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The real estate of cardiac signaling:
Location, location, location
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etermining how cells distin-
guish between adaptive and
maladaptive signals when they
appear to share the same mo-
lecular pathways has been a vexing bio-
logical problem. The ability to identify
distinctive features of a pathophysiologi-
cal response compared with a physio-
logical response would allow for the
rational design of approaches to elimi-
nate or diminish undesirable conse-
quences of pathophysiological responses
while preserving the beneficial effects of
physiological signals. These issues are
especially pertinent in the heart and in
understanding the development of heart
failure, for which >500,000 new cases
are diagnosed in the United States each
year. Major factors contributing to wors-
ening heart failure include a number of
compensatory neurohormonal signals
intended to counteract decreased car-
diac output, such as hyperadrenergic
stimulation (1). In a recent issue of
PNAS, Balijepalli et al. (2) provide new
insight into how adrenergic signaling
pathways are organized in the heart.
Adrenergic signaling in the myocar-
dium contributes to the control of heart
rate (chronotropy), strength of contrac-
tion (inotropy), and rate of relaxation
(lusitropy) by changing the levels of in-
tracellular Ca?* or by altering the sensi-
tivity of critical regulatory proteins to
Ca?". Signaling is mediated predomi-
nantly by two distinct B-adrenergic re-
ceptors, B; and B, which differ in their
abundance, distribution, and downstream
signal transducers (3). Approximately
75% of the cardiac p-adrenergic re-
ceptors are B, which appear to be
distributed globally throughout the sar-
colemma. B; receptors couple to the Gy
heterotrimeric G protein. The less-
abundant 3, receptors reside predomi-
nantly in caveolae (4), specialized
compartments of the plasma membrane
organized by caveolins. Caveolae are
flask-shaped membrane invaginations
rich in cholesterol and glycosphingolip-
ids that house and coordinate multiple
signaling components, many of which
appear to be dedicated to Ca" signaling
(5). Besides their distinct homes, 3, re-
ceptors also differ from B, in that they
couple to both Gy and G;i. Nevertheless,
stimulation of either B, or 3, activates
adenylyl cyclase to increase intracellular
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Caveolar localization of the B;-adrenergic receptor/L-type Ca2* channel signaling complex. (A)

The B, receptor and its accompanying G; and G, proteins are depicted within a caveola, organized by Cav-3.
Localized L-type Ca2* channel potentiation in response to 8, agonists may contribute to Ca2* signaling
cascades that are distinct from the larger Ca2* pool involved in excitation-contraction coupling. The B;
receptors, coupled solely to G, are depicted on the plasma membrane (PM) and outside of caveolae. Most
L-type Ca2* channels are closely opposed to RyR in the SR. Influx of Ca2* through L-type Ca2* channels
triggers opening of RyRs and release of Ca2* from the SR to activate the contractile machinery. (B) In heart
failure, signaling through B, receptors blunts g potentiation of L-type Ca2* channels through a G;-
dependent mechanism (19). This blunted response may result from dysregulation of caveolar organiza-
tion, thus disturbing the compartmentation of the 81 and B; receptors.

cAMP. In turn, cAMP activates protein
kinase A, resulting in the phosphoryla-
tion of key elements of the contractile
apparatus and of proteins that control
internal Ca>" levels. Prominent among
the PKA targets are the L-type voltage-
gated Ca?* channels (Cay1.2), which
open upon membrane depolarization,
allowing Ca?" to enter the cell. The “re-
ceptors” for this Ca?* signal are the ry-
anodine receptors (RyR2), Ca" release
channels on the sarcoplasmic reticulum
(SR) that flood the cytoplasm with addi-
tional Ca’* that then initiates contraction
(Fig. 1). PKA phosphorylation of L-type
Ca?* channels potentiates inward Ca?*
current and thereby augments contraction.
Electrophysiological studies of L-type
Ca?* current after adrenergic stimula-
tion revealed important consequences of
the localization and G protein-coupling
differences between B and B, receptor
subtypes. By isolating L-type Ca?>" chan-
nels within a patch pipette, Chen-Izu et
al. (6) determined that remote stimula-
tion (outside of the pipette) of B; in-
creased Ca’* channel current within
the pipette, suggesting that 3, signaling
included a diffusive second messenger.
In contrast, B,-specific agonists were
effective only when included within the
pipette. This membrane-delimited B
signaling depended on G;, because inac-
tivation of G; with pertussis toxin made
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B> signaling diffusive. Several other
studies have provided additional evi-
dence for important functional con-
sequences of differential signaling
through the B-adrenergic receptors. For
example, sustained signaling through

B receptors led to myocyte apoptosis;
this B;-mediated proapoptotic signal
depended on Ca?* influx through L-
type Ca?* channels and activation of
Ca?* calmodulin-dependent kinase II
(CaMKII) (7). On the other hand, B,
activation was protective against apopto-
tic signals (8-10). Like the membrane-
delimited activation of L-type Ca**
currents, coupling of B, to G; was also
necessary for prosurvival signaling; G;
inactivation with pertussis toxin blocked
protection (8).

Balijepalli et al. (2) provide a new
wrinkle to this compartmentation story.
They demonstrate for the first time that
L-type Ca?* channels can be found
within caveolae in cardiac myocytes and
that B, activation of L-type Ca?>* chan-
nels requires intact caveolae. Electron
microscopy showed a;c, the L-type Ca?*
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channel pore-forming subunit, within
caveolae in neonatal cardiac myocytes.
Sucrose density gradients revealed the
cosedimentation of a;c with caveolin-3
(Cav-3), the predominant caveolin iso-
form in the heart. As previously found,
the B receptor was enriched in this
fraction, and all of the important com-
ponents of the B;-adrenergic signaling
complex (G, Gi, adenylyl cyclase, and
PKA) were also present. Interestingly,
disruption of caveolae with 10 mM
methyl B-cyclodextrin (MBCD) or inhibi-
tion of Cav-3 by small interfering RNA
prevented B, stimulation of L-type Ca?*
channel current, suggesting that caveolar
localization was necessary. Previously, it
was known that Kv1.5 potassium channels
are preferentially localized in caveolae
(11), and a fraction of cardiac Na* chan-
nels cosediment with Cav-3 (12), although
the functional consequences of the loca-
tion of either ion channel within caveolae
have not yet been determined.

The demonstration that B;-mediated
potentiation of L-type Ca?* currents
was caveolae-dependent may have
important consequences for the under-
standing and treatment of cardiac hyper-
trophy and heart failure. Approximately
90% of L-type Ca2* channels in adult
cardiac myocytes are found within T
tubules (13), a specialized architecture
of tubular invaginations of the sarco-
lemma, where they face RyRs in the
juxtaposed SR. This organization en-
sures instantaneous release of SR Ca?*
stores throughout the cytoplasm after
membrane depolarization. Although a
small population of RyRs have been
found in regions of the SR that are not
associated with T tubules or the plasma-
lemma (14), definitive demonstration
and localization of “orphan” L-type
Ca?* channels have been more elusive.
The presence of L-type Ca?" channels
not necessarily associated with the SR,
as implied in this new study by Balije-
palli ez al. (2), raises the possibility
that Ca?" signaling through this sub-
population of channels may provide
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a specialized function different from exci-
tation—contraction coupling, such as con-
tributing to the signaling cascades that
initiate cardiac hypertrophy. Although
several lines of evidence have implicated
Ca’" signaling in the development of
hypertrophy, it has been difficult to un-
derstand how a myocyte can distinguish
between hypertrophy-inducing signals
and the much larger pool of internal
Ca?" that rapidly rises and falls over a
10-fold concentration range with each
heart beat (15). A recent report suggests
that the hypertrophic signal endothelin-1
increases nuclear Ca®* by an inositol
1,4,5-trisphosphate (IP3)-triggered re-
lease from IP3 receptors in the nuclear
membrane (16), the first convincing
demonstration of a separable Ca?* sig-
nal in myocytes. Balijepalli ez al. (2)
present another example supporting the
idea of cardiac Ca®*-signaling microdo-
mains, this one being in the cytoplasm
rather than the nucleus. The emerging
picture here is that focal Ca?>* changes,
whether modest or large, at the site of
Ca?" entry can signal downstream path-
ways, and that this signaling is restricted
because of fast termination and rapid
diffusion or extrusion, with little change
in overall Ca2* concentration. Such a
mechanism would allow for specific sig-
naling despite the normal “background”
Ca?" fluctuations that are a part of exci-
tation—contraction coupling. It is interest-
ing to speculate that protective adrenergic
signaling through B, receptors may be
related to caveolar localization because
CaMKII, necessary for the contrasting
Bi-mediated apoptotic signal, has not
been reported in caveolae.

The dependence on caveolar localiza-
tion for B,-mediated activation of L-type
Ca?*" channels and the role of both B,
and Ca?" signaling in cardiovascular
physiology also place a new focus on
caveolae and Cav-3 in particular. Could
dysregulation of caveolar organization
contribute to heart failure or cardiac
hypertrophy by affecting this signaling
complex? The development of heart fail-
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ure in Cav-37/~ mice (17) makes this an
intriguing possibility and suggests that
pharmacological modulation of caveolae
may be a fruitful avenue for drug devel-
opment. Further, in at least one report
(18), heart failure was accompanied by
Cav-3 down-regulation. If destabilization
or loss of caveolae contributed to heart
failure such that 3, signaling was no
longer segregated (Fig. 1), it might pro-
vide a cogent explanation for the obser-
vation that adrenergic activation of
L-type Ca?* currents in the failing heart
is blunted because of 3, stimulation of a
Gj-dependent pathway (19).

These observations also raise many new
questions. For example, how is a subpopu-
lation of L-type Ca?" channels targeted to
caveolae? Because a postsynaptic density
protein 95/discs large/Z0O-1 (PDZ)-
binding motif in the C terminus of S, is
important for receptor trafficking and
coupling to G; (20), it is interesting to
consider that a PDZ motif in the C termi-
nus of a;¢, previously shown to be impor-
tant for excitation—transcription coupling
in neurons (21), might provide the caveo-
lar localization signal to L-type Ca?*
channels. Also, certain key experiments in
the Balijepalli et al. (2) study were per-
formed in neonatal myocytes, which lack
the elegant T tubule architecture impor-
tant for excitation—contraction coupling in
adult myocytes. It will be essential to de-
termine whether caveolar localization of
L-type Ca* channels is critical for ;-
regulated L-type Ca?* currents in the
adult and whether this arrangement is
perturbed in heart failure. Regardless, this
study by Balijepalli et al. (2) opens new
possibilities for the modulation of patho-
physiological signaling of the B-adrenergic
system that may lead to novel therapies
for heart failure.
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