symbiosis or antag-
onism? A previously described feature of hypersaline micro-
bial mats is the close physical interaction between the cya-
nobacterium M. chthonoplastes and a thinner filamentous
bacterium also inside the polysaccharide sheath. The thinner
partner was thought to be a member of either Proteobacteria or
Chloroflexi based on physiological properties and transmission
electron microscopy (9). We used FISH with Chloroflexi bac-
terium-specific probes and laser confocal microscopy to con-
firm that the filamentous bacteria inside the M. chthonoplastes
sheaths were Chloroflexi bacteria (Fig. 6A to C). The associa-
tion is most often observed at 0.3 to 1.2 mm (5, 9), correspond-
ing to the zone below the region of maximal oxygenic photo-
synthesis. Indeed, lower in the mat, Chloroflexi bacteria are
free living (Fig. 6D). The depth location of the association and
physiological experiments (9) have suggested a cometabolism
of sulfur: the Chloroflexi bacteria may draw down levels of H2S
stressful for the cyanobacterium (38), which excretes organic
carbon used by the Chloroflexi bacteria. However, we observed
that M. chthonoplastes filaments were often disrupted when
Chloroflexi bacteria were present (Fig. 6B), suggesting the al-
ternative view that Chloroflexi bacteria may parasitize the cya-
nobacterium under H2S stress. The tight physical association of
these bacteria from deeply divergent lineages is an example of
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the physical and chemical microbial interactions that build
complexity in the mat.

Comparisons with other systems: chemical diversity drives
microbial diversity. Comparisons of diversity levels between
environments with contrasting characteristics can yield valu-
able insight and testable hypotheses regarding the rules that
govern diversity distributions. For instance, as shown in Fig. 7,
the very high level of phylum diversity that we found in this
study is a sharp contrast to the relatively low level encountered
in the human and mouse distal guts. Furthermore, whereas the
diversity in the distal gut is characterized by a few deep lin-
eages that diversified at phylogenetically “shallow” levels
(more closely related, e.g., at the species-strain level) (2), the
microbiota of the microbial mat is far more diverse at all
phylogenetic levels (Fig. 7). The difference in phylogenetic
structure between these two microbial systems is most likely
due to the far greater diversity of chemical niches in the mat,
which allow more opportunities for specialization within the
microbiota. The mammalian distal gut, like microbial mats, is
an energy-rich microbial ecosystem where polysaccharides
form scaffolds that provide attachment sites and nutrients for
bacteria (53). Fermentation dominates organic matter diagen-
esis in both systems, although sulfate reduction and methano-
genesis also occur in both systems (12, 43). In microbial mats
where sulfide production levels are high, however, a larger
proportion of electrons produced by diagenesis is likely shunted
to sulfate. The prominence of the sulfur cycle in mats allows the
exploitation by the microbiota of many intermediate chemical
moieties (61). Another niche available in mats but not in the distal
gut is phototrophy: the differential depth penetration of light
wavelengths creates a stratification of phototrophs adapted to the
use of particular wavelengths of light (6, 7, 27, 50, 56). Addition-
ally, the frequent washout inherent to the gut undoubtedly is a
powerful selection force against slow-growing microbes and the
accretion of community structures important in mats. Thus, the
relative complexity of the microbiota in microbial mats probably
correlates with broad niche space. Furthermore, biological diver-

sity itself can drive diversity through niche creation (16); there-
fore, chemical and biological diversity is expected to form positive
feedback loops.

Microbial mats have been called simple systems based on
microscopy and culture studies. However, our molecular anal-
ysis revealed that the hypersaline microbial mats of Guerrero
Negro harbor the most complex bacterial assemblage docu-
mented to date in any environment, with 42 phyla, including 15
novel candidate phyla. Microbial mats are hot spots of bacte-
rial diversity and constitute a rich reservoir of gene diversity for
future studies of bacterial evolution and genomic diversity.
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