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Abstract
Heterogeneity of transmural ventricular repolarization in the heart has been linked to a variety of
arrhythmic manifestations. Electrical heterogeneity in ventricular myocardium is due to ionic
distinctions among the three principal cell types: Endocardial, M and Epicardial cells. A reduction
in net repolarizing current generally leads to a preferential prolongation of the M cell action potential.
An increase in net repolarizing current can lead to a preferential abbreviation of the action potential
of right ventricular epicardium or left ventricular endocardium. These changes can result in
amplification of transmural heterogeneities of repolarization and thus predispose to the development
of potentially lethal reentrant arrhythmias. The long QT, short QT, Brugada and catecholaminergic
VT syndromes are all examples of pathologies that have very different phenotypes and aetiologies,
but share a common final pathway in causing sudden death via amplification transmural or other
spatial dispersion of repolarization within the ventricular myocardium. These same mechanisms are
likely to be responsible for life-threatening arrhythmias in a variety of other cardiomyopathies
ranging from heart failure and hypertrophy, which may involve mechanisms very similar to those
operative in long QT syndrome, to ischaemia and infarction, which may involve mechanisms more
closely resembling those responsible for the Brugada syndrome.
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Electrical heterogeneities intrinsic to ventricular myocardium
Delineation of the differences in the electrophysiological characteristics and pharmacological
profiles of endocardial, M and epicardial ventricular myocardial cells has advanced our
understanding of the electrical heterogeneities intrinsic to the ventricular myocardium of the
dog, guinea pig, rabbit, and human heart [1].

The action potentials of epicardial and M cells generally display a prominent transient outward
current (Ito)-mediated phase 1 that is absent in endocardial cells [1]. The early repolarization
phase gives the epicardial action potential a notched appearance. In the canine heart, Ito and
the action potential notch are much larger in right vs. left ventricular epicardium [2] and M
[3] cells.

The hallmark of the M cell is the ability of its action potential to prolong more than that of
epicardium or endocardium with slowing of rate. In the early 1990’s, the M cells became the
focus of intense investigation after their identification and characterization in the deep
structures of the canine ventricle [4–6]. M cell distribution in the ventricular wall has been
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investigated in greatest detail in the canine left ventricle. M cells with the longest action
potential duration are typically found in the deep subepicardium to midmyocardium in the
lateral wall, deep subendocardium to midmyocardium in the anterior wall, and throughout the
wall in the region of the outflow tracts. M cells have also been identified in the deep layers of
papillary muscles, trabeculae, and interventricular septum [7]. Tissue slices isolated from the
M region display an APD at 90 percent repolarization (APD90) that is more than 100 msec
longer than tissues isolated from the epicardium or endocardium at slow rates of stimulation
(basic cycle lengths ≥2000 msec). In the intact ventricular wall, this disparity in APD90 is less
pronounced due to electrotonic coupling of cells. The transmural increase in APD is relatively
gradual, except between the epicardium and subepicardium where there is often a sharp
increase in APD. This has been shown to be due to an increase in tissue resistivity in this region
[8], which may be related to the sharp transition in cell orientation in this region as well as to
reduced expression of connexin 43 [9,10], which is principally responsible for intracellular
communication in the ventricular myocardium. The available data suggest that both the degree
of electrotonic coupling and intrinsic action potential durations contribute importantly to the
expression of electrical heterogeneity in the ventricular myocardium. The prolonged APD of
M cells has been shown to be due to a smaller IKs and a larger late Ina [11,12] and sodium-
calcium exchange current (INa-Ca) [13] compared with epicardial and endocardial cells. This
results in a decrease in repolarizing current during phases 2 and 3 of the M cell action potential.

These ionic distinctions sensitize the M cells to a variety of pharmacological agents. Agents
that block IKr, IKs or increase ICa or late INa produce much greater prolongation in M cell APD
than that of epicardial or endocardial cells.

Role of electrical heterogeneity in the inscription of the J and T waves of the
ECG

Differences in the time course of repolarization of the three predominant myocardial cell types
have been shown to be largely responsible for the inscription of the J and T waves of the ECG.
The transmural gradient resulting from the presence of an Ito-mediated notch in the epicardium
but not the endocardium gives rise to the J wave, or Osborne wave [14]. Voltage gradients
developing as a result of the different time course of repolarization of phases 2 and 3 in the
three cell types give rise to opposing voltage gradients on either side of the M region, which
are in large part responsible for the inscription of the T wave [15]. In the case of an upright T
wave, the epicardial response is the earliest to repolarize and the M cell action potential is the
latest. Full repolarization of the epicardial action potential coincides with the peak of the T
wave and repolarization of the M cells is coincident with the end of the T wave. The duration
of the M cell action potential therefore determines the QT interval, whereas the duration of the
epicardial action potential determines the QTpeak interval.

Tpeak-Tend interval has been shown to provide an index of transmural dispersion of
repolarization [5,15]. The available data suggest that Tpeak-Tend measurements should be
limited to precordial leads since these leads more accurately reflect transmural dispersion of
repolarization. Recent studies have also provided guidelines for the estimation of transmural
dispersion of repolarization in the case of more complex T waves, including negative, biphasic
and triphasic T waves [16]. In these cases, the interval from the nadir of the first component
of the T wave to the end of the T wave provides an accurate electrocardiographic approximation
of transmural dispersion of repolarization.

While the clinical applicability of these concepts remains to be fully validated, significant
progress towards validation of the Tpeak-Tend interval as an index of transmural dispersion
has been achieved. Lubinski et al. [17] demonstrated that this interval is increased in patients
with congenital long QT syndrome. Recent studies suggest that the Tpeak-Tend interval may
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be a useful index of transmural dispersion and thus may be prognostic of arrhythmic risk under
a variety of conditions [18–23]. Takenaka et al. recently demonstrated exercise-induced
accentuation of the Tpeak-Tend interval in LQT1 patients, but not LQT2 [22]. These
observations coupled with those of Schwartz et al. [24] demonstrating an association between
exercise and risk for Torsade de Pointes (TdP) in LQT1, but not LQT2, patients, once again
point to the potential value of Tpeak-Tend in forecasting risk for the development of TdP.
Direct evidence in support of Tpeak-Tend as a valuable index to predict TdP in patients with
long QT syndrome was provided by Yamaguchi and co-workers [25]. These authors concluded
that Tpeak-Tend is more valuable than QTc and QT dispersion as a predictor of TdP in patients
with acquired LQTS. Shimizu et al. demonstrated that Tpeak-Tend, but not QTc, predicted
sudden cardiac death in patients with hypertrophic cardiomypathy [21]. Most recently,
Watanabe et al. demonstrated that prolonged Tpeak-Tend is associated with inducibility as
well as spontaneous development of VT in high risk patients with organic heart disease [26].

Although additional work is clearly needed to assess the value of these non-invasive indices
of electrical heterogeneity and their prognostic value in the assignment of arrhythmic risk,
evidence is accumulating in support of the hypothesis that transmural dispersion of
repolarization (TDR) rather than QT prolongation underlies the substrate responsible for the
development of TdP [27–31].

Amplification of TDR as the basis for VT/VF
Long QT syndrome

The long QT syndrome (LQTS) is characterized by the appearance of long QT intervals in the
ECG, a atypical polymorphic ventricular tachycardia known as Torsade de Pointes, and a
relatively high risk for sudden cardiac death [32–34]. Congenital LQTS is subdivided into
seven genotypes distinguished by mutations in at least six different ion genes and an structural
anchoring protein located on chromosomes 3, 4, 7, 11, 17 and 21 [35–40]. Timothy syndrome,
classified by some as LQT8, is a rare congenital disorder characterized by multi-organ
dysfunction including prolongation of the QT interval, lethal arrhythmias, webbing of fingers
and toes, congenital heart disease, immune deficiency, intermittent hypoglycemia, cognitive
abnormalities, and autism. Timothy syndrome has been linked to mutations in Cav1.2, which
encodes a portion of the calcium channel [41].

Acquired LQTS refers to a syndrome similar to the congenital form but caused by exposure to
drugs that prolong the duration of the ventricular action potential [42] or QT prolongation
secondary to cardiomyopathies such as dilated or hypertrophic cardiomyopathy, as well as to
abnormal QT prolongation associated with bradycardia or electrolyte imbalance [43–47].

Amplification of spatial dispersion of repolarization within the ventricular myocardium is
thought to generate the principal arrhythmogenic substrate in both acquired and congenital
LQTS. The accentuation of spatial dispersion is typically secondary to an increase in transmural
and transseptal dispersion of repolarization and the development of early after depolarization
(EAD)-induced triggered activity underlie the substrate and trigger for the development of
Torsade de Pointes arrhythmias observed under LQTS conditions [1,48]. Models of the LQT1,
LQT2, and LQT3 forms of the long QT syndrome have been developed using the canine
arterially perfused left ventricular wedge preparation [49]. These models have shown that in
these three forms of LQTS, preferential prolongation of the M cell APD leads to an increase
in the QT interval as well as an increase in TDR, the latter providing the substrate for the
development of spontaneous as well as stimulation-induced TdP [50–52].

The response to sympathetic activation displays a very different time-course in the case of
LQT1 and LQT2, both in experimental models and in the clinic [48,53]. In LQT1, isoprenaline
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(isoproterenol) produces an increase in TDR that is most prominent during the first two
minutes, but which persists, although to a lesser extent, during steady-state. TdP incidence is
enhanced during the initial period as well as during steady-state. In LQT2, isoprenaline
produces only a transient increase in TDR that persists for less than 2 minutes. TdP incidence
is, therefore, enhanced only for a brief period of time. These differences in time-course may
explain the important differences in autonomic activity and other gene-specific triggers that
contribute to events in patients with different LQTS genotypes [54,55] as well as the genotype-
specific response to treatment with β blockers [56].

Brugada syndrome
The Brugada syndrome is characterized by an accentuated ST segment elevation or J wave
appearing principally in the right precordial leads (V1–V3), often followed by a negative T
wave, and a high incidence of sudden cardiac death secondary to a rapid polymorphic VT or
VF [57]. The ECG sign of the Brugada syndrome is dynamic and often concealed, but can be
unmasked by potent sodium channel blockers such as ajmaline, flecainide, procainamide,
disopyramide, propafenone and pilsicainide [58–60]. The arrhythmogenic substrate
responsible for the development of extrasystoles and polymorphic VT in the Brugada syndrome
is thought to be secondary to amplification of heterogeneities intrinsic to the early phases (phase
1-mediated notch) of the action potential of cells residing in different layers of the right
ventricular wall of the heart. Rebalancing of the currents active at the end of phase 1, is thought
to underlie the accentuation of the action potential notch in right ventricular epicardium, which
is responsible for the augmented J wave and ST segment elevation associated with the Brugada
syndrome (see ref. [61] for references). The ST segment is normally close to isoelectric due to
the absence of major transmural voltage gradients at the level of the action potential plateau.
Accentuation of the right ventricular action potential notch under pathophysiological
conditions leads to exaggeration of transmural voltage gradients and thus to accentuation of
the J wave or to J point elevation. If the epicardial action potential continues to repolarize
before that of endocardium, the T wave remains positive, giving rise to a saddleback
configuration of the ST segment elevation. Further accentuation of the notch is accompanied
by a prolongation of the epicardial action potential causing it to repolarize after the
endocardium, thus leading to inversion of the T wave.

The down-sloping ST segment elevation, or accentuated J wave, observed in experimental
wedge models often appears as an R′, suggesting that the appearance of a right bundle branch
block (RBBB) morphology in Brugada patients may be due in large part to early repolarization
of right ventricular (RV) epicardium, rather than major delays in impulse conduction in the
right bundle [62]. Despite the appearance of a typical Brugada sign, accentuation of the RV
epicardial AP notch alone does not give rise to an arrhythmogenic substrate. Such a substrate
may develop with a further shift in the balance of current leading to loss of the action potential
dome at some epicardial sites but not others. A marked transmural dispersion of repolarization
develops as a consequence, creating a vulnerable window, which when captured by a premature
ventricular complex can trigger a reentrant arrhythmia. Because loss of the action potential
dome in the epicardium is generally heterogeneous, epicardial dispersion of repolarization also
develops. Conduction of the action potential dome from sites at which it is maintained to sites
at which it is lost causes local re-excitation via phase 2 reentry, leading to the development of
a closely-coupled complex capable of capturing the vulnerable window across the ventricular
wall, thus triggering a circus movement reentry in the form of VT/VF [63,64]. Support for
these hypotheses derives from experiments involving the arterially perfused right ventricular
wedge preparation [63] and from recent studies in which monophasic action potential (MAP)
electrodes where positioned on the epicardial and endocardial surfaces of the RVOT in patients
with the Brugada syndrome [65,66].
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Short QT syndrome (SQTS)
Proposed as a new clinical entity by Gussak et al. [67], the short-QT syndrome (SQTS) is an
inherited syndrome characterized by a QTc ≤300 msec and high incidence of VT/VF in infants,
children and young adults [68]. The familial nature of this sudden death syndrome was
confirmed by Gaita et al. [69]. The first genetic defect responsible for the short QT syndrome,
reported by Brugada et al. in 2004, involved two different missense mutations (substitution of
one amino acid for another) resulting in the same amino acid substitution in HERG (N588K),
which caused a gain in function in the rapidly activating delayed rectifier channel, Ikr [70]. A
second gene was recently reported by Bellocq et al. [71]. A missense mutation in KCNQ1
(KvLQT1) caused a gain in function in Iks.

The short QT syndrome is also characterized by the appearance of tall peaked symmetrical T
waves in the ECG. The augmented Tpeak-Tend interval associated with this
electrocardiographic feature of the syndrome suggests that transmural dispersion of
repolarization is increased. Recent data collected using a wedge model of the short QT
syndrome has provided evidence in support of the hypothesis that an increase in outward
repolarizing current can preferentially abbreviate endocardial/M cell APD in the left ventricle
increasing TDK and thus create the substrate for reentry [72]. The potassium channel opener
pinacidil causes a heterogeneous abbreviation of APD among the different cell types spanning
the ventricular wall, thus creating the substrate for the genesis of VT under conditions
associated with short QT intervals. Polymorphic VT could be readily induced with
programmed electrical stimulation. The increase in TDR was further accentuated by
isoprenaline, leading to easier induction and more persistent VT/VF. The latter is likely to be
due to the reduction in the wavelength of the reentrant circuit, which reduces the path length
required for maintenance of reentry [72].

Catecholaminergic polymorphic VT
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare, autosomal dominant
inherited disorder, predominantly affecting children or adolescents with structurally normal
hearts. It is characterized by bidirectional ventricular tachycardia (BVT), polymorphic VT
(PVT), and a high risk of sudden cardiac death (30–50% by the age of 20 to 30 years) [73,
74]. Recent molecular genetic studies have identified mutations in genes encoding for the
cardiac ryanodine receptor 2 (RyR2) or calsequestrin 2 (CASQ2) in patients with this
phenotype [75–78]. Several lines of evidence point to delayed afterdepolarization (DAD)-
induced triggered activity (TA) as the mechanism underlying monomorphic or bidirectional
VT in these patients. The cellular mechanisms underlying the various ECG phenotypes, and
the transition of monomorphic VT to polymorphic VT or VF, were recently elucidated with
the help of the wedge preparation [79]. The wedge was exposed to low dose caffeine to mimic
the defective calcium homeostasis encountered under conditions that predispose to CPVT. The
combination of isoprenaline and caffeine led to the development of DAD-induced triggered
activity arising from the epicardium, endocardium or the M region. Migration of the source of
ectopic activity was responsible for the transition from monomorphic to slow polymorphic VT.
Alternation of epicardial and endocardial source of ectopic activity gave rise to a bidirectional
VT. Epicardial VT was associated with an increased Tpeak-Tend interval and transmural
dispersion of repolarization due to reversal of the normal transmural activation sequence, thus
creating the substrate for reentry, which permitted the induction of a more rapid polymorphic
VT with programmed electrical stimulation, and propranolol or verapamil suppressed
arrhythmic activity [79].
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