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Abstract
Adoptive cell transfer after host preconditioning by lymphodepletion represents an important
advance in cancer immunotherapy. Here, we describe how a lymphopaenic environment enables
tumour-reactive T cells to destroy large burdens of metastatic tumour and how the state of
differentiation of the adoptively transferred T cells can affect the outcome of treatment. We also
discuss how the translation of these new findings might further improve the efficacy of adoptive cell
transfer through the use of vaccines, haematopoietic-stem-cell transplantation, modified
preconditioning regimens, and alternative methods for the generation and selection of the T cells to
be transferred.

Substantial progress has been made in our understanding of the molecular and cellular bases
of T-cell-mediated antitumour responses. CD8+ T cells have been identified as potent effectors
of the adaptive antitumour immune response1,2. The target antigens that are recognized by
tumour-reactive CD8+ T cells have been shown to be mostly non-mutated self-antigens that
are also expressed by tumour cells (and these antigens are denoted here self/tumour antigens)
1,2. Tumour-specific CD4+ T cells have been also identified, but their functionality can be
manifold because CD4+ T cells can help or hinder anti-tumour immune responses3–5. The
molecular signals that modulate T-cell activation, function and memory are currently being
elucidated. Both positive and negative signals from co-stimulatory molecules have been shown
to shape the antitumour response6,7. Cytokines, including those signalling through receptors
that contain the common cytokine-receptor γ-chain (γc), have been shown to alter the
programming of effector CD8+ T cells8,9.

Despite a wealth of knowledge relevant to basic aspects of tumour immunology, the clinical
realization of effective therapeutic vaccines for solid tumours has not yet been convincingly
achieved. Enthusiasm about the effectiveness of cancer vaccines has often been grounded in
surrogate and subjective endpoints, rather than reliable objective cancer regressions using
standard oncological criteria. In a recent review of 1,306 vaccine treatments, including those
conducted in the Surgery Branch at the National Cancer Institute (NCI), Maryland, USA, a
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3.3% overall objective response rate was observed10. Results such as these highlight the need
to improve current cancer vaccines11 and to develop alternative immunotherapeutic strategies
for the treatment of metastatic cancer10.

Cancer vaccines aim to stimulate the adaptive arm of the immune system directly in vivo.
‘Active immunotherapy’ with therapeutic vaccines has been attempted despite the presence of
many redundant negative influences of the host immune system5,12 and tumour
microenvironment13,14. By contrast, adoptive cell transfer (ACT) therapies achieve T-cell
stimulation ex vivo by activating and expanding autologous tumour-reactive T-cell populations
to large numbers of cells that are then transferred back to the patient15–17. Early attempts of
ACT therapies using tumour-infiltrating lymphocytes (TILs) and immunoreplete patients met
with some success18. However, previous preclinical studies indicated that immune ablation is
an effective preconditioning regimen that can increase T-cell responses after adoptive
transfer19,20. We have now reported that adoptive transfer of TILs after non-myeloablative,
but lymphodepleting, systemic chemotherapy (FIG. 1) can induce clear and reproducible
responses in a substantial percentage (~50%) of patients21,22. Notably, dramatic tumour
regressions can be elicited in patients with multivisceral, bulky melanoma that is refractory to
standard treatments including chemotherapy, radiation and cytokine therapies (FIG. 2).

Here, we describe the mechanisms by which the transfer of tumour-reactive T cells into a
lymphopaenic recipient mediates tumour regression, and the phenotypic and functional
characteristics of tumour-specific T cells that induce antitumour responses in vivo. These
factors provide the bases for rational design of new ACT-based immunotherapies that
incorporate vaccines, increased intensity preconditioning regimens with haematopoietic stem
cell (HSC) transplantation, and alternative methods for the generation and selection of T cells
for transfer.

Lymphodepletion increases the efficacy of ACT
It has long been observed in mice that depletion of immune cells before ACT can markedly
improve the antitumour efficacy of transferred CD8+ T cells19,20, but the specific mechanisms
that contribute to this increased immunity have only recently begun to be elucidated. Although
it seems counter-intuitive that the efficacy of ACT-based tumour immunotherapy can be
improved by the removal of the host immune system, several mechanisms might underlie the
augmented efficacy of tumour-reactive T cells in the lymphopaenic environment. These factors
include the elimination of immunosuppressive cells such as CD4+CD25+ regulatory T (TReg)
cells, the depletion of endogenous cells that compete for activating cytokines, and the increased
function and availability of antigen-presenting cells (APCs) (FIG. 3).

Elimination of immunosuppressive cells
TReg cells are crucial for the maintenance of peripheral self-tolerance and for the suppression
of antitumour responses5. TReg cells represent a unique T-cell lineage that is characterized by
expression of the transcription factor forkhead box P3 (FOXP3) and high levels of expression
of cell-surface molecules associated with T-cell activation, including CD25 (also known as
IL-2Rα ), glucocorticoid-induced tumour-necrosis factor (TNF)-receptor-related-protein
(GITR) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA4)5. However, exclusive
molecular signatures for human TReg cells do not currently exist because activation of CD4+

T cells can also result in upregulation of FOXP3 expression23. Experiments using mice lacking
TReg cells, owing to specific gene defects, as well as the ‘add-back’ of these cells, have
convincingly shown that they suppress the antitumour activities of adoptively transferred self/
tumour-reactive T cells24. Augmented antitumour responses were observed after ACT of self/
tumour-reactive effector CD8+ T cells to tumour-bearing Cd4−/ −, but not Cd8−/ −, mice,
indicating that the immunoregulatory cells are contained in the CD4+ T-cell population. The
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suppressive activity was restricted to the CD25+ T-cell subset because transfer of
CD4+CD25+ TReg cells alone, or in combination with CD4+CD25− T helper (TH) cells,
inhibited effective immunotherapy in lymphopaenic mice. By contrast, transfer of TH cells
alone resulted in profound autoimmunity and eradication of established tumour. Interstingly,
the maintenance and function of effector CD8+ T cells required the presence of TH cells that
were able to produce interleukin-2 (IL-2)24.

The immunosuppressive role of TReg cells in patients with cancer has only recently begun to
be explored. TReg cells, which are over-represented in tumour lesions from patients with
melanoma and lung cancer, can inhibit the function of infiltrating T cells25,26, and TReg cells
specific for melanoma antigens have been described4. Reduced survival was reportedly
associated with increased tumour infiltration by TReg cells in patients with ovarian cancer27,
although these findings have been recently contradicted28. Therefore, at present, no conclusive
data link the in vivo function of TReg cells and the progression of cancer. Nevertheless, the
suppressive effects of TReg cells might contribute to the poor clinical response rates reported
in patients with cancer who receive immunotherapy in non-lymphodepleting settings. Selective
elimination of TReg cells29 from TILs of patients might further improve the efficacy of ACT
approaches in the lymphodepleting setting, because TReg-cell proliferation can be increased
by the lymphopaenic environment and the presence of exogenous IL-2 (REFS 30,31).
Furthermore, removal of TReg cells from peripheral-blood lymphocytes (PBLs) might generate
a population of cells that is enriched for TH cells that are able to bolster the response of self/
tumour-specific CD8+ T cells in vivo24.

Other immune cells, including natural killer (NK) cells, natural killer T (NKT) cells and
CD11b+Gr1+ myeloid suppressor cells (MSCs), have been shown to dampen T-cell
function32–34. Little is known about the immunosuppressive activities of NK and NKT cells,
although a perforin-dependent immunosuppressive mechanism has recently been reported for
NK cells33. More is known about MSCs, which are a heterogeneous population of cells that
comprises myeloid cells at various stages of differentiation, including monocytes, granulocytes
and a subset of immature myelo-monocytic cells34. Increased frequencies of MSCs are found
in conditions characterized by impaired T-cell function, including tumours and chronic
infections34. In mice and humans, MSCs can infiltrate the tumour bed and inhibit T-cell
responses through mechanisms involving direct contact with tumour-reactive T cells, L-
arginine consumption and the release of L-arginine metabolism products35,36. Depletion of
MSCs using a Gr1-specific antibody can result in protection from tumour challenge37.
Therefore, removal of MSCs, and thereby their suppressive activity, might contribute to the
increased antitumour T-cell responses observed after ACT in patients that have been
lymphodepleted.

Minimizing cellular cytokine sinks
Transfer of small numbers of antigen-specific T cells into a lymphopaenic host results in the
expansion and activation of the transferred T-cell population, a process that is known as
homeostatic proliferation38–40. In the lymphopaenic environment, antigen-experienced T
cells proliferate independently of self-peptide–MHC complexes40. However, either co-
transferring an ‘irrelevant’ population of T cells or increasing the number of transferred cells
can reduce the level of homeostatic proliferation in a dose-dependent manner, showing that
other elements exist that limit homeostatic proliferation39–41. Although host-mediated
inhibition of the proliferation of adoptively transferred T cells might involve direct cellular
contact, competition might also exist between transferred and host T cells for a limited amount
of the cytokines that are required to support CD8+ T-cell homeostasis; such competition is
known as the ‘cytokine sink’ effect12,42.
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The importance of the availability of these cytokines has been shown in experiments in which
mice deficient for IL-7 or IL-15 showed impaired homeostatic maintenance and proliferation
of memory CD8+ T cells43–45. Conversely, transgenic mice overexpressing IL-7 or IL-15
have increased numbers of T cells, owing to the preferential expansion of the memory
CD8+CD44hi T-cell population46,47. In the pmel-1 mouse model of ACT therapy48,
lymphodepletion before cell transfer increased the persistence of self/tumour-specific T cells,
as well as their effector function and tumour regression, compared with immunoreplete
hosts42,49. In mice deficient for both IL-7 and IL-15, the beneficial effect of ablation was
completely abrogated42. Conversely, increased antitumour responses were seen when these
cytokines were exogenously administered and when the host lymphocytes competing for these
cytokines were removed by using mice lacking both recombination-activating gene 2 (Rag2)
and γc

42. These findings show that a key mechanism underlying the improved efficacy of ACT
therapies after lymphodepletion is the transient eradication of endogenous lymphocytes, which
serve as cellular cytokine sinks42.

Elucidating the specific endogenous cellular components that function as cytokine sinks is
important for understanding the mechanism by which lymphodepletion augments the
effectiveness of ACT-based therapies. In Rag1−/ − mice (which, unlike Rag2−/ −γc

−/ − mice,
lack B cells and T cells but do have NK cells), more extensive tumour regression was observed
in irradiated recipients than in non-irradiated recipients, whereas in Rag2−/ −γc −/ − hosts, ACT
treatment became so efficacious that it was difficult to detect the effects of irradiation42. This
finding, coupled with the observation that depletion of cells expressing NK1.1 (using an
NK1.1-specific antibody) improves the efficacy of ACT therapy in tumour-bearing Rag1−/ −
mice42, implicates NK cells as key effectors of the cytokine sink effect, a process that might
be mediated by consumption of IL-15, a crucial cytokine for the survival and proliferation of
NK cells in vivo50,51.

IL-2, another cytokine that signals through a receptor containing γc, is a T-cell growth factor
that is commonly used to promote the expansion and function of tumour-specific T-cell
populations in vitro and in vivo15. Perhaps more importantly, IL-2 is essential for the
maintenance of peripheral self-tolerance52. Mice deficient in either IL-2 or components of the
IL-2 receptor spontaneously develop lymphoproliferative and autoimmune disorders52. These
observations have been linked to impaired TReg-cell homeostasis and ‘metabolic fitness’ in
vivo, rather than suppressive function, because TReg cells from either IL-2- or IL-2Rα (CD25)-
deficient mice are competent when tested in in vitro assays of suppressive function53.
However, more recent findings have shown that in vivo IL-2 signalling is important not only
for maintaining TReg-cell ‘fitness’ but also for their suppressive function54,55. Antitumour
activity of adoptively transferred self/tumour-specific CD8+ T cells was inhibited in wild-type,
but not IL-2Rα -deficient, mice despite both having comparable numbers of FOXP3+ TReg
cells54. Furthermore, blockade of IL-2Rα with specific antibody can induce profound
autoimmunity resulting from impaired TReg-cell function, rather than depletion of these
cells55. These results indicate that in vivo immunoregulation by TReg cells might, in part, be
a product of their constitutive expression of the component of the IL-2 receptor that confers
the highest affinity for IL-2, IL-2Rα , and their increased capacity to consume IL-2 (REFS
54,56). Therefore, removal of TReg cells by lymphodepletion might result in increased
antitumour reactivity of adoptively transferred CD8+ T cells, not only by the elimination of
direct cellular inhibition but also through increased availability of IL-2.

Improved APC function and availability
Systemic chemotherapy and total body irradiation have both been used before ACT to deplete
the lymphoid compartment of the host and create a niche for the transferred cells. Investigators
have long hypothesized that these treatments might also cause necrosis or apoptosis of tumour
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cells, resulting in APC uptake of tumour antigens and the subsequent cross-presentation of
these antigens to the adoptively transferred tumour-reactive CD8+ T cells57. Although
lymphodepletion can reduce the absolute number of APCs in vivo, it can also promote their
transition to an activated state58,59. In mice, the expression of the activation markers CD86
and I-Ab (an MHC class II molecule) has been reported to be upregulated on the surface of
splenic dendritic cells (DCs) after irradiation59. Furthermore, DCs that were isolated after
irradiation released substantially more IL-12 than DCs that were isolated from non-irradiated
mice59. Activation of DCs after chemotherapy or irradiation might be triggered by
translocation of bacterial products, such as lipopolysaccharide (LPS) and other Toll-like
receptor (TLR) agonists, into the blood following damage to the integrity of mucosal
barriers60. The production of pro-inflammatory cytokines such as TNF, IL-1 and IL-4 by host
cells might also be involved in mediating DC maturation58,61–63. In addition, the
lymphopaenic environment might facilitate the activation of transferred self/tumour-reactive
T cells through decreased competition at the surface of antigen-bearing APCs64. Although the
net effect of lymphodepletion on APC function is less clear than its impact on TReg cells and
cellular cytokine sinks, ablation might ultimately increase the antitumour reactivity of
transferred T cells by increasing the activation and availability of APCs.

T-cell differentiation state and ACT
Lymphodepletion can have a marked impact on treatment with ACT-based immunotherapies,
but it is not the only factor responsible for affecting clinical responses. Emerging findings from
both mouse studies and clinical trials indicate that intrinsic properties related to the
differentiation state of the adoptively transferred T-cell populations are crucial to the success
of ACT-based approaches65–68.

CD8+ T-cell subsets in both mice and humans can be categorized into distinct differentiation
states on the basis of phenotypic and functional attributes69,70 (FIG. 4). A progressive pathway
of CD8+ T-cell differentiation69,70 has gained acceptance based on the findings of ex vivo
phenotypic analyses of virus-specific T cells69, measurement of telomere length71, gene-
expression profiling72 and in vitro differentiation studies65,71. Within this model, activation
of naive CD8+ T cells results in proliferation and progressive differentiation through early,
intermediate and late effector stages depending on signal strength70 (FIG. 4). Memory
CD8+ T cells might reflect T cells arrested at intermediate stages of the differentiation
pathway73,74, but there remains some debate regarding the pathways by which effector and
memory T cells develop75.

The phenotypic and functional characteristics of self/tumour-specific CD8+ T cells that are
associated with optimal in vivo tumour responses in the pmel-1 mouse model of ACT therapy
have recently been elucidated65. Self/tumour-specific CD8+ T cells at progressive stages of
differentiation were generated using multiple in vitro stimulations with antigen. Surprisingly,
CD8+ T cells that acquired terminal effector properties and had increased antitumour activity
in vitro were found to be less effective at triggering tumour regression in vivo. Terminally
differentiated CD8+ T cells were nearly 100-fold less effective in vivo on a per-cell basis than
T cells at an early stage of differentiation. Similar findings have been reported by other groups
using different mouse tumour76,77 and allogeneic HSC transplantation78,79 models. In
vitro expansion of T cells for ACT — as it is currently performed for clinical use — induces
progressive CD8+ T-cell differentiation towards a late effector state, resulting in phenotypic
and functional changes that make T cells less ‘fit’ to mediate antitumour responses in vivo and
less able to benefit from the activating cues present in the lymphopaenic host (FIG. 4). For
example, less-differentiated, central-memory-like T cells have a high proliferative potential,
are less prone to apoptosis than more differentiated cells and have a higher ability to respond
to homeostatic cytokines, ,ecause they express receptors such as the IL-7 receptor α -chain
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(IL-7Rα)65,75,80,81. Therefore, less-differentiated, central-memory-like T cells might
proliferate and become fully activated in the lympho paenic environment, which is rife with
homeostatic cytokines such as IL-7.

Similar to mouse studies, ACT of human tumour-reactive CD8+ T-cell clones that were
generated and expanded ex vivo through multiple stimulations did not meditate objective
responses in either immunoreplete16 or immunodepleted patients82. T-cell clones used for
therapy were highly avid and showed potent tumour-specific cytolytic activity in vitro, but
they did not persist after infusion, indicating that they were in a state of terminal
differentiation16,82 (FIG. 4).

The importance of trafficking to lymph nodes
Tumour immunologists have long sought to cause T cells to specifically traffic to their tumour
targets83,84. The loss of expression of the lymphoid homing molecule CD62L and the
acquisition of CD44 expression were reported to be associated with increased antitumour
effects of adoptively transferred T cells76,85. However, it is now clear, in both tumour and
viral models, that T cells that can home to secondary lymph nodes, where they can be effectively
stimulated by DCs, are more effective in adoptive immunotherapy65,75,81. Indeed, tumours
alone are inefficient at triggering effective immune responses65,81,86. Antitumour responses
were abrogated in hosts devoid of peripheral lymphoid tissues and with a disrupted splenic
structure81. Furthermore, after transfer, CD62L-deficient self/ tumour-reactive CD8+ T cells
were markedly impaired in their ability to inhibit tumour growth compared with CD62L-
sufficient T cells65,81. Similarly, CD62L-deficient T cells were less effective at mediating
alloresponses in an allogeneic HSC transplantation model78. Therefore, downregulation of
expression of lymph-node homing molecules at the intermediate and late stages of effector
CD8+ T-cell differentiation can result in impairment of their antitumour capacity. However,
the principle that T cells must home to lymph nodes to be effective has not been established
in humans. Despite the lack of expression of lymph-node homing molecules, adoptively
transferred CD62L−CCR7− TILs87 were able to engraft, proliferate and ultimately induce
objective responses in ~50% of patients21,22.

Co-stimulatory molecules and T-cell persistence
Transition from an early to an intermediate effector stage is marked by downregulation of
CD28 expression. Interaction of CD28 with CD80 and/or CD86 on APCs amplifies T-cell
receptor (TCR)-mediated T-cell activation and proliferation88. Secretion of IL-2, induction of
anti-apoptotic molecules and accelerated cell-cycle progression have been reported for CD28-
expressing T cells88,89. The role of CD28 expression in ACT-based clinical trials has been
recently investigated in detail. Tumour-specific TILs express low, but detectable, levels of
CD28 (REF. 87). After cell infusion, immediate and high expression of CD28 was detected on
circulating tumour-reactive T cells, indicating that either rapid upregulation of CD28
expression or early selective expansion and survival of the CD28+ T-cell population had
occurred. Analysis of persisting and non-persisting TIL clones indicates preferential survival
of the clonotypes expressing the highest levels of CD28, implicating a survival advantage for
transferred T cells with an early effector phenotype67,68.

Engagement of the co-stimulatory molecule CD27 can also augment TCR-induced T-cell
proliferation and is required for the generation and maintenance of memory T cells in
vivo90,91. Consistent with a late effector state, T cells lacking CD27 have been shown to have
potent cytolytic function and secrete little IL-2 (REF. 75). In the pmel-1 mouse model, self/
tumour-specific late effector cells were less effective at mediating tumour regression after
adoptive transfer relative to early effector T cells that express high levels of CD27 (REF. 65).
Moreover, the administration of soluble CD27 ligand, CD70, augmented in vivo CD8+ T-cell
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responses to viral infection and tumour challenge by increasing the expansion and maintenance
of the antigen-specific T-cell population, indicating that CD27 expression is not only a marker
of less-differentiated T cells but also functionally crucial for optimal immune responses92. In
the clinical arena, a statistically significant difference in the frequency and number of CD27-
expressing cells could be found in bulk TIL populations from responding versus non-
responding patients when IL-2 was withdrawn93. After ACT, the frequency of TILs expressing
CD27 gradually increased and was associated with the long-term maintenance of stable
numbers of tumour-specific T cells in responding patients87. This result, and findings from
viral studies, predicts that T cells that express CD27 selectively persist in vivo, giving rise to
a stable population of memory CD8+ T cells87,94.

Homeostatic cytokine signals and T-cell persistence
Increased access to homeostatic cytokines has been shown to be crucial for the enhanced
antitumour responses that occur following ACT to lymphodepleted hosts8,12,42. Homeostatic
signals can be regulated by both the availability of cytokines in the host and the level of
expression of the cytokine receptors on the surface of transferred CD8+ T cells. Expression of
IL-7Rα by a subset of effector CD8+ T cells might identify precursors that are destined to
become long-lived memory cells80. IL-7Rα low self/tumour-specific late effector CD8+ T cells
transferred to tumour-bearing mice persisted at decreased numbers and were less effective at
inducing antitumour responses than were IL-7Rα hi early effector CD8+ T cells65. In patients,
IL-7Rα was expressed at low levels on all TIL populations at the time of ACT, but it was
upregulated immediately after infusion on the surface of robustly proliferating tumour-specific
T cells that persisted87. Therefore, IL-7 signalling seems to be important for the immediate
and long-term survival of tumour-specific T cells after ACT.

IL-15Rα was weakly expressed by most TILs used for ACT and, unlike IL-7Rα, was not
upregulated on persisting tumour-specific T cells after ACT87. However, IL-15 signalling
might remain intact because trans-presentation of IL-15 by APCs and stromal cells can
occur95.

T-cell persistence and antitumour response
Because IL-2 is provided both in vitro during expansion of T-cell populations and in vivo in
the immediate aftermath of cell infusion, tumour-reactive CD8+ T cells might undergo
apoptosis after IL-2 withdrawal96. Because early effector T cells have the capacity to release
IL-2, selective survival of these cells might occur in an autocrine fashion65. In addition, early
effector T cells have survival advantages over intermediate and late effector T cells, as reflected
by the expression of lower levels of the pro-apoptotic molecules BID (B-cell lymphoma 2
(BCL-2)-homology domain 3 (BH3)-interacting-domain death agonist), BAD (BCL-2-
antagonist of cell death) and CD95L (CD95 ligand; also known as FASL), and higher levels
of anti-apoptotic molecules65,81. The intrinsic proliferative capacity of adoptively transferred
T cells might also affect their ability to engraft and persist. Increased proliferation of the early
effector T-cell subset has been seen in vitro and in vivo following stimulation with cognate
antigen65. In parallel with T-cell proliferation and progressive differentiation, gradual
telomere erosion occurs until a critical degree of shortening (termed the Hayflick limit) results
in chromosomal abnormalities, and cell death or senescence97. This process might be partially
compensated for by telomerase activity97. Therefore, telomere length and telomerase activity
can influence T-cell replicative capacity. Interestingly, recent analyses of human TILs have
shown a correlation between the length of the telomeres of the transferred cells and persistence
of T cells in vivo following ACT, indicating that in addition to tumour-antigen recognition, the
intrinsic proliferative capacity of adoptively transferred T cells might also be a factor affecting
persistence and successful tumour treatment68.
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Optimizing tumour-reactive T cells for ACT
The finding that less-differentiated, central-memory-like T cells might be the optimal
population for ACT-based immunotherapies raises a clinical problem. Data from animal
studies indicate a direct correlation between the number of adoptively transferred T cells and
antitumour responses in vivo, leading to the idea that large numbers of tumour-reactive T cells
must be administered to patients to obtain therapeutically effective antitumour responses65,
76. Therefore, in clinical trials, tumour-reactive CD8+ T-cell populations are expanded to large
numbers in vitro with CD3-specific antibody plus IL-2 or with specific-antigen plus IL-2,
which drives differentiation of T cells to intermediate and late effector stages of
differentiation16,22,82. New findings in mice emphasize that the quantity of transferred T cells
is an important factor when T cells with the same quality and fitness are being used for ACT.
Increased antitumour responses were observed after adoptive transfer of low numbers of
‘fit’ (early effector) T cells compared with high numbers of ‘unfit’ (late effector) T cells65,
76. Therefore, one of the greatest challenges in the field is currently the generation of large
numbers of ‘fit’ T cells for ACT.

Modifications of current in vitro protocols for expanding T-cell populations
Using a standard rapid expansion protocol, TILs for transfer are selected and populations are
expanded for about 2 weeks with CD3-specific antibody, high doses of IL-2 and irradiated
allogeneic feeder cells22 (FIG. 1). This procedure results in the differentiation of tumour-
specific CD8+ T cells to an intermediate and late effector state. Limiting the in vitro expansion
phase to a short duration might markedly improve the ‘fitness’ of the transferred T cells because
a greater percentage of tumour-reactive T cells express CCR7, co-stimulatory molecules and
IL-7Rα , and are actively dividing in the first week of growth98. The question remains whether
this improved fitness can compensate for the reduced number of cells generated soon after
activation.

Cytokines, acting in concert with signals through the TCR and co-stimulatory molecules, can
function as accelerators or brakes for T-cell proliferation and differentiation70. IL-2 has been
shown to be an effective T-cell growth factor but has undesirable effects, including the ability
to decrease the expression of lymph-node homing molecules and to promote the terminal
differentiation of T cells, predisposing them to activation-induced cell death65,99. Other
cytokines that signal through a receptor that contains γc, such as IL-15, can analogously induce
the in vitro expansion of tumour-reactive CD8+ T-cell populations for ACT8,65,100. IL-15
supports the growth of similar numbers of T cells as IL-2, but it does not induce the detrimental
T-cell differentiation and apoptosis that IL-2 does65,101,102. T-cell populations that had been
expanded in the presence of IL-15 were shown to have a superior ability to elicit tumour
regression in vivo after ACT to tumour-bearing mice, compared with T-cell populations that
had been expanded in the presence of IL-2 (REFS 8,65,81). Other cytokines that signal through
a receptor that contains γc (including IL-7 and IL-21) that were evaluated in a similar manner
did not promote robust proliferation or differentiation of self/ tumour-reactive CD8+ T cells
in vitro, but they had a greater antitumour efficacy than IL-2 treated cells in vivo (Hinrichs C.
S., unpublished observations). By contrast, no differences in the differentiation state of tumour-
reactive T cells from vaccinated patients were detected when the cells were stimulated ex
vivo with cognate antigen in the presence of IL-2, IL-7 or IL-15 (REF. 103). Results obtained
using human cells probably reflect the use of antigen-experienced T cells that have already
differentiated into intermediate and late effector stages, instead of the naive populations that
are used in mouse studies104. Indeed, stimulation of naive human tumour-reactive T cells in
the presence of IL-21 induced the preferential expansion of a less-differentiated
CD28hiCD45RO+ T-cell population that could release IL-2 after stimulation with cognate
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antigen9. Therefore, the ability to obtain naive tumour-specific CD8+ T cells might be of
paramount importance to improving current ACT-based therapies.

Genetic modification of T cells for ACT
Naturally occurring self/tumour-specific T cells have been described in patients with cancer,
as well as in healthy individuals105,106. Antigen-experienced CCR7−CD45RA−CD45RO+

self/tumour-specific T cells are preponderant in the metastatic lymph nodes and are uniformly
present at tumour sites, whereas naive self/tumour-specific T cells are predominantly found in
the blood106. Unfortunately, these naive cells are mainly characterized by a low TCR avidity,
thereby making them unsuitable for ACT107. To circumvent this issue, high-affinity TCRs,
derived from TILs that mediate strong in vivo tumour regression, have been identified, cloned
and transduced into the PBLs of patients with cancer108–110. These TCR-transduced PBLs
have cytolytic activity, secrete cytokines in vitro after stimulation with melanoma-cell lines
and are currently being clinically evaluated109,110.

The affinity of the TCR selected for transduction, the level of transduced TCR expressed on
the cell surface and the differentiation state of the transduced T cells that are used for ACT
might contribute to the success of trials following TCR transduction. Naturally occurring T
cells that express high-affinity TCRs specific for self/ tumour antigens might be difficult to
obtain owing to intrathymic deletion. However, high-affinity TCRs can be generated in vivo
in immunized HLA-A2-transgenic mice111,112 or in vitro by phage display of TCRs
containing degenerate complementarity-determining regions113.

Integration of retrovirally delivered sequences requires active division of target cells, a process
that also promotes T-cell differentiation (FIG. 5a). As PBLs contain T cells at multiple stages
of differentiation, inducing activation and proliferation of PBLs guarantees that TCR-
transduced T cells are largely devoid of naive T cells. Alternatively, as lentiviral vectors are
less dependent on active cell division, they might be used to transduce high-affinity TCRs into
T cells without driving differentiation114. Lentiviral transduction of T cells that are pre-
selected for specific markers might therefore be a way of generating large numbers of naive
tumour-specific T cells for ACT (FIG. 5b).

Delivery of both the TCR α -chain (TCRα) and β-chain (TCRβ) directs the expression of the
intact TCR; however, pairing with endogenous TCRα and TCRβ can occur, thereby reducing
the surface density of tumour-specific TCR (FIG. 5a,b). Transduction of HSCs followed by T-
cell-lineage differentiation — through in vitro Notch signalling115,116 or through natural
development in vivo in immunodeficient mice117 — is an attractive approach to overcome
this problem. Forced expression of transduced TCRs by differentiating HSCs facilitates the
repression of expression of the Rag genes, such that endogenous TCRβ are not expressed118
(FIG. 5c). Alternative approaches to overcome the problem of mispairing with endogenous
TCRα and TCRβ might include the manipulation of the transmembrane-association domains
of TCRα and TCRβ119, the use of chimeric receptors with antibody specificity (known as T-
bodies)120 and TCR transduction into T cells that lack an α βTCR, such as γδ T cells121.

Several other genes have been proposed for transduction of tumour-reactive T cells to improve
their quality and functionality122. These include co-stimulatory molecules89, anti-apoptotic
molecules123, pro-inflammatory or homeostatic cytokines96,102 and chemokine
receptors84. Although these manipulations are able to alter specific cell functions in
differentiated tumour-specific T cells, the TCR approach confers self/tumour-specificity to
cells that might have all the desired characteristics. Transduction with genes encoding TCRs
specific for known epitopes allows the concurrent use of vaccines to potentiate the antitumour
response of adoptively transferred T cells124–126. Another interesting approach includes the
modulation of transcription factors such as BCL-6 (REFS 127,128), BCL-6B129, lymphoid-
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enhancer-binding factor 1 (LEF1) and T-cell factor 7 (TCF7)130 in intermediate and late
effector tumour-reactive T cells that might revert T cells to a less-differentiated state131.

Concluding remarks
ACT to a lymphodepleted host has emerged as a promising advance in cancer immunotherapy.
Preclinical and clinical studies have identified multiple mechanisms contributing to successful
adoptive immunotherapies, including host-related factors, as well as the phenotypic and
functional characteristics of the tumour-reactive T cells used for transfer. These findings
provide the rationale for the design of new clinical protocols for the treatment of patients with
cancer.

The improved effectiveness of immunotherapy following a non-myeloablative
lymphodepleting regimen provides the rational basis for the evaluation of more intensive
conditioning regimens such as a myeloablative regimen in conjunction with autologous HSC
transplantation132. In the pmel-1 mouse model of ACT therapy, the use of a myeloablative
regimen profoundly depleted host immunosuppressive cells and cellular sinks for activating
cytokines, resulting in an increased ratio of effector cells to endogenous cells and increased
anti-tumour responses compared with non-myeloablative conditioning (C. Wrzesinski,
unpublished observations). The improved therapeutic effect was independent of antigen-
specific vaccination but required the transfer of HSCs, which increased the proliferation and
survival of co-administered self/tumour-reactive T cells, possibly through the release of
cytokines, growth factors and anti-apoptotic factors (C. Wrzesinski, unpublished
observations). The finding that myeloablative conditioning with a HSC transplant removed the
need for specific vaccination has important implications for ACT-based immunotherapies in
humans, which use polyclonal TILs for which the specificity is often unknown and for which
effective vaccines are not currently available10. The use of a myeloablative preconditioning
regimen involving chemotherapy and total body irradiation together with HSC transplantation
in humans is currently under evaluation.

Increased immunity might be achieved with the use of more selective approaches to
lymphodepletion to eliminate the toxicities associated with the use of non-specific
preconditioning regimens based on chemotherapy and radiation. For example, TReg cells and
other immunosuppressive cells might be selectively depleted with directed immunotoxins or
suppressed by administering a cytokine such as TNF133–136. To overcome the sink effect of
competing endogenous cells, saturating levels of activating cytokines might be provided
exogenously137. Because IL-2 can promote TReg-cell proliferation and suppressive function,
other cytokines that signal through a receptor that contains γc, such as IL-7, IL-15 and IL-21,
might be preferable12,42. Alternatively, administration of IL-2–IL-2-specific antibody
complexes could be used to selectively stimulate effector T cells rather than TReg cells138.
Moreover, TH cells that can produce many cytokines might be co-transferred with self/tumour-
reactive T cells24. Finally, APCs might be activated through selective ligation of activation-
associated molecules such as TLRs139. The use of combinatorial approaches might be of
greater clinical benefit than single modality strategies.

Mouse models have now shown that early effector T cells mediate better in vivo antitumour
responses than intermediate and late effector T cells on the basis of their increased proliferative
and survival potential, receptiveness to homeostatic and co-stimulatory signals, homing to
secondary lymphoid tissues and ability to secrete IL-2 (REF. 65). In humans, mounting
evidence seems to support the preclinical finding that less-differentiated T cells are the ideal
cells for ACT66–68. Taken together, these findings indicate that the current criteria for
selection of T cells for ACT, including release of interferon-γ or cytolysis alone, are sub-
optimal. Consideration of other important factors for selection such as phenotype, telomere
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length, alternative cytokine production (such as IL-2) and TCR affinity are currently being
investigated. The next generation of ACT-based immunotherapies might rely on the ability to
endow ‘fit’ cells with elevated cell-surface expression of high-affinity, self/tumour-specific
TCRs by gene-transfer technology that can be used in conjunction with specific vaccines48,
124–126. Ultimately, the TCR gene-therapy approach might hold the key to the widespread
application of ACT-based therapy to the treatment of cancers of multiple histologies110,112.

Note added in proof
It has recently been shown that T cells also express the transcriptional repressor B-lymphocyte-
induced maturation protein 1 (BLIMP1)140,141. This provides a further potential
transcription-factor target to modulate in an attempt to generate less differentiated T cells.

Common cytokine-receptor γ-chain
(γc). A signalling subunit of the receptors for interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15 and
IL-21.

Standard oncological criteria
Clinical criteria that determine whether or not a treatment for cancer is effective. The World
Health Organization originally defined an objective clinical response as a 50% decrease in the
sum of the products of perpendicular diameters of all lesions without an increase greater than
25% in any lesions or appearance of new lesions. Subsequent updated criteria are known as
response evaluation criteria in solid tumours (RECIST). RECIST defines an objective clinical
response as a 30% decrease in the sum of the longest diameters of target lesions, without an
increase greater than 20% in any target lesions or appearance of new lesions.

Tumour-infiltrating lymphocytes
(TILs). The heterogeneous population of T cells found in a tumour bed. These cells are
characterized by a diversity of phenotypes, antigen specificities, avidities and functional
characteristics. They can be activated and expanded ex vivo and re-infused into the tumour-
bearing host.

Non-myeloablative regimen
Treatment that induces a severe, but transient, leukopaenia without permanent damage to
haematopoietic stem cells, thereby allowing spontaneous recovery of the haematological
function of the host.

Homeostatic proliferation
A process of activation and proliferation of leukocytes in the lymphopaenic environment. T-
cell homeostatic proliferation is driven by T-cell receptor interactions with self-peptide–MHC
complexes and T-cell responsiveness to cytokines such as interleukin-7 (IL-7), IL-15 and
possibly IL-21.

Pmel-1 mouse model of ACT
A mouse model of adoptive cell transfer (ACT) therapy for established B16 melanomas and
autoimmunity against the melanocyte-associated differentiation antigen gp100. Treatment
consists of adoptive transfer of gp100-specific CD8+ T cells derived from the T-cell receptor
(TCR) transgenic mouse pmel-1 in combination with altered ligand vaccine and cytokines that
signal through a receptor that contains the common cytokine-receptor γ-chain (γc).
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Cross-presentation
The process whereby antigen-presenting cells take up, process and present extracellular
antigens, in association with MHC class I molecules, to CD8+ T cells.

Toll-like receptor
A member of the family of evolutionarily conserved receptors that was first described in
Drosophila melanogaster. These receptors mediate innate immunity and inflammatory
responses that can subsequently modulate adaptive immunity in mammals.

Trans-presentation
A process by which the interleukin-15 receptor α -chain (IL-15Rα ) presents active IL-15 in
trans to opposing cells expressing a complex, with a low affinity for IL-15, that contains
IL-15Rα and the common cytokine-receptor γ-chain (γc), thereby transducing a signal.

Telomere
The segment at the end of chromosome arms, which consists of a series of repeated DNA
sequences (TTAGGG in all vertebrates) that regulate chromosomal replication at each cell
division.

Telomerase
A ribonucleoprotein enzyme that uses its internal RNA component as a template to synthesize
telomeric DNA directly onto the ends of chromosome arms.

Phage display
A technique in which bacteriophages are engineered to express on their cell surface a fusion
protein comprised of a foreign peptide or protein and their capsid proteins.

Complementarity-determining region
The hypervariable amino-acid sequences in T-cell-receptor variable regions that interact with
complementary amino acids on the peptide–MHC complex.

Myeloablative regimen
Treatment that causes severe bone-marrow suppression requiring administration of
haematopoietic stem cells to reconstitute the haematological function of the host and to assure
host survival.
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Figure 1. Current clinical protocols for adoptive cell therapy
Adoptive cell therapy (ACT) requires the generation of highly avid tumour-antigen-reactive T
cells. Tumour-specific T cells, derived from tumour-infiltrating lymphocytes (TILs), can be
efficiently isolated ex vivo from melanoma lesions using high levels of interleukin-2 (IL-2).
TILs are successively selected for their ability to secrete high levels of interferon-γ (IFNγ)
when cultured with autologous or allogeneic MHC-matched tumour-cell lines. Alternatively,
cell-mediated lysis has been used to identify tumour-reactive T cells for transfer. Highly avid,
tumour-antigen-reactive T-cell populations selected for ACT are rapidly expanded (to up to
1011 cells) using CD3-specific antibody, exogenously supplied IL-2 and irradiated allogeneic
peripheral-blood mononuclear ‘feeder’ cells, and are validated for activity before transfer.
Patients now receive systemic immunosuppression before the adoptive transfer of antitumour
lymphocytes. Published lymphodepleting regimens consist of a non-myeloablative, but
lymphodepleting, conditioning chemotherapy comprised of cyclophosphamide and
fludarabine before administration of T cells. Newer, as yet unpublished, regimens also include
total body irradiation. ELISA, enzyme-linked immunosorbent assay. This figure is reproduced
with permission from REF. 12 © (2005) Elsevier Science.
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Figure 2. Antitumour response induced by lymphodepletion and adoptive cell therapy
Computed tomography (CT) scans of the liver in a patient with metastatic melanoma show
dramatic tumour regression of liver metastases after the administration of tumour-reactive
tumour-infiltrating lymphocytes (TILs) following lymphodepletion. The patient is still disease-
free after 27 months.
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Figure 3. Mechanisms underlying the impact of lymphodepletion on adoptively transferred T cells
A | Adoptive cell therapy (ACT) in a lymphoreplete host. In a lymphoreplete environment,
antitumour responses mediated by adoptively transferred tumour-reactive CD8+ T cells might
be reduced because of: a | competition for antigen at the surface of antigen-presenting cells
(APCs) and inefficient lymphocyte activation in the absence of co-stimulatory molecules by
immature dendritic cells (DCs); b | reduced availability of activating cytokines (including
interleukin-2 (IL-2), IL-7 and IL-15) by cellular ‘sinks’ for these cytokines, which include B
cells, T cells and natural killer (NK) cells; and c | the suppressive activities of regulatory T
(TReg) cells, myeloid suppressor cells (MSCs) and possibly NK cells. TReg-cell suppression is
mediated by direct T-cell contact and possibly by the release of inhibitory cytokines such as
IL-10 and transforming growth factor-β. MSCs mediate T-cell inhibition through direct T-cell
contact and the use of enzymes involved in L-arginine metabolism such as the inducible forms
of arginase and nitric-oxide synthase, ARG1 and NOS2. B | Systemic chemotherapy or
radiation before ACT might modify the tumour-bearing host. APCs are reduced in number by
direct killing but there might be a net increase in lymphocyte activation because of reduced
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competition for antigen at the APC surfaces. At the same time, as a result of the liberation of
Toll-like receptor (TLR) agonists after mucosal damage, DCs might be mature, increasing
lymphocyte activation. Activating cytokines, such as IL-2, IL-7 and IL-15 might be increased
because of the removal of cellular ‘sinks’; and TReg cells, MSCs, NK cells and their suppressive
activities are decreased. These modifications might promote the full activation of adoptively
transferred tumour-reactive CD8+ T cells and ultimately tumour destruction.

Gattinoni et al. Page 23

Nat Rev Immunol. Author manuscript; available in PMC 2006 June 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Inverse relationship of in vitro and in vivo antitumour functions of adoptively transferred
naive and effector T-cell subsets
At increasing strength of stimulation, naive CD8+ T cells proliferate and progressively
differentiate through early, intermediate and late effector stages. The phenotypic and functional
changes that characterize this process are illustrated as no expression (–), intermediate
expression (+) and high expression (hi) of the various markers. T cells progressively lose
telomere length and proliferative potential, and subsequently become senescent and undergo
apoptosis. The progressive acquisition of full effector functions (dashed burgundy line) is
associated with a decreased ability of T cells to cause tumour regression after adoptive transfer
(black line). The molecular mechanisms underlying this inverse correlation might be comprised
of: decreased expression by T cells of lymph-node homing and co-stimulatory molecules,
which reduce activation of T cells in vivo; the inability of terminally differentiated T cells to
produce interleukin-2 (IL-2); a reduction in the amount of receptors required to receive
activating signals from homeostatic cytokines; and finally, an inversion of the expression of
pro- and anti-apoptotic molecules with the corresponding acquisition of replicative senescence.
Adoptively transferred tumour-infiltrating lymphocytes (TILs) contain several clonotypes with
a differentiation state ranging between intermediate and late effector stages, whereas tumour-
reactive CD8+ T-cell clones are uniformly late effector T cells. KLRG1, killer-cell lectin-like
receptor G1. This figure is reproduced with permission from REF. 65 © (2005) Highwire Press.
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Figure 5. Generation of less-differentiated, central-memory-like tumour-antigen-specific CD8+ T
cells by TCR transduction
a | Retroviral transduction of peripheral-blood lymphocytes (PBLs). PBLs at different stages
of differentiation, naive (grey), early (green), intermediate (beige) and late effector (burgundy)
are activated in vitro with CD3-specific antibody in the presence of interleukin-2 (IL-2) to
promote integration of tumour-specific T-cell receptor (TCR) retroviral constructs. This
procedure results in the generation of more-differentiated TCR transductants. Pairing with
endogenous receptor can reduce the number of tumour-specific TCRs. b | Lentiviral
transduction of naive CD8+ T cells. Naive CD8+ T cells isolated through selective sorting can
be transduced with tumour-specific TCR by using lentiviral constructs that do not require
activation and consequent differentiation. Pairing with endogenous receptor can reduce the
number of tumour-specific TCRs. c | Lentiviral transduction of haematopoietic stem cells
(HSCs). CD34+CD38− HSCs isolated though selective sorting can be transduced with tumour-
specific TCR using lentiviral constructs. HSCs can be induced to differentiate into naive
CD8+ T cells in vitro through Notch-mediated signalling. Repression of recombination-
activating genes by the transduced tumour-specific TCR allows for the uniform expression of
tumour-specific TCRs.
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