
Local molecular field theory for effective attractions
between like charged objects in systems with
strong Coulomb interactions
Yng-Gwei Chen†‡§ and John D. Weeks‡¶�

Departments of †Physics and ¶Chemistry and Biochemistry and ‡Institute for Physical Science and Technology, University of Maryland,
College Park, MD 20742

Edited by Benjamin Widom, Cornell University, Ithaca, NY, and approved March 27, 2006 (received for review January 11, 2006)

Strong, short-ranged positional correlations involving counterions
can induce a net attractive force between negatively charged
strands of DNA and lead to the formation of ion pairs in dilute ionic
solutions. However, the long range of the Coulomb interactions
impedes the development of a simple local picture. We address this
general problem by mapping the properties of a nonuniform
system with Coulomb interactions onto those of a simpler system
with short-ranged intermolecular interactions in an effective ex-
ternal field that accounts for the averaged effects of appropriately
chosen long-ranged and slowly varying components of the Cou-
lomb interactions. The remaining short-ranged components com-
bine with the other molecular core interactions and strongly affect
pair correlations in dense or strongly coupled systems. We show
that pair correlation functions in the effective short-ranged system
closely resemble those in the uniform primitive model of ionic
solutions and illustrate the formation of ion pairs and clusters at
low densities. The theory accurately describes detailed features of
the effective attraction between two equally charged walls at
strong coupling and intermediate separations of the walls. Ana-
lytical results for the minimal coupling strength needed to get any
attraction and for the separation at which the attractive force is a
maximum are presented.

effective short-ranged model � ion pairing � mean field theory �
Poission–Boltzmann

S trong Coulomb interactions in crowded, nonuniform envi-
ronments have important experimental consequences in a

wide variety of biophysical applications ranging from DNA
packaging in viruses to transport in ion channels (1–4). These
interactions present major challenges to theory and computer
simulations not only because of their characteristic long range
but also because they can be very strong at short distances. Here,
we present a local molecular field (LMF) theory (5) that
averages over particular long-ranged and slowly varying com-
ponents of the Coulomb interactions (6) while still maintaining
an accurate description of the short-ranged components. Our
model provides a general and physically suggestive theory for
strongly coupled Coulomb systems and reduces exactly to the
classical Poisson–Boltzmann (PB) approximation for dilute,
weakly coupled systems.

We consider a general starting point where a molecule of
species i, described by a rigid body frame with center at ri,
interacts with an external field, �fi(ri), that comes from fixed
charged solutes, or walls, or particular fixed molecules of a
mobile species, as illustrated below. The subscript f indicates the
source of the field, which we treat as a special fixed species f. The
interaction between a pair of molecules of species i and j is
assumed to have the general form wij(rij) � ws,ij(rij) � wq,ij(rij),
where rij � rj � ri. The ws,ij(rij) denote general (repulsive core
and other), short-ranged intermolecular interactions. There are
angular coordinates expressing orientations of the body frames
that we do not denote explicitly. The wq,ij(rij) arises from

Coulomb interactions between rigid charge distributions qi(r �
ri) in the body frame of each molecule, so that

wq,ij�rij� � � dr� dr�
qi�r � ri�qj�r� � rj�

� �r � r� � [1]

�
1

�2��3�dk q̂ i��k� q̂ j�k�e�ik�rij
4�

�k2, [2]

where the caret denotes a Fourier transform and we assume that
there is a uniform dielectric constant � everywhere.

To generate uniformly slowly varying components u1,ij of the
full wq,ij � wq0,ij � u1,ij that are well suited for LMF averaging,
we limit the magnitude of wave vectors making significant
contributions to the integration in Eq. 2. To that end, we
introduce a Gaussian function parameterized by an important
length scale � that provides a smooth cutoff in k-space and write

4�

k2 �
4�

k2 e�
1
4�k��2

�
4�

k2 �1 � e�
1
4�k��2

�. [3]

The first term on the right has all of the characteristic long-
ranged Coulomb divergences as k3 0 but decays very rapidly to
zero for k� � 2. The desired slowly varying components arise
when only this term is used in Eq. 2 with an appropriate choice
of �. For localized charge distributions q̂i(k), we expand in a
Taylor series about k � 0 and take the lowest order multipole
moment (7). This simplified expression defines the u1,ij we
consider and thus prescribes a �-dependent separation of the
full intermolecular potentials wij(rij) � ws,ij(rij) � wq,ij(rij) �
ws,ij(rij) � wq0,ij(rij) � u1,ij(rij) � u0,ij(rij) � u1,ij(rij) into short- and
long-ranged parts.

In r-space, Eq. 3 becomes 1�r � erf(r��)�r �erfc(r��)�r.
Here, erf and erfc are the usual error and complementary error
functions. The erf(r��)�r term is the electrostatic potential from
a normalized Gaussian charge distribution with width �. As
shown in Fig. 1, this electrostatic potential remains smooth and
slowly varying on the scale of � while decaying as 1�r at large r.
This use of a Gaussian charge distribution is related to the Ewald
sum method, which considers periodic images of ion configura-
tions with embedded screening and compensating Gaussian
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charge distributions. However, our focus is on the separation of
the potential itself and not the effects of periodic boundary
conditions, and our choice of � is usually much smaller than that
used in Ewald sum methods, which typically is proportional to
the width of the simulation cell (8).

The short-ranged components u0,ij(rij) define the intermolec-
ular interactions in the special short-ranged ‘‘mimic system.’’ The
mimic interactions are composed of the short-ranged parts of the
Coulomb interactions wq0,ij � wq,ij � u1,ij and the other short-
ranged core interactions ws,ij:

u0,ij�rij� � ws,ij�rij� � wq0,ij�rij� . [4]

As suggested by Fig. 1, � sets the range of wq0,ij and thus
determines an effective Coulomb core size (6). The external
potential from fixed charged solutes or walls �fi(ri) � �0,fi(ri) �
�1,fi(ri) can similarly be separated into short- and long-ranged
parts, as illustrated below.

It is straightforward to arrive at explicit results for u1,ij(r) and
�1,fi(ri). Here, we consider localized charge distributions with a
net charge q� i � �drqi(r) or a net dipole moment pi � �drrqi(r).
If both molecules carry a net charge, we find u1,ij(r) � q� iq� jerf(r�
�)��r. The associated Coulomb core component is wq0,ij �
q� iq� jerfc(r��)��r. Thus, the results of Fig. 1, scaled by q� iq� j��, give
examples of possible u1,ij and wq0,ij for ionic solution models (6).
For a monopole and a dipole, we find u1,ij(r) � q� i(pj�	)[erf(r�
�)��r], and for dipoles we find u1,ij(r) � �(pi�	)(pj�	)[erf(r��)�
�r]. The latter will lead to dipolar mimic systems with short-
ranged angular-dependent interactions.

Local Molecular Field Approximation
LMF theory introduces renormalized effective fields �R,fi(ri)
that induce nonuniform singlet densities in the mimic system
(denoted by the subscript R) that are supposed to equal those
induced by �fi(ri) in the full system of interest:

	R,fi�ri� � 	 fi�ri� . [5]

This equation defines a general mapping relating structure in the
mimic and full systems. Thermodynamic properties can be
determined by integration of these structural relations.

We represent the effective field �R,fi(ri) � �0,fi(ri) � �R1,fi(ri)
as the sum of the known short-ranged part �0,fi(ri) of the external
field in the full system and a renormalized ‘‘perturbation com-

ponent’’ �R1,fi(ri) that accounts for the averaged effects of the
slowly varying interactions, u1,ij. As discussed in detail in refs. 5
and 6, by considering the balance of forces in the full and mimic
systems when Eq. 5 holds and by making some physically
motivated approximations, we find that �R1,fi is determined up
to a constant by the local molecular field equations:

�R1,fi�ri� � ��
drj

�f , j� � 	R,fj�rj��u1, ji�rji� . [6]

Here, the prime on the integral indicates an implicit summation
over all species j and an integration over the angles of the body
frames. Long-ranged interactions from the fixed species f are
accounted for by the 
( f, j) term, which denotes products of

-functions describing the fixed location and orientation of f.

Note that the average over the slowly varying u1,ji(rji) in Eq. 6
is weighted by 	R,fj(rj), the singlet density for species j (in the
effective field of fixed species f but with no explicit reference to
species i). This neglect of pair correlations between molecules at
rj and ri characterizes a mean field approximation (2), which
would in most contexts represent a major source of error.
However, a general feature illustrated by Fig. 1 is that, as �
increases, u1,ji becomes progressively more slowly varying at
short distances. Thus, we can ensure that all of the u1,ji will slowly
vary over the length scales of relevant local pair correlations in
the system by choosing � larger than some state-dependent
minimum value �min. This choice permits a consistent and
controlled use of the mean field approximation in computing the
average, and we anticipate very accurate results from the LMF
theory for any � � �min if we properly describe the resulting
density in the mimic system (6).

At strong coupling, we argue that �min should be on the order
of a characteristic nearest-neighbor spacing a� . The strong,
short-ranged parts of the Coulomb interactions on the scale of
a� and below directly affect pair correlations between nearest-
neighbor molecules. These correlations will be consistently
described in the mimic system if we choose � � �min on the order
of a� so that there are essentially nearest-neighbor interactions
between the effective Coulomb cores, and the averaged effects
of the u1,ji from the furthest neighbors are slowly varying on this
scale. We illustrate below the utility of these ideas for simple
models of ionic solutions at strong coupling.

Size-Asymmetric Primitive Model
A model of great current interest is the size-asymmetric primitive
model (SAPM) of ionic solutions, a fluid of oppositely charged
hard spheres of different sizes in a uniform dielectric continuum.
The different hard sphere diameters crudely account for the
different core sizes of real cations and anions, and there is an
interesting and not well understood dependence of the critical
temperature and critical density in this model as the size or
charge ratio is varied (9). We consider in particular the uniform
equimolar system studied with Monte Carlo (MC) simulations by
Weis and Levesque (WL) (10), with symmetric unit charges e0 �
q� 1 � �q� 2 and a diameter ratio d1�d2 � 0.4. Thus, ws,ij(r) � � for
r � dij � (di � dj)�2 and is zero otherwise, and wq,ij(r) � q� iq� j��r.

WL characterize the states by two dimensionless parame-
ters: a reduced density 	* � (N1 � N2)d2

3�V and an effective
coupling strength * � lB�d2 (called q*2 in the notation of
WL). Here, lB � e0

2�� is the Bjerrum length, the distance at
which the interaction energy between two unit charges e0
equals kBT and  � (kBT)�1. The simulations of WL indicate
that the critical point occurs at 	* � 0.195 and * � 15.15. We
report results here for two strong coupling states with very
different properties: a high-density subcritical liquid state with
	* � 1.4 and * � 16 and a low-density supercritical vapor
state with 	* � 0.04 and * � 9.

Fig. 1. Separation of the 1�r potential into a slowly varying piece erf(r��)�r
and the short-ranged remainder erfc(r��)�r. Two relevant � values are shown;
a bigger � generates a more slowly varying long-ranged component.
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The competition between the Coulomb interactions and the
packing arrangements of the embedded hard cores in the SAPM
produces elaborate local structures in these strong coupling
states as exhibited in the pair correlation functions gij(r), pro-
portional to the density response to an external field �ij(r) �
wij(r) arising from a fixed ion of type i at the origin. Thus, in LMF
theory, even uniform fluid correlation functions are described
from a nonuniform point of view. These characteristic features
can be very accurately reproduced in the mimic system by using
the strong coupling approximation (SCA). The SCA replaces
�R,ij(r) by the known strong short-ranged component �0,ij(r) �
u0,ij(r) of the field from fixed ion i. This field corresponds to
fixing a mimic particle at the origin, or equivalently, approxi-
mating the gij(r) in the uniform ionic system by the g0,ij(r) in the
uniform mimic system (6).

In Fig. 2, we compare correlation functions determined by WL
for the high-density state, with 	* � 1.4 and * � 16, to MC
simulations we carried out in the uniform mimic system by using
the SCA, with a ‘‘molecular-sized’’ choice of � � 1.2d2. Simu-
lations of the long-ranged system required careful and costly
treatment of periodic boundary conditions using the Ewald sum
method, which was not needed for the short-ranged mimic
system. Despite the very different range and magnitude of the
mimic system interactions, all of the pair correlation functions
are strikingly similar to those of the full SAPM. These functions
are very different from the profiles of the associated hard sphere
mixture with the charges set equal to zero, indicating the crucial
importance of including the strong short-ranged parts of the
Coulomb interactions wq0,ij in defining the mimic interactions in
Eq. 4. Equally good results are found for larger values of �, as
illustrated in Fig. 2, but the good agreement fails for much
smaller �, indicating that �min is �1.2d2 for this state.

Qualitatively different structures are seen in the low-density
vapor state, with 	* � 0.04 and * � 9, as illustrated in Fig. 3.
The simulations of WL show that oppositely charged ions pair
together with a typical spacing close to the minimum permitted
by the hard core diameters, along with some transient formation
of longer chain-like structures. The correlation functions be-

tween like-charged pairs exhibit pronounced peaks of essentially
the same magnitude at a separation of r � 1.4d2 � d1 � d2. These
results indicate the existence of small clusters of ion pairs, with
the same peak position and amplitude for both ‘‘���’’ or
‘‘���’’ configurations at the minimum distance permitted by a
linear arrangement of the embedded hard cores. These peaks
also illustrate how counterions can induce an effective attraction
between like charged objects, as discussed in detail in Charged
Walls with Point Counterions. Very good agreement between full
and mimic system correlation functions is achieved with a choice
of �min � 3.0d2, consistent with the larger average spacing
between dilute ion pairs.

The clustering of the ions has probably presented the most
severe challenges to theories of ionic systems. It is particularly
crucial for the study of critical phenomena and vapor–liquid
coexistence (9). The PB approximation and the frequently used
hypernetted chain integral equation fail to predict ion clustering;
indeed, the hypernetted chain equation has no solution in most
of the ion pairing regime (10). In contrast, the mimic system as
described by the simple SCA already builds in the most impor-
tant local features of ion aggregation. This very good agreement
strongly suggests that the LMF theory can accurately represent
the Coulomb cores that contribute to local correlation functions
in more realistic models of ionic systems. Any remaining errors
can be attributed mainly to deficiencies in the description of the
other short-ranged core interactions, thus permitting the effi-
cient development of more accurate models.

Charged Walls with Point Counterions
The suspension and self-assembly of highly charged polyelec-
trolytes (macroions) in the presence of mobile counterions
(microions) is of great interest in biological systems (1). These
systems usually involve charge and size asymmetries much
greater than that of the SAPM and are often studied by fixing
a certain macroion configuration and computing the microion
distribution and resulting forces on the macroions. We discuss
here the simplest such model system (11) consisting of uniformly
charged infinite hard walls with neutralizing point counterions
(and no co-ions) in a uniform dielectric environment. This model
is simple enough that exact results in certain limits are known
(12), but it still illustrates many fundamental issues that arise
from the interplay between long- and short-ranged forces in an
explicitly nonuniform environment. It is clear from Size-
Asymmetric Primitive Model that the LMF theory can deal with
more realistic models for the walls and counterions.

Fig. 2. Dimensionless potentials and pair correlation functions for the SAPM
at high density and strong coupling, with d1 � 0.4 and d2 � 1.0, 	* � 1.4, and
* � 16. (Left) The potentials use the left vertical axis. Both the full potential
between positive ions (light gray shading) and the mimic interactions for two
different values of � (darker gray shading) are shown. The various pair
correlation functions use the right vertical axis. Results for g0,11 using two
different values of � are shown; the differences are barely visible on the scale
of the graph. (Right) The high first peak of the cation–anion correlation
function.

Fig. 3. Pair correlation functions for the SAPM in the low-density ion pairing
regime, with 	* � 0.04 and * � 9, using the same conventions as in Fig. 2.
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One Charged Wall. We first consider the case of a single hard wall
with a uniform negative charge density qw at the z � 0 plane,
where we take the zero of electric potential energy. Without loss
of generality we can assume that the counterions have a (unit)
charge e0 and express the wall charge density qw � �e0�lw

2 in
terms of the length lw of the side of a square enclosing that
amount of charge. The potential energy �1w(z) of a counterion
at a distance z from the wall is 2�e0

2z�(�lw
2 ). The Gouy–Chapman

length lG is defined as the distance at which this potential equals
kBT, i.e., lG � kBT�lw

2 �(2�e0
2) � lw

2 �(2�lB). lG characterizes the
effective strength of the attractive wall–counterion interaction,
and most counterions will be found near the wall in an effective
slit whose width is proportional to lG. Dimensionless combina-
tions of thermodynamic variables in this simple system depend
only on a single control parameter � � lB�lG � lw

2 �(2�lG
2 ) (13).

As � increases (e.g., by decreasing T at a fixed wall and
counterion charge), counterions are driven increasingly close to
the wall by the decreasing lG. At strong coupling with � �� 1 or
lG �� lw, most counterions are next to the wall and form a
(‘‘strongly correlated’’) two dimensional (2D) liquid layer (14,
15) with average lateral spacing a� � a2D � lw fixed by local
neutrality. There are indeed strong lateral correlations between
the counterions in the 2D layer: the coupling strength a2D

�
lB�a2D � �1/2�(2�)1/2 �� 1 for large �. As discussed above, we
then expect the effective Coulomb core size �min to be on the
order of a2D � lw. However, because of these repulsive cores,
particles cannot stack perpendicular to the wall and still remain
near the narrow slit. Thus, the density outside the slit is very low,
and there are only weak correlations normal to the wall.

In the opposite weak coupling limit, with � �� 1 or lG �� lw,
counterions can take advantage of the larger effective volume of
the slit and adopt a more diffuse 3D packing to reduce their
repulsive interactions. Crudely assuming all counterions are
found within lG of the wall and using a simple cubic lattice to
estimate the characteristic counterion spacing in this volume, we
now have a� � a3D � (lw

2 lG)1/3 � lw�(2��)1/6. There is weak
coupling between the counterions, with a3D

� lB�a3D � �2/3�
(2�)1/2 �� 1, and here it is natural to take �min � lB � lw(��2�)1/2

as an estimate for the effective Coulomb core size (6). The
crossover to strong coupling with essentially 2D packing and
�min � a2D � lw occurs for � on the order of unity, and the 2D
packing indeed provides a larger average spacing at large �.

Quantitative results take an especially simple form (13) if we
introduce a dimensionless rescaled density n(z�lG) � lGlw

2 	(z)
that incorporates the anticipated (�-dependent) scaling of the
profile with lG. Local neutrality requires that �0

�dz̃n(z̃) � 1,
where z̃ � z�lG. Lengths scaled by lG will generally be indicated
by a tilde. Moreover, because of the impulsive 
-function force
at a hard wall, there is an exact relation between the pressure and
the contact density. This relation yields the well known contact
theorem, which implies n(0) � 1 for the contact value of the
rescaled density at a single charged hard wall (11).

Exact results (12) for n(z̃) are known in the limit � 3 0 from
a rigorous weak coupling expansion, which gives results agreeing
with the PB approximation, nPB(z̃) � 1�(z̃ � 1)2. A different
strong coupling expansion gives exact results as �3 �: nSC(z̃) �
e�z̃. However, attempts to connect these limits by analyzing
higher-order terms in each expansion have had only limited
success (13). We now show that the LMF theory provides a
simple, accurate, and unified approach for general �.

LMF Equation for One Charged Wall. We can take advantage of
planar symmetry and integrate exactly over the lateral degrees
of freedom in the long-ranged parts u1,ji(rji) of the counterion–
counterion and wall–counterion interactions in Eq. 6. The
resulting LMF equation can be written in dimensionless form for
z̃1, z̃2 � 0 as

�̃R1�z̃1� � �
0

�

dz̃2
 � 
�z̃2� � nR�z̃2��G�z̃2, z̃1�. [7]

Here, �̃R1(z̃1) � �R1(z̃1lG), and G(z̃2, z̃1) � ��z̃1 � z̃2�erf(�z̃1 �
z̃2���̃) � ��1/2�̃e�[(z̃1 � z̃2)��̃]2

� �z̃2�erf(�z̃2���̃) � ��1/2�̃e�[z̃2/�̃]2
is the

Green’s function associated with a normalized planar Gaussian
charge distribution centered at z̃2, with the zero of potential energy
at z̃1 � 0.

The �
(z̃2) term in Eq. 7 accounts for the long-ranged
component �̃1(z̃1) � �G(0, z̃1) of the dimensionless attractive
potential �̃1w(z̃1) � z̃1 between a counterion at z̃1 and the
negatively charged wall at z̃2 � 0. The remaining short-ranged
part [�̃0(z̃1) � z̃1 � �̃1(z̃1)] of the wall potential is

�̃0�z̃1� � z̃1erfc� z̃1��̃� � �̃e��z̃1��̃�2� �� � �̃� �� . [8]

The effective field is then �̃R(z̃1) � �̃0(z̃1) � �̃R1(z̃1), with �̃R1
given by Eq. 7 for z̃1 � 0 and infinity otherwise.

mPB Approximation. To solve Eq. 7 self-consistently, we must
accurately determine the density nR(z̃) induced by �̃R(z̃). At
weak coupling, neighboring ions interact weakly and the density
response to the effective field is proportional to the ideal gas
Boltzmann factor exp[��̃R(z̃)]. By using this approximation in
Eq. 7, we have a closed equation, which we refer to as the mimic
PB (mPB) equation. Moreover, we can show (7) for all � that a
self-consistent solution of the mPB equation will exactly satisfy
both neutrality and the contact theorem. The contact theorem
implies that the density response takes the simple form nR(z̃) �
exp[��̃R(z̃)] with our choice of the zero of energy.

Remarkably, however, the mPB approximation also gives
accurate results at strong coupling with � �� 1, where there is an
essentially 2D arrangement of the mimic particles in an effective
narrow slit. Correlations normal to the wall are very weak, and
the Boltzmann factor again can accurately describe the density
response to the z-dependent field �̃R(z̃), as can be verified by
more formal arguments (13, 16).

These limits motivate our use of the mPB approximation with
nR(z̃) � exp[��̃R(z̃)] for all � in Eq. 7. The mPB approximation
is least justified at intermediate values of �, and it breaks down
if � is chosen much larger than �min so that there would be strong
direct interactions between further neighbors in the mimic
system. Thus, we provide a smooth interpolation between the
known limiting values of �min in the weak and strong coupling
regimes by choosing � � �1w � C min(lB, lw), and fix C � 0.60
by finding the best fit to simulations (13) at a moderately strong
coupling state with � � 40. In this example, it is numerically more
convenient to differentiate the resulting mPB equation and solve
for the effective force, which vanishes far from the wall, and then
get the effective field by integration (J. Rodgers, C. Kaur,
Y.-G.C., and J.D.W., unpublished data). An iterative solution is
straightforward, and no other simulation data are required.

Results for One Charged Wall. Fig. 4 gives results for nR(z̃) at strong
coupling, with � � 100. There is excellent agreement between the
results of the mPB theory and MC simulations of the long-ranged
system carried out by Moreira and Netz (13). The log–log plot
emphasizes that nR(z̃) has two characteristic regions. Near the
wall, there is an initial exponential decay arising mainly from
particles in the 2D layer, which continues until approximately z̃ �
�̃min�2, where the density is very low and there is a crossover to
algebraic decay as in the PB solution but with a much larger
effective lG. A natural physical interpretation is that the small
fraction of counterions outside the 2D layer adopt a diffuse
PB-like profile generated by an effective wall whose charge
density has been greatly reduced by the charge of the tightly
bound counterions. This idea has been suggested before (15), but
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LMF theory provides a unified description of both limiting
regions and the crossover region.

The density near the wall is very accurately described by the
even simpler SCA, where �̃R(z̃) is approximated by �̃0(z̃). The
resulting density n0(z̃) � exp[��̃0(z̃)] can be written down
immediately from Eq. 8. As shown in Fig. 4, both �̃0(z̃)] and
�̃R(z̃) closely resemble the full potential z̃1 near the wall for z̃1 �
�̃min�2. But n0(z̃) cannot describe the PB-like region at large z̃ as
does the full mPB theory, and it does not obey the neutrality
condition. This example highlights both the strengths and weak-
nesses of the SCA. When properly used to describe only short-
ranged correlations at strong coupling, very accurate results can
be found.

Two Charged Walls. We now briefly consider two equally charged
hard walls forming a real slit with width d, with neutralizing point
counterions in between. At strong coupling and intermediate
widths, the counterions can induce an effective attractive force
between the walls. Such effective attraction between like charged
objects may have important experimental consequences, and it
has generated a great deal of theoretical interest (1–4).

Ref. 11 gives an exact expression for the dimensionless (os-
motic) pressure P̃ � lGlw

2 P arising from neutralizing point
counterions confined between charged hard walls at z � 0 and
z � d:

P̃ � n�0� � 1. [9]

Thus, if the rescaled contact density n(0) is less than (greater
than) 1, there is an effective attractive (repulsive) force on the
walls. As d3�, we recover the one-wall results discussed earlier,
where P � 0 and n(0) � 1.

Because the total force on a counterion from equally charged
walls exactly cancels for all z and all d, we now have �̃2w(z̃) � 0
for 0 � z̃ � d̃. As in the one-wall case, it is useful to divide �̃2w

into a short-ranged part,

�̃0
2w�z̃; d̃� � �̃0

1w�z̃� � �̃0
1w�d̃ � z̃� � �̃0

1w�d̃�, [10]

given by a sum of short-ranged, single-wall terms (indicated by
the superscript 1w) defined in Eq. 8, and the remainder. We take
the zero of energy on the left wall at z̃ � 0. The effective field
�̃R(z̃) � �̃0

2w(z̃; d̃) � �̃R1(z̃) is determined from the two-wall LMF
equation. This equation closely resembles Eq. 7, except that the
integration is from 0 to d̃ and there is an additional �
(d̃ � z̃2)
term in the integrand, accounting for interactions with the
second wall at z � d. Again we use the mPB approximation
nR(z̃) � A exp[��̃R(z̃)] and fix the constant A (which equals the
contact density with our choice of the zero of energy) by using
the neutrality condition �0

d̃ dz̃nR(z̃) � 2. The pressure is then
given by Eq. 9.

The resulting two-wall mPB equation reduces exactly to an
integrated form of the PB equation if � � 0. The latter has an
analytic solution and predicts a repulsive force for all d and � (2,
13). The mPB theory also predicts a weak repulsive force at
strong coupling for sufficiently large d, arising from weak
repulsions between counterions in the dilute PB-like tails of the
one-wall profiles discussed above. In contrast, at strong coupling
and sufficiently small d, core repulsions make it unfavorable for
particles in the narrow slit to stack perpendicular to the walls,
and counterions will be forced into a single 2D layer with
characteristic lateral spacing ã � lw��2 fixed by neutrality. To
interpolate between this limit and weak coupling, we choose � �
�2w � C min(lB, lw��2) and take the same value of C � 0.60 that
we used for the one-wall theory. Because �̃min � C� at small �,
the PB approximation is consistent only as � 3 0. The mPB
theory naturally introduces a crucial new length scale �min that
allows for a change in the functional form of nR(z̃) as � increases.

Fig. 5 compares numerical results of mPB theory (J. Rodgers,
C. Kaur, Y.-G.C., and J.D.W., unpublished data) to simulation
data (13) for strong coupling states. The left graph shows that,
for � � 100, there is very good agreement between the mPB
theory and computer simulations for all widths at which simu-
lations can be performed. As shown in Fig. 5 Left Inset, the mPB
theory predicts that, at still larger widths, there is a weak
repulsive force between the walls. This reentrant behavior is
illustrated more generally in Fig. 5 Right, which also shows that
a minimal coupling strength of � � �c � 12 is needed to get any
attraction (13).

Fig. 5 Left also shows results from the analytic SCA, where n(z̃)
is approximated by n0(z̃) � A0 exp[��̃0

2w(z̃; d̃)], with A0 similarly

Fig. 4. Densities and potentials for one charged wall. (Upper) Rescaled
counterion density near one planar charged wall calculated by the full mPB
theory and by the SCA compared with computer simulation data in ref. 13.
(Note the log scales.) The limiting exponential profile provides a good fit only
near the wall. We can show analytically (7) that there is a crossover to an
algebraic tail of the form 1�(z̃ � b)2 in the mPB theory for z̃ � �̃1w, as seen in
the graph. (Lower) The full dimensionless wall potential z̃ compared with �̃R(z̃)
and �̃0(z̃) from the mPB theory. (Note the linear scales.) The vertical dashed
line in both graphs indicates the value of �̃1w.

Fig. 5. Effective interaction between two equally charged walls. (Left)
Dimensionless pressure at strong coupling between two equally charged hard
walls as a function of width d̃ from ref. 13 compared with predictions from the
full mPB theory and the SCA. (Inset) The mPB theory predicts a weak repulsive
force at larger widths. (Right) Regions with repulsive or attractive force
between two charged walls as a function of width and coupling strength as
determined by MC simulations and the mPB theory.
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determined by neutrality. At strong coupling and large d, �̃0
2w(z̃;

d̃) has a deep attractive well near each wall essentially identical
to that found near a single wall. However, at small enough d, the
wells from the individual �̃0

1w terms in Eq. 10 begin to overlap,
and their depth decreases. As d 3 0, �̃0

2w(z̃; d̃) vanishes for all
z̃ in the slit. The SCA fails at large widths, just as it did far from
the wall in the one-wall case, and the reentrant behavior is
completely missed. However, the SCA is very accurate at smaller
widths, and it gives a good description of the location and
magnitude of the maximum attractive force.

The formation of the single 2D layer at sufficiently small
widths d̃ � �̃2w plays a key role in producing a strong attractive
force. Because of the absence of correlations normal to the walls,
the density profile will be relatively constant across the slit. We
can use the SCA to describe several features analytically in this
regime. The minimum pressure P̃* should occur near the largest
width d̃* � 2z̃*m for which the single 2D layer remains stable,
defined by �̃0

2w(z̃*m; d̃*) � 1. At larger widths, there will be higher
contact densities as separate 2D layers at each wall begin to form,
and the nearly constant profiles at smaller widths will have
higher contact densities by normalization. Expanding �̃0

2w(z̃; d̃)
in a Taylor series, we have �̃0

2w(z̃; d̃) � 2z̃(d̃ � z̃)�(�1/2�̃2w) to
lowest order; higher order terms are negligible for d̃ �� �̃2w. This
expansion implies d̃* � (2�1/2�̃2w)1/2 � 1.94�1/4 using our ex-
pression for �̃2w. Similarly evaluating A0, the minimum pressure
is P̃* � 3.717�d̃* � 1. When P̃* � 0, there can be no attractive
forces, which determines the minimal coupling strength �c �
13.48 and associated critical spacing d̃*c � 3.717 needed to get any
attraction. Finally, for � �� �c and d̃ � 2, we see �̃0

2w(z̃; d̃) �� 1;
therefore, the constant profile n0(z̃) � 2�d̃ is very accurate. Eq.
9 then implies that, at very strong coupling, the transition from
strong repulsive forces to strong attractive forces occurs near d̃
� 2, as shown in refs. 12 and 13. All these predictions are in very
good agreement with numerical solutions of the mPB theory
(and with simulations of the full and mimic systems, where
available) for all strong coupling states, as illustrated in Fig. 5.

Discussion
In strong coupling regimes the short-ranged parts of the Cou-
lomb interactions efficiently compete with the other short-

ranged molecular core interactions and strongly influence pair
correlations between neighboring molecules. In LMF theory, the
choice of �min determines the strength and range of these
important Coulomb core interactions. These core interactions
play a key role in inducing an effective attraction between
like-charged objects at strong coupling, as illustrated in Fig. 3 for
the correlation functions between like-charged ions in the
SAPM and in Fig. 5 for the osmotic pressure on two like-charged
walls. In both cases, strong, short-ranged forces mainly involving
single counterions or a single counterion layer can mediate a
strong effective attraction. Such phenomena have traditionally
been interpreted as illustrating the ‘‘breakdown of mean field
theory’’ and the need for new and more sophisticated ap-
proaches. But LMF theory using the simple SCA, in which only
the short-ranged parts of the Coulomb interactions are taken
into account, provides very accurate results at small and mod-
erate separations. At weak coupling and for long-wavelength
correlations, the averaged effects of the long-ranged interactions
as determined by the LMF equation are needed as well (6).

LMF theory provides a general conceptual framework that
connects and clarifies previous work on systems with both short-
and long-ranged interactions. It has been used to describe
liquid–vapor interfaces and wetting and drying transitions for
simple fluids (5) and hydrophobic interactions in water (17).
LMF theory suggests simplified simulation models for general
Coulomb systems based on the mimic system that do not require
special treatment of periodic boundary conditions. The short-
ranged intermolecular interactions in the Coulomb mimic system
are reminiscent of the truncated interactions used in reaction
field methods (18), but it was not very clear in those approaches
how to choose an appropriate cutoff and how to treat nonuni-
form environments. The determination of �min and the effective
field in LMF theory provides a way to deal with both problems.
We believe that the LMF picture will prove useful not only in
formal theory but also for qualitative reasoning and in detailed
simulations of biophysical systems.
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