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Thoughts and ideas are multidimensional and often concurrent, yet
they can be expressed surprisingly well sequentially by the trans-
lation into language. This reduction of dimensions occurs naturally
but requires memory and necessitates the existence of correla-
tions, e.g., in written text. However, correlations in word appear-
ance decay quickly, while previous observations of long-range
correlations using random walk approaches yield little insight on
memory or on semantic context. Instead, we study combinations of
words that a reader is exposed to within a ‘‘window of attention,’’
spanning about 100 words. We define a vector space of such word
combinations by looking at words that co-occur within the window
of attention, and analyze its structure. Singular value decomposi-
tion of the co-occurrence matrix identifies a basis whose vectors
correspond to specific topics, or ‘‘concepts’’ that are relevant to the
text. As the reader follows a text, the ‘‘vector of attention’’ traces
out a trajectory of directions in this ‘‘concept space.’’ We find that
memory of the direction is retained over long times, forming
power-law correlations. The appearance of power laws hints at the
existence of an underlying hierarchical network. Indeed, imposing
a hierarchy similar to that defined by volumes, chapters, para-
graphs, etc. succeeds in creating correlations in a surrogate random
text that are identical to those of the original text. We conclude
that hierarchical structures in text serve to create long-range
correlations, and use the reader’s memory in reenacting some of
the multidimensionality of the thoughts being expressed.

hierarchy � language � power laws � singular value decomposition

Language is a central link through which we interact with other
people. As a channel of communication it is limited by our

physical ability to speak only one word at a time. The question
arises therefore how the complex products of our brain are
transformed into the linear string of words that comprise speech
or text. Since our mental processes are far from being one-
dimensional, the use of memory is essential, as is the existence
of some type of correlations in time.

Such questions have a long and intense history. Bolzano (1)
already noted the need for specific organization in scientific
texts, while Ingarden devotes his book (2) to understanding the
process by which a text is understood and assimilated. Modern
methods (3, 4) combine the work of linguists with those of
computer scientists, physicists, physiologists, and researchers
from many other fields to cover a wide range of texts, from the
phoneme (5), going on to words (6–9, �) and grammar (10, 11),
and all of the way to global text analysis (12) and the evolution
of language (13, 14).

Recent interest has focused on applying methods of statistical
physics to identify possible trends and correlations in text
(15–18). In ref. 18, for example, the authors study the distribution
of words across different works by the same authors, combining
notions of information, entropy, and statistics to define a random
walk on the text. Long-ranged correlations have been found in
the writings of Shakespeare and Dickens, and a number of
hypotheses as to their origin have been proposed. These include

the overall existence of ideas and meaning (16, 17) or of some
semantic hierarchy (18).

Here we aim at a middle ground both in methods of analysis
and in ranges of text, based on geometric intuition developed in
refs. 19 and 20. The framework we consider is a vector space Wall,
which includes all of the words in the English (or any other)
language. A base direction in this space is associated with each
distinct word of the language. Given a text, the words in it define
vectors that span a subspace Wtext of Wall. If we consider the part
of the text that is being read, there will be a ‘‘window of
attention’’ that is currently at the focus of the reader. We can
associate with this window a vector in Wtext, defined as the
normalized sum of the basis vectors of the words in the window,
counted with multiplicity. Further insight on this vector and on
Wtext in general is obtained by measuring co-occurrence of words
within the window of attention. We use a variant of latent
semantic analysis [using singular value decomposition (SVD)]
(21–23) to identify cohesive groups of words in Wtext, and it turns
out to be useful to think of these groups as describing ‘‘concepts.’’
We restrict our attention to the most important of these groups,
whose corresponding vectors define specific word combinations
in the text that form an (orthogonal) basis of a subspace W of
Wtext. Once we have constructed this basis of concepts, which
depends on the text, we can view reading through the text as
following a dynamic trajectory in W that sweeps through the
different directions that represent the various topics and con-
cepts as they develop in the text. We find long-ranged, power-law
correlations in the time dependence of this ‘‘attention vector.’’
These would be barely discernible if we remain in the complete
space Wtext. Their origin is uncovered by considering the hier-
archical structure (24) of the text. Hierarchy and structure bring
us back and connect to the classic work of Bolzano and Ingarden,
regarding the ways to make texts intelligible.

The Concept Space
We begin with the vector space Wall in which each word of the
English language represents a base vector, but immediately
restrict the discussion to the subspace Wtext of the words in a
specific text. We define on the set of words in the text {w} an
arbitrary order, w1, w2, . . . , for example using their rank, which
is the number of times mi that word wi appears in the text under
consideration. We associate with w1 the vector e1 � (1, 0, 0, . . .),
with w2 the vector e2 � (0, 1, 0, . . .), and in general the word wi
is represented by ei, the vector which has a ‘‘1’’ at position i and
all others ‘‘0’’. Arbitrary directions in this vector space are
therefore combinations of words. Among these combinations we
are interested in those that represent certain topics, or concepts
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that are discussed in the text. We look for these word groups
within a window of size a in the text, namely the words that have
just been read. We suggestively term a as the ‘‘window of
attention’’ and typically take it to be of size a � 200. The reader
is aware of the words that appear within the window of attention,
and these comprise at each point of the text a momentary ‘‘vector
of attention.’’

More precisely, assume we have fixed a and that there are A �
a words in the window that are not in the list of ‘‘stop words’’
(discussed below), and whose abundance passes a threshold for
significance (also defined below). Given a specific window, we
define its vector of attention V� as the normalized sum over the
vectors of those A words, with weights according to their number
of appearance mj(a) in the specific window. The number of
appearances of word wj in the specific window is less or equal to its
abundance in the whole text, mj(a) � mj. Words wj that do not occur
in the window have weight mj(a) � 0. Thus, we can write

V� � ��
j

mj
2�a���

1
2 �

j

mj�a�ej.

We would like to project the vector V� onto a smaller base related
with the different concepts or themes that appear in the text.
This projection onto a vector space with reduced dimensions will
prove particularly useful when we measure long-ranged corre-
lations. The starting point is the construction of a symmetric
connectivity matrix M based on co-occurrence of words. This
matrix has rows and columns indexed by words, and the entry Mij
counts how often word wi occurs within a distance a�2 on either
side of word wj.

The connectivity matrix M will be normalized to take into
account the abundance of words. We let L denote the number
of words in the original text (before removal of stop words and
threshold on significance). If the mi occurrences of wi were
randomly distributed and not closer to each other than a (a
reasonable assumption if a �� L), then the probability that any
of the occurrences mj of word wj will randomly fall within a
distance a�2 of any occurrence of wi is given by

Rij �
amimj

L
,

so that R is the connectivity matrix of the corresponding
‘‘random book,’’ with a the context window defined earlier. The
normalized connectivity matrix is then

Nij � R
ij

�
1
2�Mij � Rij�. [1]

This normalization quantifies the extent to which the analyzed
text deviates from a random book (with the same words)
measured in units of its standard deviations. We continue the
analysis by using N.

To improve the statistical significance, as well as to cut the
matrix down to a manageable size, we only consider words that
occur enough times in the book. We define a threshold value
mthr, which the number of occurrences mi must exceed for word
wi to be included. mthr is set by the random normalization Rij
and must therefore be proportional to �L�a. We found
empirically that mthr � 0.4 �L�a gave consistently good
statistical significance.

Discarding words with lower mi reduces the effect of single
co-occurrences between rare words, where Eq. 1 would lead to
unrealistically high Nij (�2). In the texts we considered, the
values of the cut-off range from mthr � 4 to 23 (see Table 1).
Words that cross this threshold are ‘‘significant’’ and are indexed
from i � 1 to dthr.

Once we have reduced the size of the matrix N, we change
the basis by performing a singular value decomposition. We
can then project onto a smaller subspace by keeping only those
d basis vectors with highest singular values. We will use the
terminology of rectangular matrices, even in the case of square
(symmetric) ones, as we are going to use later matrices with
unequal numbers of rows and columns. We therefore use the
terms singular vector rather than eigenvector and singular
value rather than eigenvalue.

The idea behind this choice of principal directions is that the
most important vectors in this decomposition (those with
highest singular value) describe concepts. A connectivity ma-
trix similar to the one we use has been introduced before (9,
25), based on adjacency of words rather than our looser
requirement that words appear together within a wider win-
dow. This resulted in the ability to cluster words according to
context and identify ambiguity in words.� What we derive here
may be viewed as a large-scale version of the assignation of
meaning by co-occurrence, in comparison with the local result
obtained previously.� The vector space approach has already
been used in ref. 22 for disambiguation of words.

Given d vectors from the SVD basis, every word can be
projected onto a unique superposition of those basis vectors.
Thus,

ei3 �
j�1

d

Sijv� j,

where ei is the vector of all zeros except at position i (representing
the word wi) while the v�j are the first d vectors of the SVD of N.

Texts
We used 12 books (in their English version) for our analysis.
Nine of them were novels: War and Peace by Tolstoi (WP), Don
Quixote by Cervantes (QJ), The Iliad by Homer (IL), Moby-Dick:
or, The Whale (MD) by Melville, David Crockett by Abbott (DC),
The Adventures of Tom Sawyer by Twain (TS), Naked Lunch by
Burroughs (NK), Hamlet by Shakespeare (HM), and The Meta-
morphosis by Kafka (MT). They span a variety of periods and
styles and also have very different lengths (see Table 1).

In addition to the nine novels, we analyzed the scientific
didactic book Relativity: The Special and the General Theory by
Einstein (EI), and the philosophical treatises Critique of Pure
Reason by Kant (KT) and The Republic by Plato (RP).

Table 1. Book parameters and results

Book Length mthr dthr P dconv Exponent

MT 22,375 4 377 17.6 25 0.45 (0.05)
HM 32,564 5 446 16.4 30 0.95 (0.07)
NK 62,190 8 762 20.6 60 0.80 (0.05)
TS 73,291 8 669 17.5 40 0.47 (0.04)
DC 77,728 8 816 20.5 80 0.45 (0.08)
IL 152,400 12 830 22.7 70 0.38 (0.04)
MD 213,682 14 1,177 20.2 70 0.44 (0.05)
QJ 402,870 20 1,293 19.6 75 0.36 (0.03)
WP 529,547 23 1,576 24.3 200 0.45 (0.05)
EI 30,715 5 474 26.4 50 0.85 (0.10)
RP 118,661 11 628 15.6 70 0.57 (0.05)
KT 197,802 14 704 27.9 50 0.30 (0.03)

mthr is the threshold for the number of occurrences and dthr is the number
of words kept after thresholding. P is the percentage of the words in the book
that pass the threshold, P � �i�1

dthr mi�L. dconv is the dimension at which a power
law is being fit. The absolute values of the negative exponents of the fit are
given in the last column, together with their error in parentheses.
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Each of the books was processed by eliminating punctuation
and extracting the words. Each word was ‘‘stemmed’’ by querying
WORDNET 2.0 (26). The leading word for this query was retained,
keeping the information on whether it was originally a noun, a
verb, or an adjective. We have checked the effects of disregard-
ing the information about the class of words and have not
detected any significant changes.

All of the stop words, i.e., words that carry no significant
meaning, were assigned a value of zero. The list of these words
consists of determiners, pronouns, and the like. This standard list
was supplemented with a list of broadly used words that are
abundant in any text. In practice we rejected those words that
occur significantly in an least 11 of the 12 texts we studied. Books
were thus transformed into a list of stemmed words with which
the connectivity matrix was defined, and to which the SVD
process was applied.

Examples of concept vectors from the different books are
illuminating (see Table 2). The first 10 words in the principal
component with highest singular value in Moby-Dick immedi-
ately carry us into the frame of the story and introduce many of
its protagonists. The next three principal components are some-
what similar, with the addition of familiar words such as white,
shark, captain, and ship. By the fifth largest principal component
a change of scene occurs as the story takes a detour indoors, and
this is evidenced by the positive entries in the second column of
Table 2.

Similarly, the first 10 words of the principal component with
highest singular value of Einstein’s book launch us immediately
into the subject matter of special relativity, whereas its second
component brings in the applications to astrophysics. It is
perhaps amusing to recall the tales of Tom Sawyer by viewing the
principal component with highest singular value. These deal with
Tom’s various escapades, for example the instructions given in
chapter 6 on how to cure warts by dunking the hand in a stump
with spunk water at midnight, or the bible competition that Tom
wins by procuring tickets through various trades and bargains.

The dominance of nouns in Table 2 is striking, because our
analysis did not single out nouns from verbs and other classes of
words. This reinforces the notion that nouns are generally better
suited for ‘‘indexing’’ a text than other word classes. Adjectives
and adverbs are typically very broad in their use and only in very
specific cases (such as the importance of the ticket color in the
history of Tom Sawyer) appear related with a single ‘‘theme.’’
Verbs generally have multiple meanings (according to WORDNET
the average polysemy of verbs is 2.3 compared with 1.2 for
nouns). As a result, nouns provide the strongest elements in the
co-occurrence matrix and are more directly related with the
different ‘‘concepts.’’ The groups of words we identify as topics

may be reminiscent of sets of synonyms defined in WORDNET
(synsets), but in fact they are more in the spirit of semantic fields.

We can conclude that the ‘‘concepts’’ we defined by using
singular vectors do indeed capture much of the content of the
text.

Dynamic Analysis
Having found a representative basis for each of the texts, our
main interest is in the dynamics of reading through the text. What
is new here in comparison with earlier statistical analysis (18) or
linguistic research (27) is that the basic ingredient is not the byte
(as in the statistical studies) or the word, but rather a contextual
collection of words (our concept vector). In this way, our study
links the word connectivity matrix to semantic meaning.

Basically, we again slide the ‘‘window of attention’’ of fixed
size a � 200 along the text and observe how the corresponding
vector V� moves in the vector space spanned by the SVD. If this
vector space were irrelevant to the text, then the trajectory
defined in this space would probably be completely stochastic
and would perform a random walk. If, on the contrary, the
evolution of the text is reflected in this vector space, then the
trajectory should trace out the concepts alluded to earlier in a
systematic way, and some evidence of this will be observed.

Trajectories in this vector space can be connected to the
process of reading of the text by replacing the notion of distance
along the text with the time it takes to read it. Word distance is
measured on the original text, with the stop and nonsignificant
words included, and then replaced with the concept of time. We
define the discretized time as t � l � �t, with l the distance into
the text and �t the average time it takes a hypothetical reader to
read a word.

At each time t we define in this way a vector of attention, V� (t)
corresponding to the window [t��t � a�2, t��t 	 a�2]. We project
the vector V� (t) onto the first d vectors (ordered by singular value)
of the SVD basis, so that V� (t) leads to

V� �t�3 �
j�1

d

Sj�t�v�j,

with the SVD basis {v�j} chosen as before. V� (t) is normalized after
this projection.

The moving unit vector V� (t) � Rd is a dynamical system, and
we proceed to study its autocorrelation function in time C(�) �

V� (t)�V� (t 	 �)�t, where 
��t is the time average. Fig. 1 shows the
correlation function of the concept vector in time for Tom Sawyer
given in a log–log scale. The different lines correspond to
different values of d. At short distances the correlation is on the
order of 0.5 (the maximal value attainable is 1) and remains
higher than the noise level over a large range, on the order of
�1,000 words. This range is much longer than what we found
when measuring correlations among sentences, without using the
concept vectors (data not shown).

The results one obtains depend on the dimension d taken for
the projection. For low d�dthr (d 
 dthr�100) the correlation
function does not display a particular common behavior for all
of the books. However, as d�dthr approaches values of 
0.1 the
correlation function converges to a straight line in the log–log
plot, indicating a power law. This convergence to a power-law
behavior and the dimension necessary to produce it depend on
the book. We did not find a clear correlation of the genre of the
book with the value of its exponent.

The range over which the power-law behavior is evident
depends both on the exponent and the natural noise in the
system. The noise can be estimated by considering a randomized
text. To do this we permute the words in the text, keeping the
same probability distribution of words but changing their order
(dashed line in Fig. 1). The average value of this correlation

Table 2. Examples of the highest singular components for
three books

MD(1) MD(5) EI(1) EI(2) TS(1) TS(2)

whale bed surface planet spunk ticket
ahab room euclidean sun wart bible
starbuck queequeg rod ellipse nigger verse
sperm dat continuum mercury huck blue
boat aye geometry orbital tell pupil
cry door universe orbit stump yellow
aye moby curve star johnny ten
stubb dick numbers angle reckon spunk
sir landlord slab arc bet thousand
leviathan ahab plane newton water red

Given are component one and five of Moby-Dick (MD), one and two of
Einstein (EI) and of Tom Sawyer (TS). The coefficients of the words in the
singular component may be positive (plain text) or negative (italic), and their
absolute values range from 0.1 to 0.37.
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function is determined by the underlying distribution of words in
the text.

The results presented in Table 1 (see Fig. 2) are given for the
lowest value dconv of d at which the convergence to a power-law
behavior is clearly discerned.

If d�dthr is further increased to values close to unity, then the
correlation function levels out and the slope is reduced by a
factor of between 2 and 5. More importantly, the difference
between the actual value of the autocorrelation functions for the
real and random book at short distances (�t 
 300 in word
distance) is reduced by a factor of 5–10 when compared with
d�dthr 
 0.1. The SVD processing and the truncation to the main
ideas is thus fundamental to uncover the high long-range cor-
relations, which are less evident in the high dimensions of the full
vector space spanned by all significant words.

The long-range correlations uncovered in this fashion are in
line with previous measurements obtained by using the random
walk approach of refs. 15, 17, and 18. However, the range over
which we find correlations is much larger, and the quality of the
power-law fit is accordingly significantly better.

Controls
The methods we have described above require a certain number
of parameters, such as the threshold rank value mthr of the
matrix, or the size of the windows that are being moved along the
text. We describe here some tests that were performed to check
the robustness of the method when these parameters are
changed, summarizing the most relevant findings.

1. The threshold mthr must be chosen carefully. Choosing a lower
value mLthr � mthr increases the number of accepted words to
dLthr. To keep the computation manageable while retaining
the comparison to the case with mthr, we performed the SVD
on an asymmetric matrix with dLthr rows and dthr columns.
This also serves to omit additional entries in the matrix N that
are large because of words wj with few occurrences mj. In
effect we use the same number of basis vectors to describe
more words. We furthermore used the same value of dconv to
measure the value of the power law. The results for this
control are shown in Table 3 and should be compared with
those of Table 1. In general, we find that the correlations
remain but decay faster, as indicated by the higher values for
the exponents.

2. A change in the size of the window of attention (the variable
a) does not affect the results significantly as long as it is kept
above 
100 words. Below a � 100 the number of words
becomes too small to create true correlations, and the cor-
relation function measures only the noise created by the
statistical distribution of the words in the text. Windows
longer than a � 200 words preserve the correlation and the
power law but lose information on the shorter distances.

3. We checked, to some extent, the language dependence of the
method, by comparing Don Quixote in Spanish and English.
Although languages can have quite different local syntactic
rules, the long-term correlations practically do not depend on
the language. This is perhaps related to the importance of
nouns in creating the correlation function, and these are
translated more or less one-to-one from one language to
another.

Fig. 1. Log–log plot of the autocorrelation function for The Adventures of
Tom Sawyer using different numbers of singular components for building the
dynamics. For comparison, the autocorrelation of a randomized version of the
book is also shown.

Fig. 2. Autocorrelation functions and fits for seven of the books listed. The
autocorrelation functions are truncated at the level where the noise sets in.

Table 3. Book parameters and results for rectangular
connectivity matrices

Book mLthr mthr dLthr dthr P Exponent

MT 1 4 1,894 377 27.2 0.70 (0.05)
HM 1 5 3,599 446 30.8 1.40 (0.20)
NK 2 8 3,869 762 36.9 1.10 (0.10)
TS 2 8 2,983 669 27.9 0.75 (0.08)
DC 2 8 3,315 816 31.6 0.65 (0.10)
IL 3 12 2,637 830 29.0 0.48 (0.05)
MD 4 14 4,271 1,177 30.1 0.53 (0.05)
QJ 5 20 3,865 1,293 25.7 0.46 (0.03)
WP 6 23 4,448 1,576 30.4 0.60 (0.05)
EI 1 5 1,851 474 33.6 1.00 (0.20)
RP 3 11 2,142 628 22.1 0.67 (0.07)
KT 4 14 1,655 704 31.3 0.37 (0.03)

The values of dconv are the same as in Table 1. The threshold value for the
rows mLthr is smaller than that of the columns mthr so accordingly the number
of rows dLthr is bigger than the number of columns dthr. P is as defined in Table
1. The dynamics change when more words are added, and thus the exponents
(absolute values are shown) are more negative, that is, the correlations are
weaker.
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Hierarchy and the Origin of Scaling
The existence of power laws is often traced to hierarchical
structures (24). We put forward the hypothesis that in our case
these structures are parts of the texts (such as ‘‘volumes,’’
‘‘parts,’’ ‘‘chapters’’ within parts, ‘‘sections’’ in chapters, ‘‘para-
graphs’’ in sections, and so on). This is a hierarchy of K levels,
each containing several parts. For example, a book may be in 3
volumes that each have about 10 chapters, each of which is
divided in 8 or so sections, etc. For simplicity, we assume that
each level contains the same number of parts H. Typical values
are K � 4 and H 
 7. The important point is that the text has
the structure of a tree.

Since the power-law correlations appear in all of the books we
considered, regardless and independent of their subject or
underlying ideas, the possibility arises that a computer-
generated book that implements this hierarchy could recreate
these correlations. We now proceed to show that the power law
we found earlier for the text is not changed if words are permuted
in the text, provided that one respects as much as possible the
structure of the book as a whole. On the other hand, it does
change if these structures are not preserved. As shown in Fig. 1,
if the randomized text includes only a permutation of the words,
and the structure is not kept, then the randomized text has no
long-ranged correlations.

We construct the hierarchical text by first preparing an empty
template into which we will insert the words from the original book.
The empty text is divided in H roughly equal parts, each subdivided
again in H parts. This subdivision is repeated K times. We end up
with the book divided in K levels and a total of HK subdivisions at
the smallest scale. K and H are chosen so that the lowest level
(corresponding to ‘‘paragraph’’) will have 
100 words.

Into this empty hierarchical template we sequentially place
each word, according to the following process. Assume the word
wi appears mi times in the original text. We would like to find for
it mi positions at the lowest levels in the template. To define the
probability at the lowest level, we begin at the highest level and
progress downwards from there step by step.

Fix a parameter E � 1 (for concreteness take E � 5). We
define recursively for each subdivision the probabilities for wi
to reside in it, starting at the top level, where each part has the
initial weight J. One of the subdivisions at this level is randomly
chosen, and the probability for wi to reside there is enlarged by
a factor of E, to a weight J�E. The next level inherits the
probabilities introduced before, either J or J�E. Now, repeat the
process at the second level by the choice of a random subdi-
vision in each of the H subgroups. Depending on which
subdivision has been chosen at each level, slots will have weight
JE2, JE, or J.

Going on in this fashion we fill all of the levels, so that the
values of the probability at the lowest level of the hierarchy span
the range of weights JEk, with k � {0, . . . , K}. We then normalize
the probabilities to 1 by choosing J so that the sum of weights is
1. We may now distribute the mi copies of word wi randomly
according the weights in the finest subdivision.

This procedure is repeated for all words and produces a
hierarchical randomized text that preserves the word distribution
and resembles the structural hierarchy of the book.

As seen in Fig. 3, performing this hierarchical randomiza-
tion process on the book preserves the power-law behavior of
correlations found in the original text. Since the simple
randomization (no hierarchy) destroys the power law (see Figs.
1 and 3) we can conclude that the power laws of the original
text do indeed originate in their hierarchical structure. We
have verified that the results of this hierarchical randomization
are reasonably robust to variations in the algorithm for build-
ing the hierarchical template and for filling it with the correct
number of copies of each word.

Conclusions
Many questions remain to be addressed; for example, appli-
cation of the dynamic approach to the transmission of complex
ideas in spoken text, in which repetitions are known to be of
importance, and comparison of the results to those of written
text. It may also be of interest to characterize different types
of text or of authors according to the correlation exponent. It
remains to be seen whether the hierarchical organization we
have identified in texts is related to a hierarchical organization
in our thought processes.

Our approach enables the quantification and rigorous examina-
tion of issues that have been introduced long ago and discussed
heuristically in the great classics of the field. Bolzano, in his
Wissenschaftslehre (1), written in 1837, studies the theory of scien-
tific writing and points out in great detail how such writing should
proceed. In particular, in Vol III, he points out that, starting from
‘‘symbols’’ (he probably thinks of mathematics) one works one’s way
to a fully structured text, containing paragraphs, sections, chapters,
and so on. He clearly instructs the reader as to how to maintain the
intelligibility of the text by the careful use of structure. Ingarden, in
his Vom Erkennen des Literarischen Kunstwerkes (2) talks, from his
philosopher’s point of view, about the activity of the brain that
compresses parts of texts so that they may be more easily recalled.
He also alludes to the importance of structural units in creating
intelligible text. The entities he has in mind are ‘‘layers of under-
standing’’ (chapter 16, page 111: ‘‘. . . not every layer of an already
read part of a text is kept in the same way in memory, . . . The reader
keeps bigger and smaller text-connections—Satzzusammen-
hänge—in his living memory . . .’’).

Our study allows the measurement of the degree to which the
insights of authors like these can be understood. Therefore, it adds
a piece to the puzzle of understanding the nature of language.
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Fig. 3. Comparison of autocorrelation functions for the original book of
Kant (dots), the randomly reorganized version (green), and the hierarchically
reorganized version (lines) using E � 5.
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3. Charniak, E. (1994) Statistical Language Learning (MIT Press, Cambridge,
MA).

4. Manning, C. D. & Schütze, H. (1999) Foundations of Statistical Natural
Language Processing (MIT Press, Cambridge, MA).

5. Clark, J. & Yallop, C. (1995) An Introduction to Phonetics and Phonology
(Blackwell, Oxford).

6. Widdows, D. (2004) Geometry and Meaning (CSLI Publications, Stanford, CA).
7. Yarowsky, D. (1995) in Proceedings of the 33rd Annual Meeting of the Association

for Computational Linguistics (ACL Press, Morristown, NJ), pp. 189–196.
8. Pereira, F., Tishby, N. & Lee, L. (1993) in 30th Annual Meeting of the Association

for Computational Linguistics (ACL Press, Morristown, NJ), pp. 183–190.
9. Dorow, B. & Widdows, D. (2003) in Conference Companion of the 10th

Conference of the European Chapter of the Association for Computational
Linguistics (EACL) (ACL Press, Morristown, NJ), pp. 79–82.

10. Charniak, E. (1997) in Proceedings of the 14th National Conference on Artificial
Intelligence (AAAI Press, Menlo Park, CA/MIT Press, Cambridge, MA), pp.
598–603.

11. Collins, M. J. (2003) Comput. Linguistics 29, 589–637.
12. Beeferman, D., Berger, A. & Lafferty, J. D. (1999) Mach. Learn. 34, 177–210.
13. Nowak, M. A., Komarova, N. L. & Niyogi, P. (2002) Nature 417, 611–617.

14. Dorogovtsev, S. N. & Mendes, J. F. F. (2001) Proc. R. Soc. London Ser. B 268,
2603–2606.

15. Peng, C.-K., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Sciortino, F.,
Simons, M. & Stanley, H. E. (1992) Nature 356, 168–170.

16. Schenkel, A., Zhang, J. & Zhang, Y.-C. (1993) Fractals 1, 47–57.
17. Amit, M., Shmerler, Y., Eisenberg, E., Abraham, M. & Shnerb, N. (1994)

Fractals 2, 7–15.
18. Montemurro, M. A. & Zanette, D. H. (2002) Adv. Complex Syst. 5, 7–17.
19. Eckmann, J.-P. & Moses, E. (2002) Proc. Natl. Acad. Sci. USA 99, 5825–5829.
20. Eckmann, J.-P., Moses, E. & Sergi, D. (2004) Proc. Natl. Acad. Sci. USA 101,

14333–14337.
21. Deerwester, S., Dumais, S., Furnas, G., Landauer, T. & Harshman, R. (1990)

J. Am. Soc. Inf. Sci. 41, 391–407.
22. Schütze, H. (1998) Comput. Linguistics 24, 97–124.
23. Ferrer i Cancho, R. & Sole, R. V. (2001) Proc. R. Soc. London Ser. B 268,

2261–2265.
24. Ravasz, E. & Barabási, A.-L. (2003) Phys. Rev. E 67, 026112.
25. Pantel, P. & Lin, D. (2002) in Proceedings of the 25th International ACM SIGIR

Conference on Research and Development in Information Retrieval (ACM Press,
New York), pp. 199–206.

26. Fellbaum, C., ed. (1998) WORDNET: An Electronic Lexical Database (MIT
Press, Cambridge, MA).

27. Brunet, E. (1974) Le Traitement des Faits Linguistiques et Stylistiques sur
Ordinateur (Klincksieck, Paris), pp. 105–137.

Alvarez-Lacalle et al. PNAS � May 23, 2006 � vol. 103 � no. 21 � 7961

A
PP

LI
ED

M
A

TH
EM

A
TI

CS


