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The use of mathematical models in the experimental analysis of behavior has increased over the years,
and they offer several advantages. Mathematical models require theorists to be precise and
unambiguous, often allowing comparisons of competing theories that sound similar when stated in
words. Sometimes different mathematical models may make equally accurate predictions for a large
body of data. In such cases, it is important to find and investigate situations for which the competing
models make different predictions because, unless two models are actually mathematically equivalent,
they are based on different assumptions about the psychological processes that underlie an observed
behavior. Mathematical models developed in basic behavioral research have been used to predict and
control behavior in applied settings, and they have guided research in other areas of psychology. A good
mathematical model can provide a common framework for understanding what might otherwise appear
to be diverse and unrelated behavioral phenomena. Because psychologists vary in their quantitative
skills and in their tolerance for mathematical equations, it is important for those who develop
mathematical models of behavior to find ways (such as verbal analogies, pictorial representations, or
concrete examples) to communicate the key premises of their models to nonspecialists.
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_______________________________________________________________________________

Over the years, researchers who study basic
behavioral processes have increasingly relied
on mathematical models in their work. The
establishment of the Society for the Quantita-
tive Analyses of Behavior (SQAB) in 1978 and
its subsequent growth is just one sign of the
rise of interest in the mathematical modeling
of behavior. Another measure is the number
of articles in the Journal of the Experimental
Analysis of Behavior (JEAB) that use mathemat-
ical models. For individual years separated by
10-year intervals, Figure 1 shows the percent-
age of JEAB articles that presented at least one
equation to describe the relation between an
independent variable and a dependent vari-
able (not including articles that tested the
implications of mathematical models but did
not explicitly present the equations). There is
some arbitrariness in this criterion, but the
increasing trend toward mathematical analysis
is obvious.

For some behavior analysts who began their
careers when mathematical modeling was not
so commonplace in this field, or for those who
do not use mathematical models in their own

work, this trend may be disconcerting. For
some, the sight of an equation or two in a JEAB
article may be reason enough for them to skip
over the article and move on to the next. They
may feel that an article with mathematical
equations is beyond their comprehension, or
worse, irrelevant to their interests. After all,
isn’t the experimental analysis of behavior
supposed to be about behavior, not about
mathematical equations and symbols?

Failures of communication between those
who do and those who do not use mathemat-
ical models in their work are not unique to
psychology. As the science of physics became
increasingly quantitative in the mid-nine-
teenth century, some very competent scientists
felt as if they were being left behind. During
the course of a very productive career, the
British physicist Michael Faraday conducted
some fifteen thousand experiments on elec-
tromagnetic fields, and yet he could not
comprehend the beautiful equations of field
theory that James Clerk Maxwell derived from
Faraday’s own research. Faraday asked Max-
well if he could use verbal descriptions or
other means to make his equations compre-
hensible to a nonmathematician, and Maxwell
made a sincere effort to do so. According to
Timothy Ferris (1988):

Maxwell obligingly rendered some of his
explanations of field theory into the mechan-
ical cogwheels and sprocket formulations that
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Faraday could understand, but it was when
stripped to bare equations that his theory flew.
With fuguelike balance and power, Maxwell’s
equations demonstrated that electricity and
magnetism are aspects of a single force,
electromagnetism, and that light itself is
a variety of this force. Thus were united what
had been the separate studies of electricity,
magnetism, and optics. (p. 187)

It is not clear whether mathematical models
in psychology can ever achieve the breadth
and power of Maxwell’s equations; the beha-
viors of living organisms are very complex, and
they are influenced by many different factors.
Nevertheless, mathematical models can serve
several useful functions in the experimental
analysis of behavior. In psychology, mathemat-
ical models are designed to describe basic
behavioral processes in a more precise way
than can be done with simple verbal descrip-
tions. It sometimes is difficult to derive un-
ambiguous predictions from theories that are
expressed in words, but the implications of
competing theories (and differences between
them) often become clear when the theories
are presented in mathematical form. Critical
tests that compare the quantitative predictions
of two or more different models can indicate
which hypotheses about a behavioral process
are viable and which are not. Studies that test
the quantitative predictions of mathematical
models can identify insufficiencies in current
theories and draw our attention to factors
affecting behavior that might otherwise have
been overlooked. In addition, just as Maxwell’s

equations unified different areas of physics,
a good mathematical model in psychology can
use a core set of principles to account for
diverse behaviors. Finally, mathematical mod-
els can give guidance to workers in related
fields, such as a behavior therapist attempting
to predict and control behavior in an applied
setting, or a neuroscientist seeking to un-
derstand the biological bases of a behavioral
phenomenon.

One purpose of this article is to demonstrate
the value of mathematical models in the
experimental analysis of behavior, using sever-
al specific examples. A second purpose is to
encourage better communication between
those psychologists who use mathematical
models in their research and those who do
not, as exemplified by the communication
between the experimenter Faraday and the
mathematician Maxwell.

BETTER THAN MERE WORDS

In some cases, two theories that appear to
make similar predictions when stated in words
can be more readily compared and evaluated
when they are put into mathematical form. For
example, two different theories about punish-
ment are the negative law of effect (e.g.,
Rachlin & Herrnstein, 1969) and the avoid-
ance theory of punishment (e.g., Dinsmoor,
1954, 1977). The negative law of effect is
simply the view that reinforcement and pun-
ishment have opposite effects on behavior:
reinforcement strengthens behavior and pun-
ishment weakens behavior. The avoidance
theory of punishment takes a different ap-
proach. According to this theory, when a re-
sponse is followed by a punisher, the response
becomes associated with fear, which is an
aversive stimulus. Once this conditioning has
occurred, fear will increase whenever the
animal starts to make the response, and the
animal can escape from this fear by perform-
ing some other response instead. Alternative
responses are therefore reinforced by fear
reduction, and they increase in frequency.
Therefore, according to the avoidance theory,
the effects of punishment are indirect: the
reason a punished behavior decreases is that
the level of reinforcement for alternative
behaviors has increased.

Described in this way, the predictions of
these two theories are difficult to distinguish.

Fig. 1. For individual years at 10-year intervals, the
percentage of articles in JEAB that included at least one
equation to describe the relation between an independent
variable and a dependent variable.
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Although they make their predictions for
different reasons, both theories seem to pre-
dict the same general result: punishment will
cause a decrease in the punished behavior.
Once they are translated into mathematical
form, however, the different predictions of the
two theories can be seen more easily. Deluty
(1976) and de Villiers (1977, 1980) developed
two different quantitative models of punish-
ment, which can be viewed as mathematical
versions of the avoidance theory of punish-
ment and the negative law of effect, respec-
tively. Both models begin with Herrnstein’s
(1961) matching law, but then proceed in
different directions.

In its simplest form, the matching law can be
written as follows:

B1

B1 z B2
~

R1

R1 z R2
, ð1Þ

where B1 and B2 are the rates of response on
reinforcement schedules 1 and 2, and R1 and
R2 are the rates of reinforcement on these two
schedules. This equation has often been
applied to choice situations in which the two
alternatives are variable-interval (VI) schedules
of food reinforcement. Imagine that a pigeon
responds on two keys, with Key 1 delivering 75
reinforcers per hour and Key 2 delivering 25
reinforcers per hour, so Equation 1 predicts
that the pigeon will make 75% of its responses
on Key 1. Now suppose that in addition to
producing food, responses on both keys begin
to deliver punishers (electric shocks) at a rate
of 20 shocks per hour for each key. How can
Equation 1 be expanded to deal with this
situation?

According to de Villiers (1977), if punish-
ment is the opposite of reinforcement, as the
negative law of effect states, then the punishers
delivered by each alternative should be sub-
tracted from the reinforcers delivered by that
alternative:

B1

B1 z B2
~

R1 { P1ð Þ
R1 { P1ð Þz R2 { P2ð Þ , ð2Þ

where P1 and P2 are the rates of punishment
on the two keys.

In contrast, Deluty (1976) took the view that
punishing one response increases the rein-
forcement for other responses, as proposed by
the avoidance theory of punishment. There-

fore, in his equation, the punishers for one
alternative are added to the reinforcers for the
other alternative:

B1

B1 z B2
~

R1 z P2ð Þ
R1 z P2ð Þz R2 z P1ð Þ : ð3Þ

To keep this example simple, one shock is
given the same weight as one food delivery, but
both models could easily give food and shock
different weights by multiplying P1 and P2 by
some constant other than 1. Using such
a constant would not change the general
conclusions presented here. In this example,
with R1 5 75, R2 5 25, and P1 5 P2 5 20,
Equation 2 predicts that the percentage of
responses on Key 1 should increase from 75%
to 92% when the shocks are added to both
keys. Conversely, Equation 3 predicts that the
percentage of responses on Key 1 should
decrease to 68% when the shocks are added.
In an experiment with pigeons, de Villiers
(1980) found that preference for the key that
delivered more reinforcers increased when
shocks were added to both keys with equal
frequency. This result therefore favors the
predictions of Equation 2 over those of
Equation 3.

It should be clear that the issue here is more
fundamental than simply whether a plus sign
or a minus sign should be used in an equation.
These two models are based on two very
different conceptions of how punishment
exerts its effects on behavior. The experimen-
tal evidence suggests that punishment exerts
its effect by weakening the target behavior, as
the negative law of effect stipulates, not by
strengthening alternative behaviors, as the
avoidance theory proposes. This example
illustrates how two psychological theories that
seem to make similar predictions when stated
verbally actually may make very different
predictions when they are presented in math-
ematical form.

MORE THAN CURVE FITTING

Consider the question of what equation best
describes how the strength of a reinforcer
decreases with increasing delay. One common
suggestion (e.g., Hull, 1943; Killeen, 1994) is
that the delay-of-reinforcement gradient can
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be described by an exponential equation:

V ~ Ae {KDð Þ, ð4Þ

where V is the value or reinforcing strength of
a reinforcer delivered after a delay of D
seconds, A represents the value of the re-
inforcer if it were delivered immediately, e is
the base of the natural logarithm, and K is
a parameter that determines how rapidly V
declines with increasing delay. Another pro-
posal is that the delay-of-reinforcement gradi-
ent is best described by a hyperbolic function
(e.g., Mazur, 1987):

V ~ A= 1 z KDð Þ: ð5Þ

These two different equations describe decay
curves that have fairly similar shapes. Figure 2
shows the data from 1 pigeon in an experi-
ment in which the animals chose between 45 s
of exposure to variable-time (VT) schedules
and single presentations of a delayed reinforc-
er (Mazur, 2000a). The delay was adjusted over
trials to obtain the indifference points shown
in the graph, which depicts the decreasing
value of the single reinforcer as its delay
increased. The curves show the best-fitting
predictions of Equations 4 and 5 with K
treated as a free parameter, and both equa-
tions account for 99% of the variability in the
data.

One could argue that both equations de-
scribe the data very well, and that deciding

which one to use is simply a matter of
preference. Although that may be true for this
single set of data, it would be wrong to
conclude that the difference between Equa-
tions 4 and 5 is inconsequential. These two
equations make profoundly different predic-
tions about how individuals will choose be-
tween two reinforcers that are delivered at
different times (as in the so-called self-control
choice situation, in which an individual must
choose between a small, more immediate
reinforcer and a larger, but more delayed
reinforcer). Economists generally have favored
the exponential equation as a temporal dis-
counting function because it seems more
‘‘rational’’: all reinforcers are discounted by
the same percentage as time passes, regardless
of their sizes or when they are delivered.
However, as discussed by Ainslie (1975), if the
discounting parameter, K, is the same for both
reinforcers, the exponential equation does not
allow for preference reversals in a self-control
choice situation: a person who prefers a larger
more delayed reinforcer now should maintain
this preference as time passes. In contrast, the
hyperbolic equation does predict preference
reversals (as when a person on a diet vows that
he will not have a second helping at the
evening meal, but then changes his mind
during the meal and eats more than he
should).

The situation is actually more complex than
this because, as Green and Myerson (1993)
pointed out, the exponential equation can
predict preference reversals if the decay
parameter, K, is greater for the smaller re-
inforcer than for the larger reinforcer. When
human participants are asked to make choices
between hypothetical monetary reinforcers of
different sizes and delays, estimates of K do
indeed decrease with increasing reinforcer
amounts (e.g., Green, Fristoe, & Myerson,
1994; Green, Myerson, & McFadden, 1997),
so preference reversals in these situations are
not necessarily inconsistent with the exponen-
tial equation. To provide more convincing
evidence for the hyperbolic equation, one
needs to show that preference reversals occur
even when estimates of K do not. Research
with nonhuman subjects has provided some
evidence of this type. Whereas preference
reversals are reliably found with animals (e.g.,
Green, Fisher, Perlow, & Sherman, 1981),
studies with rats and pigeons have found no

Fig. 2. An exponential function (Equation 4) and
a hyperbolic function (Equation 5) are fitted to the data
from 1 pigeon from Mazur (2000a). For both equations, K
was treated as a free parameter.
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evidence that the values of K decrease with
larger reinforcer amounts (Grace, 1999;
Green, Myerson, Holt, Slevin, & Estle, 2004;
Ong & White, 2004; Richards, Mitchell, de Wit,
& Seiden, 1997). There is also other evidence
that favors the hyperbolic equation, such as
the shapes of the indifference functions that
are obtained when animals choose between
different delay-amount combinations (Mazur,
1987). The main point is that although two
equations may make similar predictions for
some situations (e.g., the theoretical curves in
Figure 2), they may make very different
predictions for other situations, and these
differences can have important theoretical
and practical implications.

NOT JUST SPLITTING HAIRS

Competing mathematical models do not
always make predictions that are so obviously
different as those of the hyperbolic and
exponential decay equations. Sometimes the
predictions of two or more different mathe-
matical models are fairly similar for a wide
range of experiments, and the models appear
to be roughly equal in their predictive accura-
cy. In these cases, it seems fair to ask, if we are
interested in predicting behavior and if both
models predict behavior equally well, what
difference does it make which one we use?

My comparison of three models of concur-
rent-chains performance (Mazur, 2001) illus-
trates such a situation. In this analysis, I
compared the predictive accuracy of Fantino’s
delay-reduction theory (DRT; Squires & Fan-
tino, 1971), Grace’s contextual-choice model
(CCM; Grace, 1994), and my hyperbolic value-
added model (HVA). To make comparisons
among models fair, I provided each model
with the same number of free parameters
(between two and four free parameters,
depending on the data set) to account for
such factors as response bias and individual
differences in sensitivity to the different re-
inforcement schedules. I used standard curve-
fitting techniques to derive quantitative pre-
dictions from these three models for the
results from 19 published experiments on
concurrent-chains schedules, which included
a total of 92 different data sets, most of them
from individual subjects. For these data sets,
CCM accounted for an average of 90.8% of the
variance, HVA for 89.6%, and DRT for 83.0%.

Therefore, when supplied with the same
number of free parameters, two models ac-
counted for similar percentages of the variance,
and the third was not that far behind. The small
differences in the accuracy of the models could
easily be due to random variations in the data or
to arbitrary decisions about exactly how the free
parameters were added to the different models.
It seems fair to ask: Why is it important to know
which of these models is best? If one is
interested in predicting performance on con-
current-chains schedules, it seems that all three
models are reasonably successful. (Richard
Herrnstein once said to me, ‘‘If the matching
law accounts for 90% of the variance, that’s
good enough for me. I’m not greedy.’’)

The answer to this question is that although
these three models frequently do make very
similar predictions, they are based on different
assumptions about the psychological processes
that produce this behavior. To show this, I will
first give an example of a typical concurrent-
chains schedule, and I will then present the
equations for each of the three models.

Figure 3 diagrams a concurrent-chains
schedule. This procedure usually involves two
schedules that operate during what are termed
the initial links, each of which occasionally
leads to its own terminal link. Each terminal
link is another reinforcement schedule that
leads to food. In this example, during the initial
links, the response keys are white, and two
identical VI 60-s schedules are in effect.
Responses on the left key occasionally cause
the key to turn green, and then food is
delivered on a fixed-interval (FI) 10-s schedule.
Responses on the right key occasionally cause
that key to turn red, and then food is delivered
on a FI 20-s schedule. After each food delivery,
the keys turn white, and the initial links are
again in effect. A concurrent-chains procedure
therefore alternates between a choice period
(the initial links) and a consequences period
(the terminal links, during which it is not
possible to switch to the other alternative).

The usual measure of preference is the
subject’s response proportions in the initial
links. Not surprisingly, in this case, a pigeon will
make more responses on the left key than on
the right key, because the left key leads to the
terminal link with the shorter FI schedule.
However, it is well known that the schedules in
the initial links, and not just those in the
terminal links, affect preference. If the dura-
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tions of two identical initial-link schedules are
shortened, the terminal-link schedules have
more affect on preference, and response
proportions become more extreme (Fantino,
1969). This is called the initial-link effect. For
instance, if the initial-link schedules in Figure 3
were decreased to VI 30-s schedules, the
percentage of responses on the left key would
increase.

To give a brief explanation of how CCM,
DRT, and HVA make predictions for concur-
rent-chains schedules, the equations for these
models will be presented in their most basic
forms, without the free parameters that were
used in the curve-fitting comparisons (Mazur,
2001). This will avoid unnecessary complexity,
and it will help to focus on the fundamental
differences among the models.

When considering mathematical models of
behavior, it is useful to distinguish between
descriptive equations and theoretical equa-
tions. A descriptive equation merely provides,

in mathematical form, a convenient way to
summarize the relation between independent
variable and dependent variables, without
giving any theoretical basis for using this
specific equation. In contrast, a theoretical
equation is derived from basic principles or
assumptions about the psychological processes
that give rise to the behaviors in question, and
the form of the equation reflects these
assumptions. CCM, DRT, and HVA all can be
considered theoretical equations because they
are based on a few basic assumptions about the
psychological processes that govern choice
behavior. As will be seen, some of these
assumptions are shared by all three models,
whereas other assumptions are different for
each model.

Without free parameters, Grace’s (1994)
CCM can be written as follows:

B1

B2
~

ri1

ri2

� �
rt1

rt2

� � Tt=Tið Þ
: ð6Þ

Fig. 3. A typical concurrent-chains schedule, with equal VI 60-s schedules as initial links, and two different FI
schedules as terminal links.
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B1 and B2 are response rates in the initial links
of a concurrent-chains schedule, ri1 and ri2 are
the rates of reinforcement in the initial links
(i.e., the rates at which each of the two terminal
links are entered), and rt1 and rt2 are the rates
of reinforcement in the two terminal links (the
rates at which the terminal links deliver food).
Thus, according to CCM, choice responses in
concurrent-chain schedules depend on both
the schedules in the initial links and the
schedules in the terminal links. The distin-
guishing feature of CCM is the ratio Tt/Ti. Tt is
the average terminal-link duration, and Ti is the
average initial-link duration. Because the ratio
Tt/Ti is used as an exponent for the terminal-
link reinforcement rates, CCM states that
differences in the terminal links will have
greater effect on preference when they are
long relative to the sizes of the initial links, and
the terminal links will have less effect on
preference when they are relatively short.
Therefore, in the example described above,
when the initial-link schedules are shortened
from VI 60 s to VI 30 s, Tt/Ti increases, and
Equation 6 predicts more extreme preference
for the green terminal link.

In developing CCM, Grace (1994) began
with the basic assumption of Herrnstein’s
(1961) matching law—that the relative rate
of behavior is proportional to the relative rate
of reinforcement (Equation 1). The matching
law was designed to account for choice on
simple concurrent schedules, which do not
have terminal links. CCM was developed to
extend the framework of the matching law to
concurrent-chains schedules. Grace assumed
that terminal-link schedules are conditioned
reinforcers whose values are a function of their
rates of reinforcement (rt1 and rt 2). Grace also
was guided by the previous work of Baum and
Rachlin (1969) who proposed that when
reinforcers differ along two or more different
dimensions (e.g., rate, delay, amount, quality),
these different factors can be combined
multiplicatively to obtain a measure of the
overall values of the reinforcers. Grace rea-
soned that, in a similar way, the initial-link
reinforcement rates (ri1 and ri 2) could be
multiplied by the terminal-link reinforcement
rates (rt1 and rt 2) to obtain the values of the
two alternative schedules in concurrent-chains
procedures. In addition, based on both theo-

retical considerations and research findings,
Grace was convinced that the behavioral
expression of the terminal-link values is de-
pendent on the context in which they are
presented (that is, on the durations of the
terminal links compared to those of the initial
links). Following Baum’s (1974) work on the
generalized matching law, which uses an
exponent to reflect an animal’s sensitivity to
differences in reinforcement rates, Grace used
the exponent Tt/Ti to express the fact that
sensitivity to the reinforcement rates in the
terminal links depends on the relative dura-
tions of the initial and terminal links. The end
result of this set of assumptions was CCM.
Notice that Equation 6 reduces to the simple
matching law if Tt 5 0, that is, when there is no
terminal link.

DRT also uses the principle of matching as
a basic assumption, and it, too, reduces to
Herrnstein’s (1961) matching law if there are
no terminal links. The Squires and Fantino
(1971) version of DRT can be written as
follows:

B1

B2
~

R1

R2

� �
Ttotal { Tt1

Ttotal { Tt2

� �
: ð7Þ

As already explained, R1 and R2 are the rates of
reinforcement, but in a concurrent-chains
schedule they are the overall rates, including
time in both the initial and terminal links.
Ttotal is the mean total time to primary
reinforcement from the start of the initial
links. Tt1 and Tt 2 are the mean times to
primary reinforcement from the start of the
two terminal links (i.e., the average durations
of the two terminal links). The fundamental
assumption of DRT is that the conditioned
reinforcing value of a terminal link is de-
termined by the amount of delay reduction that
occurs when each terminal link is entered,
compared to the average time to food from the
start of the initial links. For the example in
Figure 3, Ttotal is 45 s (because the average
initial-link duration is 30 s and the average
terminal-link duration is 15 s), Tt1 is 10 s, and
Tt 2 is 20. Therefore, the onset of the green key
represents a 35-s delay reduction, but the onset
of the red key represents only a 25-s delay
reduction, which is why DRT predicts a prefer-
ence for the green alternative.
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Besides its assumption about the crucial role
of delay reduction, DRT differs from CCM in
its assumption that choice behavior is also
a function of overall rates of reinforcement
(R1 and R2), compared to CCM’s assumption
that it is a function of the initial-link re-
inforcement rates (ri1 and ri 2). Squires and
Fantino (1971) did not explain why they chose
this approach, but the implication of Equation
7 is that the overall rates of primary reinforce-
ment combine multiplicatively with the condi-
tioned reinforcing values of the terminal links
to determine choice behavior. This difference
between DRT’s use of overall reinforcement
rates and CCM’s use of initial-link reinforce-
ment rates may seem subtle, but for certain
choice situations it leads to very different
predictions that can be tested with suitable
research designs.

HVA was built around three fundamental
assumptions. First, like CCM and DRT, HVA
adopts the principle of matching as a basic
assumption, and it, too, reduces to the match-
ing law if there are no terminal links. Second,
HVA is built on the assumption that reinforcer
value declines with increasing delay according
to a hyperbolic function (as in Equation 5).
With its free parameters removed, HVA
becomes:

B1

B2
~

ri1

ri2

� �
Vt1 { Vi

Vt2 { Vi

� �
: ð8Þ

The two leftmost expressions in the equation
are identical to CCM. The rightmost paren-
thetical expression includes Vt1 and Vt 2, the
values of the two terminal links, and Vi, the
value of the initial links, and all of these values
are calculated using a variation of the hyper-
bolic function (Equation 5) that applies to
cases where delays to reinforcement are vari-
able (Mazur, 1984). In Equation 8, the value of
the initial links is subtracted from the value of
each terminal link, because the third assump-
tion of HVA is that choice depends on the
increase in conditioned reinforcement value
(i.e., the value added) that occurs when the
initial link ends and a terminal link begins. For
the example in Figure 3, Vi, the value of the
initial links, will be low because they are
associated with a long delay to food. Vt 2, the
value of the red terminal link, is a bit higher
because the red key signals a somewhat shorter

(20 s) delay to food. Vt1, the value of the green
terminal link, is the highest because the green
key signals just a 10-s delay to food. Therefore,
there is more value added when the left
terminal link begins, and so HVA predicts
a preference for the green alternative. When
there are no terminal-link delays, as in simple
concurrent VI schedules, and the amounts of
reinforcement, A, are the same for both
alternatives, Vt1 and Vt 2 both equal A. In this
case, the rightmost parenthetical expression in

Equation 8 becomes A { Vi

A { Vi

� �
which equals 1.0,

and HVA reduces to the matching law.
CCM, DRT, and HVA all predict preference

for the shorter terminal link and the initial-
link effect, as well as other results from
concurrent-chains schedules, and they all
reduce to the basic matching law when there
are no terminal links. This should come as no
surprise, because mathematical models are
constrained by empirical results, and no model
that did not account for these well-established
behavioral phenomena would be taken seri-
ously. However, as the preceding discussion
showed, these three models are based on
different assumptions about the nature of
choice behavior (assumptions that can be
comprehended by someone who has no in-
terest in the equations). For CCM, the key
factor is the context in which a choice is made
(or, more specifically, the duration of the
choice period). If the choice period is long
relative to the duration of the terminal links,
then differences between the terminal-link
schedules will have relatively little effect on
preference. The key factor for DRT is delay
reduction: preference depends on the decrease
in time to reinforcement that is signaled by the
onset of a terminal link. For HVA, the key
factor is value (the value of the conditioned
reinforcer associated with each schedule), and
preference depends on the increase in value
that is signaled by the onset of a terminal link.

If there were no way to distinguish among
these different assumptions, it would be point-
less to argue about them. However, when the
assumptions are translated into mathematical
notation, the differences among them are
easier to discern, and it becomes possible to
find cases for which the models make distinctly
different predictions. For example, Savastano
and Fantino (1996) showed that if the two
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terminal links are lengthened by identical
amounts, CCM and DRT predict little or no
change in preference, whereas HVA predicts
less extreme preference with the longer
terminal links. Mazur (2000b) showed that if
a third alternative is added to the typical two-
alternative concurrent-chains schedule, then
there are cases in which both DRT and HVA
predict an increase in preference for whichev-
er of the two original alternatives was pre-
viously favored, whereas CCM predicts no
change or a decrease in preference. Nevin
and Grace (2000) noted that as initial links
become very long, both CCM and DRT predict
that choice responses should approach in-
difference (equal responding for the two
alternatives), whereas HVA predicts continued
preference for the shorter terminal link
(approaching an asymptote of Vt1/Vt2).

I will not evaluate the experiments designed
to test these predictions because it is not the
purpose of this article to advocate for any
specific mathematical model, and in any case,
more than two or three experiments will be
needed to determine conclusively which mod-
el’s predictions are supported and which are
not. The point is that the mathematical form
of these models leads to unambiguous predic-
tions that can be rigorously tested and
contrasted so that their different hypotheses
about the determinants of choice behavior can
be put to an empirical test.

BEYOND THE OPERANT LABORATORY

Once solid evidence for a mathematical
principle is obtained in laboratory research,
it often is possible to use this principle to
predict or control behavior in applied settings.
Herrnstein’s matching law (Equation 1) is
a good example of a mathematical principle
that has been used by psychologists in many
real-world settings. A few examples will help to
give some indication of how broadly this
principle of choice has been applied.

The matching law can be viewed as a princi-
ple of reinforcement relativity. It states that we
cannot predict how much behavior a reinforcer
will generate without knowing what reinforcers
are concurrently available for other activities.
For example, if R1 is held constant at some
specific value (e.g., 40 reinforcers per hour),
B1 (the behavior that produces this reinforcer)
will be greater if R2 (the rate of reinforcement

for alternative behaviors) is low than if it is
high. Bulow and Meller (1998) used this
principle to predict levels of sexual activity
and contraceptive use among teenage girls.
They reasoned that, according to the matching
law, high-risk sexual behavior would be more
common among teenage girls for whom
alternative sources of reinforcement were
relatively scarce. They used the Adolescent
Reinforcement Survey Schedule (Holmes,
Heckel, Chestnut, Harris, & Cautela, 1987) to
determine what activities each girl found
particularly enjoyable, and how frequently
she was able to engage in these activities. This
provided a measure of the rate of reinforce-
ment that was available for nonsexual beha-
viors for each girl. Bulow and Meller found
that girls with fewer alternative sources of
reinforcement tended to engage in more high-
risk sexual activity and that the matching law
did a good job of predicting the levels of
sexual activity for individual girls within
different age, ethnic, and socioeconomic
groups. Applying similar reasoning, Correia,
Simons, Carey, and Borsari (1998) used the
matching law to predict drug use among
college students by measuring the students’
levels of reinforcement for drug-free activities.

The matching law also has been applied to
students’ behaviors in educational settings. We
can think of students in a classroom as having
a choice between doing their academic work
and engaging in other, nonacademic beha-
viors. Martens and Houk (1989) monitored
the behaviors of a girl with mental retardation
in a classroom setting, along with the beha-
viors of the teacher and a teacher’s aide. They
recorded the girl’s on-task and disruptive
behaviors, as well as the reinforcers (e.g.,
instructions, praise, or other forms of atten-
tion) delivered by the teacher and the aide.
They found that the matching law provided
a good description of the relation between the
rates of on-task and disruptive behaviors and
the rates of reinforcement the girl received for
these two classes of behaviors. Going a step
further, Martens, Lochner, and Kelly (1992)
used different VI schedules to increase appro-
priate academic behaviors in third and fourth
graders who had been spending excessive
amounts of time on off-task behaviors, and
they found that the rates of on-task behavior
depended on the rates of reinforcement, as
the matching law predicted. A number of
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other studies have applied the matching law to
classroom behavior (e.g., Billington & DiTom-
maso, 2003; Mace, McCurdy, & Quigley, 1990;
Skinner, Robinson, Johns, Logan, & Belfiore,
1996).

Mathematical models of behavior that are
developed through operant research also can
be used by researchers in other areas of
science, such as neuroscience and psychophar-
macology. As one example, Kheramin et al.
(2002) used the hyperbolic-decay equation for
delayed reinforcers (Equation 5) to assess the
effects of brain lesions on rats’ self-control
choices (choices between a smaller, more
immediate reinforcer and a larger, more
delayed reinforcer). There was evidence from
humans that damage to the orbital region of
the prefrontal cortex (OPFC) leads to an
increased tendency to make impulsive choices
(i.e., to choose the smaller, more immediate
reinforcer). How would lesions in the OPFC
affect self-control choices in rats? To answer
this question, Kheramin et al. gave rats with
OPFC lesions and control rats a series of
choices between a small amount and a larger
amount of a sucrose solution, each delivered
after a delay. The delays for the small and large
reinforcers were varied over trials so that the
researchers could estimate a set of indiffer-
ence points—pairs of delay-amount combina-
tions that the rats chose about equally often.
For example, from one series of choices the
experimenters might find that the small re-
inforcer delivered after a 1-s delay was about

equally preferred to the large reinforcer de-
livered after a 4-s delay. From another series of
choices they might find that the small re-
inforcer delivered after a 5-s delay was about
equally preferred to the larger reinforcer
delivered after a 10-s delay. Their study was
designed to obtain five such indifference
points, both from the rats with OPFC lesions
and from the control rats.

Based on previous research with similar
procedures, Kheramin et al. (2002) expected
that if the delays for the small reinforcers are
plotted on the x axis and the delays for the
equally preferred large reinforcers are plotted
on the y axis, the result should be a linear
function, such as the hypothetical examples
illustrated in Figure 4. Mazur (1987) showed
that the hyperbolic-decay model (Equation 5)
predicts that this indifference function will
have a slope greater than one and a y intercept
greater than zero. But exactly how would the
indifference functions from the rats with
OFPC lesions differ from those of the control
rats? Based on predictions derived from
Equation 5, Kheramin and his colleagues
considered three possibilities, as shown in
the three panels of Figure 4. (The derivations
for all of these predictions are shown in the
Appendix.) Suppose that K, the discounting
rate parameter in Equation 5, is greater for the
rats with OFPC lesions, which means that for
these rats, a reinforcer’s value declines more
rapidly as its delay increases. It follows from
Equation 5 that an increase in K will lead to

Fig. 4. Hypothetical indifference functions illustrating three possible effects of lesions to the orbital prefrontal cortex
in rats. These are different predictions derived from the hyperbolic-decay model (Equation 5), depending on whether
the lesions produce an increase in K (left panel), an increase in sensitivity to reinforcer amount (center panel), or both
(right panel).
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a decrease in the y intercept of the indiffer-
ence function but no change in slope, as in the
left panel of Figure 4. A second possibility is
that OPFC lesions might alter the rats’
sensitivity to the differences in the sizes of
the two reinforcers, as represented by the
parameter A in Equation 5. For example, the
center panel in Figure 4 shows the predictions
of Equation 5 if OPFC lesions increase a rat’s
sensitivity to differences in reinforcer
amounts—the indifference functions should
have steeper slopes and larger y intercepts. A
third possibility is that OPFC lesions might
alter both a rat’s sensitivity to delay and its
sensitivity to reinforcer amount. For instance,
the right panel in Figure 4 shows the predic-
tions of Equation 5 for the case where
sensitivity to delay and sensitivity to amount
both increase as a result of OPFC lesions. In
this example, the slope is steeper for rats with
OPFC lesions, but the y intercept is essentially
unchanged because the effects of an increase
in K (which should decrease the y intercept)
and of an increase in sensitivity to amount
(which should increase the y intercept) tend to
cancel each other out.

In their experiment, Kheramin et al. (2002)
obtained indifference functions very similar to
those in the right panel of Figure 4. Consider
how difficult it would be to interpret this
pattern of results without a suitable mathe-
matical analysis. The differences between
OPFC-lesioned rats and control rats seem to
be inconsistent: The OPFC-lesioned rats were
similar to control rats with short delays, but
they were less impulsive than control rats with
longer delays. Why should this happen? The
mathematical analysis provided by Equation 5
offers an explanation of this pattern of results:
It suggests that the OPFC lesions increased
both sensitivity to delay and sensitivity to
amount of reinforcement, and this is what
Kheramin et al. concluded. This mathematical
analysis also suggests specific ways that this
hypothesis could be tested in future research.
For example, if reinforcer amounts are kept
equal, the model predicts that rats with OPFC
lesions should show a greater tendency to
avoid long delays than control rats (a pre-
diction that may seem counterintuitive in light
of the Khermin et al. data, where the OPFC-
lesioned rats generally accepted longer delays
than the control rats). Conversely, if the
alternatives differ in amount but not delay,

then rats with OPFC lesions should show
a stronger tendency to choose the larger
amount than control rats.

Mathematical models sometimes can give
researchers guidance about what patterns to
look for at the cellular level. When Platt and
Glimcher (1999) studied the neural control of
monkeys’ saccadic eye movements toward
visual targets, they were prompted by research
on the matching law (Equation 1) to examine
how neural activity in a specific area of the
posterior parietal cortex might be affected by
the probability that a reinforcer (fruit juice)
would be delivered following an eye move-
ment. They found that the activity levels of
individual neurons in this brain area were
directly proportional to the probability that an
eye movement toward the target would be
followed by reinforcement. In another exper-
iment, they found that the activity levels of
these neurons also were proportional to the
size of the reinforcer (the amount of juice that
would later be delivered, after a response was
made). Platt and Glimcher concluded that
individual neurons in the parietal cortex
encoded the potential values of the reinforcers
that might follow different possible eye move-
ments, and that this information ultimately
affected the monkeys’ choices (because at
a behavioral level, the monkeys’ choices of
different possible eye movements were consis-
tent with the matching law). They stated, ‘‘In
our free-choice experiment, both monkeys
and posterior parietal neurons behaved as if
they had knowledge of the gains associated
with different actions’’ (p. 238). It remains to
be seen whether additional research will
continue to support this interpretation, but
this is a tantalizing finding because it suggests
a direct parallel between reinforcer value as
measured in behavioral research and the
activity of individual neurons. This is a clear
example of a study on brain mechanisms that
was stimulated by a mathematical model
derived from basic behavioral research.

UNIFYING DIVERSE PHENOMENA

At their best, mathematical models can
provide a common framework for describing
diverse behavioral phenomena. Over a period
of many years, Peter Killeen (1975, 1994;
Killeen, Hall, Reilly, & Kettle, 2002) has
developed and extensively tested a set of
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mathematical principles of reinforcement
(MPR), which are designed to describe the
relation between reinforcement and operant
behavior. At the heart of MPR are three
concepts: activation, temporal constraint, and
coupling, each of which is represented by
a parameter in the model. The activation
parameter represents the number of seconds
of responding activated by each incentive (e.g.,
each food delivery), the temporal constraint
parameter is the amount of time needed to
complete one response, and the coupling
parameter is based on the animal’s memory
for recent events. Loosely speaking, the
coupling parameter measures the strength of
association between responses and reinforcers.

Beginning with these basic concepts, Killeen
(1994) used a series of equations to derive
predictions about behavior under a variety of
different reinforcement schedules, and he
compared these predictions to the data from
many different experiments. For instance, he
showed that for ratio schedules, MPR correctly
predicts that response rates should first in-
crease to a maximum and then decrease as
ratio size is increased. For VI schedules, it
correctly predicts a curvilinear increase in
response rates with increasing rates of re-
inforcement (see Figure 5, top right panel).
For FI schedules, it correctly predicts an
increase and then decrease in response rates
with increasing rates of reinforcement.

The ability of a single model to predict
response rates successfully on these different
reinforcement schedules is no small achieve-
ment because the different schedules specify
very different feedback functions between be-
havior and reinforcement. However, MPR can
do much more than this. By sensible manipu-
lation of the model’s parameters, it can account
for the effects of a variety of different experi-
mental manipulations, such as variations in the
amount of force required to make a response
(Heyman & Monaghan, 1987), response topog-
raphy (McSweeney, 1978), level of deprivation
(Snyderman, 1983), and hypothalamic lesions
(Kelsey & Allison, 1976). In addition, Bizo and
Killeen (1997) showed that MPR can be used to
predict, not only overall response rates, but the
fine structure of responding on ratio and
interval schedules. For example, they showed
that the model can predict the durations of
postreinforcement pauses and running re-
sponse rates (response rates excluding the

postreinforcement pause) on FR schedules of
different sizes (see the left panels of Figure 5).

MPR also has been applied to a wide range
of other results. In his early work on the
activation parameter, Killeen (1975) demon-
strated how his equations predicted beautifully
the increases and decreases in the general
activity levels of different species between
individual food presentations. For example,
the bottom right panel of Figure 5 shows
activity levels of pigeons under different drugs
when they received food deliveries every 60 s.
The pigeons’ activity levels (measured by
movement sensors in the floor of the test
chamber) first increased and then decreased
as the 60-s interval progressed, and Killeen’s
model described the activity patterns very well.
Besides predicting steady-state performance
on different reinforcement schedules, MPR
has been applied to the dynamic features of
operant responding. That is, it has been used
to predict operant responding during periods
of acquisition, as when an animal is learning
a new response or when it is adapting to a new
reinforcement schedule (e.g., Killeen, 1994;
Killeen & Bizo, 1998).

Killeen’s MPR provides a good example of
a mathematical model that can account for
a wide range of results, including both the fine
structure of responding on reinforcement
schedules and overall response rates, acquisition
and steady-state performance, the effects of
reinforcers on general activity, and so on.
Without such a model, we might have the
intuition that these different aspects of operant
behavior are related: It seems reasonable to
suppose that principles that can predict the fine
structure of operant responding should be able
to yield predictions about overall response rates,
and that the same variables that affect behavior
during acquisition should continue to operate
once behavior has stabilized. However, in the
absence of a model that makes quantitative
predictions, assertions such as ‘‘the same prin-
ciples of reinforcement govern both acquisition
and long-term performance’’ are little more
than hand waving. It is only when a theory makes
specific, quantitative predictions, and when
these predictions are tested against actual data,
that we can have any real confidence in such
a general statement. As the examples through-
out this paper have shown, one of the greatest
benefits of using mathematical models is that
they generate precise and testable predictions.

286 JAMES E. MAZUR



CONCLUSIONS

The purpose of this article has been to
demonstrate some of the advantages of math-
ematical models in the experimental analysis
of behavior. Mathematical models offer a num-
ber of benefits to psychologists:

1. Translating a verbal hypothesis into
a mathematical model forces a theorist
to be precise and unambiguous, and this
can point to ways of testing competing
theories that sound as if they make similar

predictions when they are stated in words
(as in the comparison of the negative law
of effect and the avoidance theory of
punishment).

2. Even when the shapes of two mathemat-
ical functions are quite similar (such as
the hyperbolic and exponential delay-of-
reinforcement functions in Figure 2),
these functions may make distinctly dif-
ferent predictions about behavior with
profound theoretical and applied implica-
tions. In this example, the hyperbolic

Fig. 5. The application of Killeen’s mathematical principles of reinforcement (MPR) to a variety of different
behavioral phenomena. The theoretical curves in each panel show the best-fitting predictions of MPR. Left panels:
Pigeons’ overall response rates, postreinforcement pauses (PRP), and running response rates on FR schedules of
different sizes (from Bizo & Killeen, 1997, along with some data from a previous study by Felton & Lyon, 1966). Top right
panel: Pigeons’ response rates on VI schedules with different rates of reinforcement under different levels of food
deprivation (from Killeen, 1994, using data from Heyman & Monaghan, 1987). Bottom right panel: Pigeons’ activity
levels in the 60-s intervals between food presentations after being given different drugs (from Killeen, 1975).
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function predicts that people will often
exhibit preference reversals in self-control
choice situations as time passes, whereas
the exponential equation predicts no
preference reversals (unless one makes
additional assumptions about changing
parameter values, assumptions that can
then be tested to see whether they actually
apply).

3. In some cases, competing mathematical
models may account for large data sets
about equally well. But unless they are
actually mathematically equivalent, differ-
ent mathematical models are based on
different assumptions about the psycho-
logical processes underlying an observed
behavior. For example, CCM, DRT, and
HVA can each account for a wide range of
results from concurrent-chains schedules,
but they assume different principles of
choice behavior (dependence on context,
vs. delay-reduction, vs. value-addition). If
we want to understand the determinants
of choice behavior, it is important to know
which of these three assumptions is most
useful.

4. Mathematical models of behavior that are
developed through basic behavioral re-
search can be used to predict or control
behavior in applied settings. The models
have been used in neuroscience and
psychopharmacology to help researchers
identify the functions of different brain
structures and to assess the behavioral
effects of different drugs.

5. A mathematical model can provide a com-
mon framework that unites diverse behav-
ioral phenomena. Killeen’s (1994) MPR
was presented as an example of a mathe-
matical model that has been applied to
a wide range of behavioral phenomena,
but it is by no means the only one. Other
examples include the Rescorla-Wagner
model of classical conditioning (Rescorla
& Wagner, 1972), Gibbon’s (1977) scalar
expectancy theory of timing, and Nevin’s
(1992) theory of behavioral momentum, to
name just a few.

Although some of these models are relative-
ly straightforward (e.g., those representing the
negative law of effect and the avoidance theory
of punishment), for others the equations are

quite complex, as are the derivations that allow
them to be applied to specific examples,
and not everyone is able to follow them. This
is one of the drawbacks of mathematical
modeling, but it is a cost that is more than
offset by the advantages. The mathematical
precision of these theories allows them to be
tested rigorously, and in testing these theories
their strengths can be demonstrated and their
weaknesses can be exposed. For instance, the
Rescorla-Wagner model is a landmark in the
field of classical conditioning, and it has stimu-
lated a great deal of research. However, the
Rescorla-Wagner model does have some well-
documented limitations, and these have
prompted the development of alternative
models (e.g., Hall & Pearce, 1983; Mackintosh,
1975; Miller & Schachtman, 1985; Wagner,
1981). Because of the empirical and theoret-
ical work that was stimulated by the Rescorla-
Wagner model, we now have a much better
understanding of the richness and complexity
of classical conditioning than we did before
this model was introduced.

In a commentary about some competing
mathematical models of timing, Killeen (1999)
wrote: ‘‘If you think models are about the
truth, or that there is a best timing model,
then you are in trouble. There is no best
model, any more than there is a best car model
or a best swimsuit model, even though each of
us may have our favorites. It all depends on
what you want to do with the model’’ (p. 275).
Those who do not enjoy studying mathemat-
ical models might take this statement (from
a preeminent mathematical modeler) as an
excuse to avoid them. Why bother putting in
the time and effort to understand current
mathematical models of behavior when there
is no best model, and when they all have their
weaknesses and limitations? Killeen addresses
this issue by asserting that ‘‘all understanding
involves models—reference to systems that
exist in a different domain than the thing
studied. Loose models make vague reference
to ambiguous and ad hoc causes. Tighter
models are more careful about definitions
and avoid gratuitous entities. Models of
phenomena are not causes of phenomena;
they are descriptions of hypothetical structures
or functions that aid explanation, prediction,
and control’’ (p. 276).

In this article, I have argued that mathemat-
ical models are often ‘‘tighter models’’ than

288 JAMES E. MAZUR



verbal descriptions of behavioral principles,
and that they are essential to continu-
ed progress in the experimental analysis
of behavior. Mathematical models can make
precise and important statements about be-
havioral processes that are relevant to anyone
who is interested in explaining, predicting, or
controlling behavior, either in the laboratory
or in applied settings. Communication be-
tween those students of behavior who routine-
ly use mathematical models and those who do
not should be a two-way street. Those who do
not enjoy mathematics can nevertheless bene-
fit from the theoretical advances that result
from the development and testing of mathe-
matical models of behavior. And those who
specialize in mathematical models can make
an effort to find nonmathematical ways (such
as verbal descriptions, analogies, diagrams, or
concrete examples) to communicate the es-
sential ideas that are contained in the math-
ematical notation to as wide an audience as
possible.

These alternative ways of expressing mathe-
matical concepts often can be very helpful. For
example, science writers have found many
ingenious ways to explain Einstein’s theory of
relativity to general readers by using thought
experiments, diagrams, animations, analogies,
and other devices. As a result, although I have
never studied the mathematical equations of
general relativity, I feel that I have a basic
understanding of the theory and what it has to
say about time, space, matter, energy, gravity, the
speed of light, and so on. If it is possible to
explain, to a general audience, concepts so far
removed from everyday experience as travel near
the speed of light or the conversion of matter
into energy, then it certainly should be possible
to explain a mathematical model of behavior to
someone who is not comfortable with mathe-
matics. Even though a nonmathematical trans-
lation may lose some of the precision of the
mathematical model, it can still convey the
essential point (e.g., from the matching law,
the idea that the effects of reinforcement are
relative, or from scalar expectancy theory, how
accuracy in temporal discrimination depends on
stimulusduration). If thevalueofamathematical
model depends on how it is used, then those who
develop mathematical models in psychology
should be eager to promote their use, not just
by other specialists, but by anyone interested in

the explanation, prediction, and control of
behavior.
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APPENDIX

The hyperbolic model (Equation 5) makes
specific predictions about how the shapes of
indifference functions should change as a re-
sult of changes in K or in sensitivity to
reinforcer amounts. Suppose that an animal
is given a series of choices between a smaller,
more immediate reinforcer and a larger, more
delayed reinforcer. We can begin by assuming
that at an indifference point (where the
animal chooses the two alternatives equally
often), VS 5 VL, where S refers to the smaller
reinforcer and L to the larger reinforcer. It
follows from Equation 5 that AL/(1 + KDL) 5
AS/(1 + KDS).

To obtain the model’s predictions shown in
Figure 4, in which DL (on the y axis) is plotted
as a function of DS (on the x axis), we can solve
this equation for DL, which yields DL 5 (AL/
AS)DS + (AL/AS 21)/K . This is a linear
equation with a slope of AL/AS and a y
intercept of (AL/AS 21)/K .

Three different possible consequences of
some procedural manipulation (e.g., brain
lesions) are considered in Figure 4:

1. If the manipulation causes an increase in
K (signifying more rapid decreases in
reinforcer value as delay increases), this
will cause a decrease in the y intercept but
no change in slope, as shown in the left
panel of Figure 4.

2. If the manipulation causes an increase
in sensitivity to the differences in re-
inforcer amounts, this will lead to an
increase in the ratio AL/AS (that is, the
animal is now more sensitive to the
differences in the sizes of the two re-
inforcers). Because the ratio appears in
the expressions for both the slope and the
y intercept, the model predicts that the
result will be an increase in both the slope
and the y intercept, as shown in the center
panel of Figure 4.

3. If the manipulation causes increases
in both K and in sensitivity to amount,
then the equation predicts an increase
in slope (for the same reason as in
the previous case). However, it also pre-
dicts that the effects of the changes in K
and in sensitivity to amount will tend to
have offsetting effects on the y intercept
because the increase in K should produce
a decrease in the y intercept but the
increase in AL/AS should produce an
increase in the y intercept. This possibility
is depicted in the right panel of Figure.

4. Because the indifference functions ob-
tained by Kheramin et al. (2002) were very
similar to those in the right panel, these
researchers concluded that OPFC lesions
cause increases in both K and in sensitivity
to reinforcer amount.
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