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ABSTRAcT This paper presents the construction, derivation, and test of a mesh model
for the electrical properties of the transverse tubular system (T-system) in skeletal
muscle. We model the irregular system of tubules as a random network of miniature
transmission lines, using differential equations to describe the potential between the
nodes and difference equations to describe the potential at the nodes. The solution to
the equations can be accurately represented in several approximate forms with simple
physical and graphical interpretations. All the parameters of the solution are specified
by impedance and morphometric measurements, The effect of wide circumferential
spacing between T-system openings is analyzed and the resulting restricted mesh
model is shown to be approximated by a mesh with an access resistance. The con-
tinuous limit of the mesh model is shown to have the same form as the disk model of
the T-system, but with a different expression for the tortuosity factor. The physical
meaning of the tortuosity factor is examined, and a short derivation of the disk model
is presented that gives results identical to the continuous limit of the mesh model.
Both the mesh and restricted mesh models are compared with experimental data on
the impedance of muscle fibers of the frog sartorius. The derived value for the resistiv-
ity of the lumen of the tubules is not too different from that of the bathing solution,
the difference probably arising from the sensitivity of this value to errors in the
morphometric measurements.

INTRODUCTION

The tubular system of skeletal muscle fibers (T-system) is a branching network of
tubules which arise as invaginations of the sarcolemma and form an irregular spiral
(Peachey and Eisenberg, 1975) almost transversely oriented across the fiber. The
tubular system includes most of the cell membrane of muscle fibers and traps a sig-
nificant component of extracellular space within the fiber. It forms the pathway for
radial current flow that conducts the action potential from the sarcolemma to the
junctions of the sarcoplasmic reticulum and tubular membrane within the fiber. Thus,
the tubular system is an essential component of the mechanism of excitation contrac-
tion coupling and contributes importantly to most of the electrical properties of mus-
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cle fibers. Two recent reviews (Costantin, 1975; Nakajima and Bastian, 1976) describe
our present knowledge of the tubular system in some detail.
To analyze the electrical properties of muscle fibers, it is necessary to construct and

test a model of the tubular system. Much work (references can be found in the above-
cited reviews) has shown that the lumen of the T-system is in diffusional equilibrium
with the extracellular solution. The luminal solution is thus presumably a good con-
ductor of similar composition to the bathing solution. The small cross-sectional area
of the tubules and the long path length of the tubular mesh introduce, however, a sig-
nificant resistance to radial current flow (Adrian, Costantin and Peachey, 1969). The
most widely used model of the tubular system-the distributed model introduced by
Falk and Fatt (1964) and revised and extended by Adrian, Chandler and Hodgkin,
(1969), and Schneider (1970)-analyzes the effect of such radial resistance and allows
the potential across the tubular membrane to vary with the radial distance from the
center of the fiber. To calculate the radial distribution of potential, the distributed,
or disk model as we prefer to call it, assumes the branching of the T-system to be very
dense. The tubular system is thus described as two parallel disks of membrane with
radial potential drops produced by the small volume of the luminal space between the
disks. The effect of the branching of the tubules is included in the disk model by the
introduction of a tortuosity factor, computed for a few models of the network.
The disk model better describes the electrical properties of muscle fibers than sim-

pler models (Gonzalez-Serratos, 1966; Adrian, Costantin *and Peachey, 1969;
Schneider, 1970; Hodgkin and Nakajima, 1972a,b; Barry and Adrian, 1973; Valdiosera
et al., 1974b, c) but it suffers from at least two defects: it seems unable to account for the
shape or conduction velocity of the action potential (Adrian and Peachey, 1973), at
least without arbitrary modification; and it produces a value of the resistivity of the
luminal solution far in excess of that of the bathing solution, when the resistivity is
measured by a variety of techniques (Falk and Fatt, 1964; Endo, 1966; Schneider, 1970;
Hodgkin and Nakajima, 1972a,b; Valdiosera et al., 1974c; Nakajima et al., 1975).
The former defect can perhaps be explained by our lack of knowledge of the nonlinear
properties of the tubular membrane and T/SR junction; the latter defect is more diffi-
cult to explain, particularly in view of the finding of Gilai (1976) that the resistivity
of the luminal solution in muscle fibers with unbranched tubules is equal to that of the
bathing solution. The disk model suffers another less serious defect. When there is
significant decrement of potential within a single tubular branch, the density of branch-
ing clearly cannot be assumed to be infinite. In this case the disk model cannot be
used to describe the properties of the T-system.

For these reasons it seemed useful to construct a model of the tubular system that
explicitly describes the branching nature of the tubules, a mesh model of the tubular
system. Comparison of the continuous limit of the mesh model to the disk model of
Adrian et al. (1969a) shows that, in the limit, they have the same form, but with a dif-
ferent expression for the tortuosity factor. A revised derivation of the disk model,
however, gives results in agreement with the limit of the mesh model. The mesh model
is shown to fit experimental data on the linear electrical properties of muscle fibers of
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fixed length in five solutions of normal tonicity. The validity of the model can be fur-
ther tested experimentally by examining its predictions of the nonlinear properties of
the muscle fiber, particularly of the action potential. Most importantly, experimental
tests can be made of the model by measuring electrical and morphometric properties of
muscle fibers in a range of fiber lengths and diameters and in solutions of different
tonicities. In the future, the model should be generalized by a theoretical examination
of a three-dimensional model of the T-system.

GLOSSARY

Electrical Parameters

C*m Capacitance of a unit of sarcolemma, assuming the fiber is an unfolded cylinder
(f/cm2).

CT Capacitance of the wall of a unit length of tubule (f/cm).
Cw Capacitance of a unit area of tubular wall (f/cm2).
gT Conductance of the wall of a unit length of tubule (Ql'/cm).
Gw Conductance of a unit area of tubular wall (Q0 Icm2).
in Total current leaving all nodes in shell n and flowing inward to nodes in shell

n - I (A).
14 Total current leaving nodes in shell n and flowing tangentially toward other nodes

in shell n (A).
in+ Total cuffent leaving nodes in shell n and flowing outward to nodes in shell n + 1

(A).
n",k Current leaving a node in shell n and flowing in branch k, where branch k connects

nodes in shell n and shell n - I (A).'
°n#,k Current leaving a node in shell n and flowing in branch k, where branch k connects

between nodes in shell n (A).'
in,k Current leaving a node in shell n and flowing in branch k, where branch k connects

k connects nodes in shell n and shell n + I (A).'
i, Radial current in a disk model of the T-system (A).
r DC resistance in a unit length of fiber due to the sarcolemma and T-system mem-

brane (Qcm).
ra Effective access resistance in a unit length of fiber due to a wide circumferential

spacing of openings to the tubular mesh (see Eq. 49) (flcm).
RD Resistivity of the bathing solution (Qcm).
ri Resistance of the sarcoplasm in a unit length of fiber (Q/cm).
Ri Resistivity of the sarcoplasm (Qcm).
riT Resistance of the luminal solution in a unit length of tubule (Q/cm).
RL "Resistivity" of the volume of tubular lumen contained in a unit volume of fiber

(see Eq. 51) (lcm).
RL Resistance of the volume of tubular lumen contained in a unit area of one Z-disk

(see Eq. 52) (Q).
RZOd Effective resistance to radial current flow in a single Z-disk (see Eq. 50) (Q).
U(r,jw) Potential drop across the tubular wall at radius r (V).
Un(jW) Potential drop across the tubular wall at a node in the nth shell (V).'

'These parameters also appear in the text in boldface type as random variables. A random variable repre-
sents an ensemble (i.e. set) of parameters, each parameter having the given definition.
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V,(x,jw) Potential drop across the sarcolemma (V).
YM(Mj) Admittance of a mesh looking inward from all the nodes in shell n (Q-1).l
MM(jw) Admittance of a mesh looking inward from one node in shell n (see Eq. 42), (v'1).
y,,(a,jw) Admittance in a unit length of fiber due to a T-system which has a restricted num-

ber of openings to the bathing solution (IV'/cm).
yT(a,jw) Admittance of the T-system in a unit length of fiber (Q- '/cm).
YT(a,jw) Admittance of the T-system associated with a unit area of fiber surface (12'/cm2).
YTO(jw) Characteristic admittance of a single tubule (Qr').
y I (L,jw) The 1, 1 element of the short circuit admittance matrix for a tubule; see Fig. 1 where

Yi I = Iin / Uin with Uout = 0; also see Eq. 3 (Q i').
y12(L,jw) The 1,2 element of the short circuit admittance matrix for a tubule; see Fig. 1,

Y12 = Iout / Uin with Uout = 0; see also Eq. 4 (Q[').
yj (G) Admittance of a mesh looking inward from one node located at an infinite radius;

see Eq. 40. (Q -').
r(jw) Propagation constant for a single tubule. At DC (i.e. jw = 0), r is the reciprocal

of the length constant; see Eq. 5, (cm' ).
rm(W) Effective propagation constant for a mesh of tubules. At DC (i.e. jw = 0) Fm is

the reciprocal of AT; see Eq. 28, (cm' ).
AT Effective DC length constant for a mesh of tubules, (cm).
Tf Time constant determined from the foot of the action potential (s).
0MP(1W) An approximate solution to the potential drop across the tubular wall at a node in

the nth shell; see Eq. 37, (V).

Mathematical Parameters

jw The Fourier transform parameter where i = V'Wi and w has the physical inter-
pretation of angular frequency in radians per second.

Jn The number of radial tubular branches joining nodes in shell n with nodes in shell
n - 1.'

K,, The number of tubular branches joining nodes in shell n with other nodes in shell n.i
Mn The number of radial tubular branches joining nodes in shell n with nodes in shell

n + 1.
R A unitless measure of the radius of a mesh normalized by the effective propagation

constant of the mesh; see Eq. 27.
Rtest A statistical measure of the goodness of fit of a theoretical curve to a set of data.

A unitless parameter defined in Eq. 19, which arises as the natural argument in the
solution to the difference equations; intuitively t = rim Ar.
A unitless convenient combination of morphometric parameters (see Eq. 41).

p The ratio (-YI /YI12); for a tubule this is cosh (FL).
Morphometric Parameters

a Fiber radius (cm).
L Average length of a tubular branch (cm).
LT/AF Average length of tubules in a unit area ofZ disk (cm'l).
LT/ VF Average length of tubules in a unit volume of fiber (cm-2).
NB Average number of branches per node in the T-system.
r Radial distance within a circular mesh (cm).
Ar Average distance between shells in a mesh (see Eq. 26) (cm).
STIAF Average surface area of tubular wall in a unit area ofZ disk.

'These parameters also appear in the text in boldface type as random variables. A random variable repre-
sents an ensemble (i.e. set) of parameters, each parameter having the given definition.
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STI VF Average surface area of tubular wall in a unit volume of fiber (cm').
STI VT Average surface-to-volume ratio of a tubule (cm-').
VT/AF Average luminal volume in a unit area ofZ disk (cm).
VT! VF Average luminal volume in a unit volume of fiber.
5, Average distance between radial branches, defined precisely as the circumference of

a closed curve of average radius (separating two shells) divided by the number of
radial branches connecting the two shells.

AN Average distance between nodes in a shell, defined precisely as the circumference
corresponding to the average radius of a shell divided by the number of nodes in the
shell.

Ss Average circumferential distance between the surface openings of the T-system.
The part of the tortuosity factor that depends only on the geometry of the inter-
connection of branches (see Eq. 60).
Sarcomere spacing (cm).

T The tortuosity factor, defined explicitly by Eq. 64 or intuitively by Eq. 54.

THEORY

Description ofCurrent Flow in a Tubular Branch
The transverse tubular system is a mesh of current-carrying tubules. Each branch of
the tubular mesh can be represented as a miniature transmission line of length L with
one-dimensional current flow in the lumen of the tubular branch and "leakage" of
current from the lumen to the sarcoplasm through the conductance and capacitance of
the wall of the tubules (Fig. 1). The properties of each tubular branch can be described
by a differential equation, similar to that used in one dimensional cable theory to
describe a cylindrical cell (reviewed by Jack, et al., 1975). It would be unwieldy, how-
ever, to describe the properties of the entire tubular mesh as a system of differential
equations, one equation for each tubular branch, and so we will use another approach.
The differential equation of each tubular branch can be solved for general boundary
conditions and the current voltage relations at each end of the branch (or port as it is
called in the engineering literature) can be written as a pair of linear algebraic equa-
tions. These are the equations of two-port theory (Desoer & Kuh, 1969, Ch. 17) ap-
plied to transmission lines (Ghausi and Kelley, 1968, p. 7).

Iin = Y11Uin + Y12U t;(U1o)

TUBULAR BRANCH

i, 17 +Lumen * Iaut

-Sorcop/osm

FIGURE 1 The circuit representation of a tubular branch of length L. Each circuit element in
the analysis of the mesh model is assumed to be such a distributed network.
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lout = YI2 Uin + Yl1U0out (

The parameters y,I and Y12 are called the short-circuit admittances since they describe,
respectively, the complex frequency dependent input admittance in/ U,n of the trans-
mission line (see Fig. 1) and the transfer admittance Iout! Uin, both with U0u, =
0, namely with a short-circuited termination. These parameters can be described in
terms of the resistance riT of a unit length of tubular lumen and the conductance gT
and capacitance CT of a unit length of wall of tubule.

y,, = YTOcoth FL; (3)

Y12 = -YTO/sinh . (4)
The propagation constant is

r = /riT(gT + JwCT) = V'(ST/VT)RL(GW + jwCW). (5)

The characteristic (i.e., input) admittance of a single tubule is

y T +jWCT (STIAF) r
YTO = riT (LT/A

= ( R(AT)r VT
(6)

where RL is the resistivity of the lumen of the tubules, GC and Cw are the conductance
and capacitance of 1 cm2 of tubular wall, STIAF is the surface of tubule per unit
cross-sectional area of fiber, STI VT is the surface of tubular wall per unit volume of
tubule, and LT/AF is the length of tubule per unit cross-sectional area of fiber. The
morphometric parameters are introduced in this manner to be consistent with the
morphological literature (Mobley and Eisenberg, 1975).
We use the propagation constant to describe the spatial variation of potential instead

of the length constant usually used by physiologists, since the propagation constant
has a simple meaning for sinusoidal signals whereas the length constant does not: the
real part of the propagation constant determines the spatial decrement in the poten-
tial, the imaginary part of the propagation constant determines the phase delay in the
potential. These relations were first pointed out in the physiological literature by
Schneider, 1970.

Analysis ofa Class ofRandom Networks

The tubular system can be described as a random network of circuit elements, each
element being a tubular branch. Circuit analysis can be applied to this mesh by con-
sidering it as a "network graph" (Desoer and Kuh, 1969, Ch. 9) and applying some
elementary statistical ideas to the resulting equations. The derivation presented here is
applicable to a rather wide class of random networks, which resemble the tubular
mesh, but there are some cases to which it does not apply (see Discussion).
We divide the tubular system into a series of shells by a set of closed curves shown in

Fig. 2. The openings of the tubules are considered to be the first set of nodes, special
properties of these openings being considered later. A closed curve is constructed to
isolate the surface nodes from the next set of nodes. This curve cuts every tubular
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Shell n = | A

FIGURE 2 The shell construction for an irregular T-system. Each shell, indexed n, n - I ... is
defined by "closed" curves shown as dashed lines, the curves on the average being distance
(n + 1) Ar, (n - 1) Ar, . . . from the center of the network. The nodes within the shells are thus
on the average nAr, (n - 1)Ar,... from the center. Within each shell the nodes are indexed
k = 1, 2, 3, .... Note that the end of a blind tubule is considered a node. Tubules cut by a closed
curve are called radial branches; those not cut are called 6 branches.

branch in the region between the fiber surface and the first node within the fiber. Such
branches, cut by the curve, are called radial branches. The next shell inward (labeled
shell n in Fig. 2) contains all the nodes with branches extending to the surface. All the
nodes within any shell can be indexed as shown for shell n, remembering that the
termination of a blind tubule counts as a node. Note that both the k = 1 and k = 2
nodes are assigned to shell n according to this procedure; thus, the branch connecting
them will not be cut by any closed curve and must be analyzed somewhat differently
from branches which are cut. Such uncut branches are called 0 branches.
The definition of shell n specifies the construction of the next deeper closed curve

within the network. Equivalently, the next deeper closed curve can be defined as
the line that isolates nodes in shell n from nodes further inside the fiber. The shell
n - 1 will contain the set of nodes that connect to shell n; the previously defined pro-
cess can be repeated until all the nodes have been classified into shells. This construc-
tion is uniquely defined, providing each node is connected (as defined in Desoer and
Kuh) to the surface and the network is planar. The uniqueness and practicality of the
construction have been checked empirically in a number of hypothetical cases. The
construction has also been successfully applied to large areas of T-system of real mus-
cle fibers as seen in high-voltage electron micrographs, kindly supplied by L. D.
Peachey and B. Eisenberg.
The construction just described is motivated by the following considerations. The

potential at the nodes of a circularly symmetric network enclosed in a circular boun-
dary has circular symmetry. Such a circularly symmetric distribution of potential
depends on only one independent spatial variable and so is much simpler to analyze
than the nonsymmetric case, which must include at least two spatial variables (com-
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pare the analysis of the symmetric model [p. 33] and rectangular models [p. 37-51] in
Mathias, 1975). We want a construction that will allow an analysis of a random net-
work in terms of a distribution of potential that, when averaged over a set of networks,
is circularly symmetric and so, on the average, is only a function of the distance from
the center of the network. The closed curves of the construction for an irregular net-
work cannot in general be concentric circles (as they could be for the deterministic
circular network) because such curves would not classify nodes of a general random
network according to their electrical distance from the surface of the fiber, the elec-
trical distance being equivalent to the number of nodes or radially oriented branches
between the node in question and the surface. The construction presented above is de-
signed to produce shells each ofwhich includes all the nodes a given electrical distance
from the surface. We expect that this construction, applied to a particular network,
will produce a set of shells with the least possible variation of potential from node to
node within each shell. Some networks might be so irregular that potential would vary
considerably around the circumference of one shell. The potential in such an aberrant
network might deviate so considerably from that of a circularly symmetric network
that our approach would not be useful. However, in an average network we expect
that the potential will be quite symmetrical, with small variance. Our subsequent anal-
ysis will therefore assume that the potential can be described by a function of a single
spatial variable; in other words subsequent analysis will assume that the potential is
circularly symmetric and the outside of the network is a circle. The properties of net-
works with rectangular symmetry and a rectangular boundary (Mathias, 1975) are
remarkably close to networks with circular boundaries, and so we suspect our analysis
is more applicable to polygonal fibers than might have been expected.

Derivation ofDifference Equationsfor Current and Potential
The analysis of current flow in the network of shells just constructed requires the sys-
tematic identification of each node within each shell. The following nomenclature
seems quite simple; the slight ambiguity it allows will disappear as soon as we put the
equations into usable form.2 The current leaving the n, k node in a radial branch con-
nected to a node in the n - 1 shell will be called i.,k. Current leaving the n, k node in
a radial branch connected to a node in the n + 1 shell will be calledi +k. The current
leaving the n, k node in a 0 branch is called i'n, k
At every node in shell n, we have

in,k + in.k + in,k = A, (7)

and summing over all nodes in that shell, we have

(in,k + in,k + in k) = 0, (8)
k

2Ambiguity arises, for example, when a node in the n - 1 shell is connected to more than one node in shell
n. The ambiguity disappears as soon as the expected value of the random variables is taken.
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or

in Mn Kn

E nj+ E nm + E: ik = O,(9
j-i mr- k-i

where Jn, Mn, and Kn are the total number of each type of branch within shell
n. Later we will determine the dependence of these numbers on the shell index n and
the morphometric parameters of the tubular mesh.
To analyze these currents, we must use the idea of a random variable as defined

in works on probability theory (e.g., Papoulis, 1965). If an ensemble of networks is
considered, we can define random variables that represent the three types of current
flow. Each such random variable is printed in boldface type and represents the set
of all currents which can occur at the nodes index n, k. Similarly, each random vari-
able used later for voltage or admittance describes the set of all such parameters
possible at the nodes indexed n,k. In our case the number of each type of branch
Ji, M., and K. are random variables, as are the corresponding currents in each
branch. For example, each particular i-, in Eq. 9 is the value of the random
variable i;j, evaluated for a particular nodej in some specific network. The random
variable i,- thus describes the set of all currents which flow away from a node
in a shell indexed n through a branch connected to an n - 1 shell. Here our interest
is in the mean value of the currents in each type of branch and so Eq. 9 must be con-
verted into an equation that describes the mean value of the currents. The expectation
operator E(-)3 (Papoulis, p. 138) performs this transformation. For example, apply-
ing the operator to the set of all sums in Eq. 9 using a theorem for random sums
(Papoulis, p. 248) gives

in
E[Z i;j = E(Jn) E(in,) = Jin; (10)

where we have written the symbol Jn for the expected value of Jn (in shell n)
and similarly for the current. Eq. 9 then becomes

Jnini + Mnin+ + Knin=. (11)

At this point it is useful to introduce some morphometric parameters: NB, the mean
number of branches per node; SB, an average spacing between "radial" branches, de-
fined precisely as the circumference of a closed curve of average radius in Fig. 2

3When we take expectations in this theoretical analysis, we have in mind one main source of variance, namely
the variance of the morphometric and electric parameters within the T-systems of one muscle fiber. This
variance arises both from the variation of the parameters of a single tubular branch and from the random
connections of the T-system. Another source of variance is the variation of properties from fiber to fiber
and muscle to muscle. This is not included explicitly in our analysis. In the Results section this source of
variance is handled by the usual techniques of biological experimentation: the experimental data analyzed
are collected from a large number of muscles and muscle fibers of generally similar properties. A better
technique is, of course, to measure mean electrical and morphometric parameters in the same fiber.
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divided by the number of branches cut by the curve; 6N, the average spacing between
nodes defined precisely as the circumference corresponding to the average radius of the
shell (evaluated in the middle of the shell) divided by the number of nodes in the shell;
and Ar, the average width of a shell. It is important to note that the radius r can
be written as nAr, but Ar is not specified as equal to the branch length L, since
we neither require that the mesh be stretched taut, nor do we restrict how the branches
are connected within the plane of the network.
The total number of branches can be written as

Jn + Mn + Kn = 2ir(n - )Ar +2(n + j)Ar + Kn, (12)
6B 6B

where the number of minus branches Jn has been determined at a distance (n - 1) Ar
from the center of the fiber and the number of plus branches Mn has been determined
at a distance (n + 1) Ar. A morphometric estimate of Kn, the number of 0 branches
in shell n, is not available, but Kn can be determined, once the minus and plus
branches are counted, from the total number of nodes in the shell n and the average
number of branches per node.

27rnAr = 2w(n - )Ar 27r(n + )Ar (13)
N BN8- 6, + 6,n13AN 6B 6B

Note that the left-hand side of Eq. 13 is twice the number of branches contained in
the nth shell, since the 0 branches are counted twice (once from each end) and the
plus and minus branches are, on the average, half in shell n and half in the adjacent
shells. Kn is then given by

Kn = ( NB - )PrnAr (14)
ik.16,]

Now, ifwe substitute from Eqs. 14 and 12 into Eq. 1 1, we get a statement of the current
equation in terms of morphometric parameters:

(n - J)in + (n + )in + n( NB - 2)in =
0

(15)

For our purposes we must convert this equation to a description of the potential.
We can do this obviously by using the two-port formulation (Eq. 1, 2). for the de-
terministic case and proceed directly to Eq. 18, but in our present situation, where the
currents are random variables, the derivation is somewhat more complex. Consider
the currents

n,M= YllUn,m + Y12Un+l,m, (16)

The expected value of these currents is given by

= E(i+m) = E(ymUn,m) + E(YmUn+I,m), (17)
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where Un,m represents the set of all nodal potentials in all shells indexed n. The
n indexing for the admittances is not included since the expected value of these param-
eters is assumed to be independent of the location within the network. However, the
m index is retained to indicate that the short-circuit admittances always arise in
branches incident to the node at which potential is specified. Thus, the potential at a
node is more highly correlated with the admittance variable than would be the case if
the variable described the set of admittances of all branches.
The derivation of an expression for potential will require the evaluation of several

expectations like that shown on the right-hand side of Eq. 17. The evaluations require
some analysis since the random variables over which the expectation is to be performed
are in general correlated. Appendix I shows that a statistical analysis gives a classical
difference equation for the mean potential in the shell N:

(n + )Un+l + (n - )Un-, - n(2 + 42)Un = 0, (18)

where

42 = B NB(P - 1); P = -YII/Y12 = coshrL (19)6N

42 = (rL)2 ( 2 )(I + 2 (rL)2 + ! (L)4 + ) (20)

Note that

/68 NB\ 1/2nt(N 2 - )nrL as rL 0. (21)

The tubular branch length times the propagation constant is a natural dimensionless
parameter to describe the effective branch length. The limiting expression, Eq. 21,
in valid only if the effective branch length is small, that is, the branch length is much
less than the length constant. Such is the case at DC in most physiological circum-
stances, but it certainly is not the case either during all experimental procedures or
during all natural electrical activity.

The Continuous Limit and the Disk Model ofthe Tubular System
The analysis presented up to here has been of a discrete network and so it is natural
that a difference equation should be the resulting description of the potential in the
network. Previous analysis of the properties of the T-system have assumed that the
branch length in the t-system is sufficiently small to allow the potential to be approxi-
mately described by a differential equation. To compare our analysis with the previous
analysis of the disk model of the tubular system, we consider the limiting case of the
difference eq. 18. The difference equation can be written:

Un+, - 2Un + Un-,l 1UIUn+ U - Un = 0 (22)42 4n 24
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The difference equation has been called Bessel's difference equation (Pearson, 1960)
since it is a finite difference representation of Bessel's differential equation. The rela-
tion of the difference and differential equation can be studied by taking the limit as
4 o- 0. We introduce a dimensionless radial coordinate R = n4, which stays fixed in
the limiting process and so becomes the independent variable in the differential equa-
tion. The limit can be taken, remembering that U+LJ, is defined as U([n + 1]4) =
U(n4 + 4) = U(R + 4), and that the limit 4 0 is equivalent to AR - 0, with R
fixed.

d2U + I dU u=O (23)
dR2 R dR

This differential equation describes networks with vanishing branch length, since
Eq. 21 shows that the 4 -1 0 limit is equivalent to the L -0 0 limit. This differential
equation is closely related to that of the disk model of the tubular system (Adrian
et al., 1969a) and will in fact be converted into precisely that form. To complete the
analysis, the explicit expression is needed for the relationship of the dimensionless
spatial variable R and the physical radial variable r. The ratio of these two variables
is defined as a propagation constant rm of the entire tubular mesh:

rm-= n (24)
r r

Remembering that nAr - r, and using Eq. 21, we have

r SB 1/2 -
L asL -10. (25)

[ 6N 2 Ar 2

The above expression does not explicitly determine the propagation constant of the
mesh, since in general the branch length L and the shell size Ar are not equal (e.g.,
Adrian et al., 1969a, Fig. 11 c).
The relation of L and Ar can be determined directly from measurable morphometric

parameters of the network by calculating the total number of branches per shell, both
radial and 0 branches, in two different ways. The area of a shell of radius r is
2wrAr, and the number of branches per cross-sectional area is (LT/AF)/L, where
LT/AF iS the length of tubule per unit cross sectional area of mesh. The number of
branches per shell is thus [LTIAF][27rrAr]/L. The number of branches per shell is
also [A] x [number of nodes/shell] x [branches per node] = [27rr/56][NB/2], where
the factor one-half arises because each branch has two nodes. Equating these two
expressions gives the result

L_
A

= 26N(LT/AF)/NB. (26)

Substituting into the limiting expression for the propagation constant of the mesh
(Eq. 25) gives the relation ofR and r.

BIOPHYSICAL JOURNAL VOLUME 17 197768



R= r (27)

rm,= r/v'Y. (28)
The tortuosity factor r is

A _NNS / ( LT)T =

bg
I 'N-jF (29)

Substituting in the differential Eq. 23 now gives a differential equation of the same
form as that of the disk model. Later, we determine T for model networks and muscle
fibers and discuss its physical meaning.

Analysis ofthe Admittance
It is necessary to analyze the current flow in the tubular system as well as the spread of
potential, since most of the measurements of its electrical properties are really measure-
ments of the contribution of the tubular network to the admittance of the muscle fiber.
The admittance of the T-system also represents the largest part of the load on the ac-
tion potential and so analysis of the admittance is needed to understand the propaga-
tion of the action potential.
The admittance of fundamental interest is that of an opening of the tubular system,

but this can be derived from the admittance at a node of one inward radial branch.
This admittance is (from Eq. 1 and 2)

Yn,kA ' +) k) Ufl,k (30)Uk n,k Un,k

The random variable YX describes the admittance of the entire shell at index n. The
expected value of Yn is

=E E{Z{YYnk=2ir(n - E{Ar yk+ = Un,k} (31)

As before, the sum over k is taken as the expected value times the number of radial
branches per shell.
To proceed with the analysis, it is again necessary to take the mean or expected value

of the admittance of a shell and try to relate that admittance to the mean electrical and
morphometric parameters of the T-system. An interesting part of the previous analysis
was the statistical argument (given in Appendix I) which allowed the estimation of the
mean value of the admittance in terms of only the mean value of the electrical and
morphometric parameters. In general, of course, such is not possible; the expected
value of a function of a random variable depends on the entire distribution of the
variable; in particular, it depends on the variance (and higher moments) as well as the
mean value of the random variable. The mean value of the admittance is an example
of the general case and can only be written as
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E(Yn) = YX(l + En),

or

E(Yn) =2(n -)Ar ( + Y12 U1) ( + E), (32)

where Yn is defined implicitly as the expected value of Y. if En = 0. The error term
En, a measure of the effect of the shape of the distribution, is

En = PABrAAO'BB/Yn, (33)

where A = Y12, B = Un -I/ Un, and the correlation coefficient and variances are de-
fined as in Appendix I. Although it is not possible with the data available to evaluate
the correlation coefficient and variances, nonetheless, one can proceed on the assump-
tion that they are quite small. The correlation coefficient measures the effect of the
variance in one branch admittance on the voltage at a node adjoining that branch.
Since the voltage is determined by the properties of the entire mesh, the variance of a
single branch is likely to have a small effect. Furthermore, the variances themselves
should be much smaller than the average values. Thus, it seems justified to ignore
the error term.

Eq. 32 then serves as the fundamental relation between the admittance and the
potential

Un =p (1 jU ) ' (34)

where jn is the input admittance at the outer end of a radial branch n shells from the
center.

68^ sYn (35)6nBYn
27r(n - )Ar'(5

A first-order nonlinear difference equation (a Riccati equation) for the admittance can
then be written from Eq. 18 by considering Eq. 34 and the additional case where n
is replaced by n + 1. Then, we have

I- Yfl+ = 36+
Yii np(2 + 42) - p2(n - ')(I - n/YI) (36)

This difference equation, being of first order, is itself a statement of the numerical
procedure to construct or compute its exact solution. Starting with the initial condi-
tion po = 0, the difference equation gives 9,; -1 can then similarly give j2; and in this
manner each i' can be trivially and efficiently computed.

Solutions ofthe Difference Equation
The solutions of the difference equations for the potential and admittance are most
efficiently evaluated by direct programming of the equations, since they specify an
iterative process. The procedure for computing the admittance has already been
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FIGURE 3 The radial distribution of potential in the mesh model. The difference Eq. 18 is solved
directly for the parameters of an average muscle fiber (see Table 1I). A shows the relative attenu-
ation in amplitude and B shows the delay or phase shift for sinusoidal voltages of different fre-
quencies. The velocity of propagation of a point of constant phase (the phase velocity discussed
by Carrier et al. 1966, p. 275) can be determined when the curves in B are approximately linear.
The phase velocity is the angular frequency divided by the slope of the phase curve and is some
8 cm/s at 1,000 Hz, not greatly different from the radial propagation velocity of an action poten-
tial in the T-system.

specified; that for the potential is somewhat more complex since the difference Eq. 18
is second order. One boundary condition for the equation is specified in the center
of the fiber, where the requirement that the admittance yO = 0 implies (from Eq. 34),
that U1 = Uo/p. Computation of the potential then proceeds by setting U0 = 1,
U1 = 1/p and using the difference equation to determine U2 and so on. The po-
tential on the outer edge of the T-system is then matched to the potential across the
surface membrane and all the UQ scaled appropriately. The results of such a calcula-
tion are shown in Fig. 3.
The potential can also be written analytically (Pearson, 1960; Carrier et al., 1966,

p. 105) in terms of an integral closely related to Io(nt)

l,,= I cosh .t dO, (37)
7r "0 Sn
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where

t = 2 arc sinh( sin@). (38)

Ai,, is an exact solution for the continuous limit and an accurate approximation in
general, but another linearly independent solution (not presented in Pearson, 1960) is
needed as well to satisfy our boundary condition and difference equation exactly.
Although a complete asymptotic analysis of the integral expression might aid our
understanding, we have only looked at a few special approximations. The most useful
approximation for physiological purposes is the solution of the continuous limit of
difference Eq. 23,

Un = Vm 10(n4) (39)

where V. is the surface member potential and N is the radial index of the surface of
the fiber. This approximation is accurate, within 3.5% in magnitude, for frequencies
up to 10 kHz in typical muscle fibers from the sartorius.
An approximate expression for the admittance can be derived that is quite useful:

it has a simply physical interpretation and a specific relationship to the solutions of the
continuous limit, namely the disk model. Furthermore, the error in the approximation
is negligible under all physiological conditions. The critical step in the approximation
is the definition and determination of the admittance j- of a network with radius
much larger than its length constant. This parameter describes the admittance of a
mesh in which potential does not spread to the center of the network, but drops essen-
tially to zero within an outer annulus. There will always be such a limiting admittance,
since Eq. 36 describes a sequence that increases, while the step size (the difference
between 9,n and n,+ I) decreases. Thus, one can determine 9, by setting - = -n+ I = Y.,

Y. = I/ 1(1 - l/O)] YTOcothrL, (40)

where 4 is defined in Eq. 19 and

4o = lim (a/rL) = (NB6B/22N)/. (41)
rL-0

The solution to the difference equation for the admittance in the continuous limit is
known from the previous work on the disk model (Adrian et al., 1969a) and so we con-
struct a heuristic approximation that behaves correctly both for the 4 0 and the
4 X case (provided n is large enough; in our case n > 20).

Yn = gx I, ((nt) n > 20. (42)Io(nt)'
Rather than discuss the approximation analytically, it seems best simply to compare it
with the exact numerical solution over the range of physiological interest. For the
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parameters of a typical muscle fiber (see Results), at all frequencies the error in the
magnitude of the admittance is less than 2% and the error in the phase of the admit-
tance is less than 1% for fibers of radius N = 20 or larger (i.e., roughly 10 ,m).
To complete the derivation, it is simply necessary to write the admittance formula in

terms of morphometric parameters. The index variable nt can be determined from
Eq. 24 and can be related to specific properties of the tubular system by Eq. 28, 29,
and 5. The variable t is defined in Eq. 19. The tubular network in a unit length of
fiber has (2irr - O.5Ar)/6,ua - 2rr/6Br radial branches which form tubular open-
ings, where a is the sarcomere length. The tubular admittance in a unit length of fiber
yT(r, jw) is then

yT(r, jw) = 2w (. (43)

When the branch length is small compared to the length constant of the mesh, the
expression approaches that for the continuous limit

yT(r, jw) - 27rrvTr:V (44)VF "RL io(r rf 44

The region of validity of this latter expression depends critically on the specific electri-
cal parameters, morphometric parameters, and frequency and so cannot be easily de-
scribed in general. However, in the next section we will see that the region of
validity can be described in a general way by a physical argument.4

Physical Meaning ofthe Admittance Equation
An appealing feature of the solution (Eq. 43) of the mesh model is that it allows a
simple physical interpretation of the admittance of the T-system (Fig. 4). We shall
see that for large tubular length constants the lumen of the tubules is practically
isopotential and so the admittance can be represented as a simple circuit. For a range
of small length constants, the admittance behaves like that of a disk of T-system with
significant decrement of potential in the radial direction. For a range of smaller length
constants, the admittance is affected by the finite density of branching. Finally, for
very small length constants, the admittance is simply that of the surface tubules in
parallel.

4Although the derivation of Eqs. 43 and 44 assume networks enclosed in a boundary which is, on the aver-
age, circular, muscle fibers are usually irregular. The correct generalization to the irregular case is impor-
tant. The factor 2rrin Eq. 43 and related equations obviously generalizes to the fiber circumference or
boundary length BF. The radial dimension within the argument of the Bessel functions in Eqs. 43 and 44
generalizes in a different manner, as can be seen by studying the case where rma is small. Then, the T-sys-
tem admittance must scale with the cross-sectional area of the fiber (see subsequent discussion). Thus, when
the fiber is not circular, the radial coordinate within the Bessel function is replaced by 2A F/BF. Numerical
simulations of square, rectangular, and hexagonal networks have been performed (see Mathias, 1975) and
it has been shown that Eq. 43, with the above definitions of "radius," is a surprisingly good model of the
different geometries.
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FIGURE 4 A plot of the normalized admittance vs. the tubular propagation constant. The vari-
ables and regions are defined in the text. The fiber radius is 65 Am, the specific circuit parameters
are taken from Table II, and the morphometric parameters from Table I. The dashed line is
computed from the disk model with the indicated tortuosity factor. The solid line is computed
from the mesh model with the same tortuosity factor.

The admittance of the T-system depends on the properties both of an individual
tubule and of the geometry of the tubular mesh. To isolate the effects of the geometry,
it is best to study the properties of a normalized admittance yn/lYTo, the input
admittance of a radial branch at an opening to the tubular system, defined in Eq. 42,
divided by the characteristic (input) admittance of a single tubule, defined in Eq. 6:'

Yn =YO \ (r (45)
YTO \TO" IO( rmr)

The first factor on the right side is called the mesh factor since it is most important in
the region of short length constants, where the properties of the mesh are most impor-
tant. The mesh factor is independent of YTO, since j-, itself is proportional to
YTO (see Eq. 40). The second factor is called the disk factor since it is most important
in the region of long length constants, when the mesh behaves like a disk.

Fig. 4 shows the normalized admittance as a function of the tubular length constant
or propagation constant. While this is the natural independent variable for analysis, it
is important to remember that changes in frequency, conductance of the wall of the
tubule, resistivity of the tubular lumen, or in the surface-to-volume ratio of the tubules
can be analyzed from the figure and the definition of the propagation constant (Eq. S).
The line is the normalized admittance computed from Eq. 45. In the lumped region the
mesh factor is constant while the disk factor is proportional to the effective radius,
r.a. Therefore at fixed radius, the normalized admittance is proportional to r^.
In this region the disk factor can be approximated by the first term in its expansion
(see Fig. 5). Hodgkin and Nakajima (I1972a,b; see Fig. IO below) have shown that the
"low-frequency" capacitance of a muscle fiber is linearly related to fiber radius and so
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FIGURE 5 Lumped approximation valid for conditions of little radial decrement in potential
within the tubular system. The variables are defined in the text. The circuit is valid in the
lumped region identified in Fig. 4.

there is experimental evidence that at low frequencies the admittance of the T-system
is in the lumped region.

For smaller values of the tubular length constant, the potential in the lumen of the
tubules decrements significantly in the radial direction so the plot of the normalized
admittance bends over towards a horizontal asymptote. In this disk region the mesh
factor remains constant, but the disk factor approaches unity. When the disk factor
is essentially unity, there is essentially no potential change in the center of the mesh.
The network behaves like a disk of infinite radius, which would have a normalized ad-
mittance 40. The normalized admittance is approximately independent of tubular
length constant and fiber radius, a situation found experimentally in the T-system of
muscle fibers during the foot of an action potential (Hodgkin and Nakajima, 1972a,b;
see Fig. 10 below).
At still shorter length constants, the normalized admittance decreases from its maxi-

mum value (something less than 40) to its eventual limiting value of unity. In this
mesh region the disc factor is unity, but the mesh factor is decreasing. Finally, at very
high frequencies or short length constants, the tubular system behaves as a set of
tubules in parallel, since decrement of potential in the tubular lumen is so steep that
essentially no current reaches the first node at which the tubular system branches. In
this tubular region the disk factor remains unity, and the mesh factor has reached its
limiting value of unity as well. The normalized admittance is independent of frequency
or length constant, but of course the physical admittance does depend on these in-
dependent variables. It may seem surprising that the mesh factor should decrease with
increasing frequency, but that is simply a consequence of the amount of tubular mem-
brane available for current flow. At intermediate frequencies, current can flow across
the walls of both types of branches of the tubular system (0 branches and radial
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branches). But at higher frequencies current can flow only across the walls of those
radial branches lying just under the surface of the fiber. Thus, as frequency increases,
there is less tubular membrane available for current to cross and so the normalized ad-
mittance decreases.

The Equivalent Circuit ofthe Tubular System in the Lumped Region

The expansion ofYT for small rma is

1__1 1 RL 1 1 1

YT 87r VT/ VF Tr 7ra' ST/ VF GW +jwCC (46)

which describes the properties of the lumped equivalent circuit shown in Fig. 5.

Restricted Mesh Model
The analysis presented up to this point has assumed uniform properties of the T-system
everywhere in the cross-section of the fiber. Other experimental findings however,
suggest some nonuniformity in the structure of the T-system. Huxley and Taylor
(1958: Fig. 3) found the current from an extracellular microelectrode elicited contrac-
tion only when applied to specific spots or regions widely separated at the Z line. If
that technique allows the identification of every tubular opening, the circumferential
spacing between the openings 6, is considerably greater than the average branch
spacing 6,. Such wide spacings might restrict current flow into the tubular system,
as suggested by Peachey and Adrian (1973). The wide spacing of openings could then
be a morphological basis for the access resistance needed if the classical disk model is
to produce an action potential with reasonable shape and conduction velocity (Adrian
and Peachey, 1973).
We consider a nonuniform mesh, with spacing of the surface openings of the T-

system 5, different from the branch spacing 6,g in the interior. Each surface branch
is assumed to connect to a number of inner branches (6,s/6B) and, by circular
symmetry, the admittance at each inner branch is given by in, defined in Eq. 42. The
admittance of the entire restricted mesh y,,, (in a unit length of fiber) can be determined
by an equation from two-port theory (Ghausi and Kelly, 1968, p. 24) for the im-
pedance of a transmission line (here a surface branch) terminated in an arbitrary im-
pedance.

YT + Ta YTOtanhrL
y(a,jw) = ~ tanhrL

+ T(2iralbsa) YTO
where YT iS the admittance, defined by Eq. 43, of the central part of the T-system.
Note that the morphological and specific electrical properties of the central mesh and
outer tubules need not be the same, although in the absence of contrary information
we treat them as such. In the low-frequency case the restricted mesh equation becomes
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y,l YT ; smallIrL, (48)
l+raYT

where

ra = -s LrTL (49)

Thus, the access model introduced by Peachey and Adrian approximates Eq. 47
over some range of length constants, and our analysis relates the parameters of the
access model to the fundamental parameters of the tubules at the surface of the fiber.

METHODS

The preparation used in these experiments is the sartorius muscle of the frog Rana pipiens. The
electronic apparatus is essentially that described by Valdiosera et al. (1974a). On occasion
the voltage microelectrode was shielded as well as the current microelectrode. This shielding
reduced the imaginary part of the extracellular potential essentially to zero, but it reduced
the real part of the extracellular potential only by a factor of two. This reduction left an
extracellular potential of the same order of magnitude as that found previously and so shielding
was not routinely employed around the voltage electrode. The Ringer solution is described in
Valdiosera et al. (1975a).
The procedure for the experiments was quite different from that previously described since

it was designed to minimize the size of three-dimensional effects. Electrodes were inserted at a
separation of 100 um and the impedance of the fiber was measured in the frequency range
1-10,000 Hz. The low-frequency length constant was measured by making repeated impale-
ments at a number of electrode separations, at least three, often four. The diameter was com-
puted assuming R, = 169 Q-cm (Hodgkin and Nakajima, 1972a).

RESULTS

In this section the mesh model of the tubular system is fit to new data on the impedance
of muscle fibers in normal Ringer solution and to previously published impedance data
(Valdiosera et al., 1974c) and transient data (Hodgkin and Nakajima, 1972a,b).
Some new morphometric measurements are presented but, for the most part, the mor-
phometric data is that of Mobley and Eisenberg (1975) and Eisenberg and Peachey
(1975). We are grateful to the above authors for making their data available to us in
numerical form, in some cases before publication.
Table I gives the morphometric parameters and defines the morphometric symbols

used throughout this paper. It is most important to note that the parameter values are
distinctly different from the parameters of model networks previously used to describe
the T-system. The parameters taken from Mobley and Eisenberg (1975) are marked
STER to indicate that they were measured with stereological techniques; the data from
Eisenberg and Peachey (1975) are marked HVEM to indicate they were measured in
micrographs of thick sections taken with a high-voltage electron microscope. The
spacing between the openings of the tubular system 65, is estimated from Huxley and
Taylor (1958). Values of the spacing between nodes 5N and between branches 5B
were measured from electron micrographs of thick sections of frog sartorius muscle
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TABLE I
MORPHOMETRIC PARAMETERS OF THE T-SYSTEM

Parameter Symbol Value Units Method

Surfaceoftubule ST/VF 2.2 x 10 cm1i STER
per unit volume
of fiber

Surface oftubule ST/AFI 0.59 STER
per unit cross
sectional area
of fiber

Surfaceoftubule ST/VT 6.9 x I05 cm-l STER
per unit ofvolume
oftubule

Volumeoftubule VT/VF 3.2 x 10-3 STER
per unit volume
of fiber

Lengthoftubule LT/AFt 2.4 x 104 cm I HVEM
per unit cross
sectional area
offiber

Number of branches NB 3.2 - HVEM
per node

Branch length L 9.0 x 10-5 cm HVEM
Branch spacing* 5B,t 8.3(+0.2) x 10-5 cm Text (HVEM)
Node spacing* bNJ 1.03(a0.2) x 10-4 cm Text (HVEM)
Spacing of openings st 5 x 10-4 cm Huxley and Taylor

ofT-system
Tortuosity factor 4t 0.32 Text

*Parentheses enclose SEM, n = four muscles.
tThese parameters will in theory change with sarcomere spacing; the data presented here were
measured in fibers with a sarcomere spacing of2.8-3.0 ,um.

kindly provided by Drs. B. Eisenberg and L. D. Peachey. The construction described
previously (see Fig. 2) was applied to 11 muscle fibers from 4 muscles, between 3 and 12
shells being defined in each fiber. All the fibers were irregular and in one case the con-
struction was completed just within a corner of the fiber. It is interesting that the ap-
parent spacing between locations where the tubules approach the surface is 1 Am, much
less than reported by Huxley and Taylor.

Fig. 6 shows the best fit of the mesh and restricted mesh model to the impedance data
collected from two fibers at a sarcomere length of 2.5 um. The points are the experi-
mentally measured phase shift, namely the normalized delay between sinusoidal cur-
rent injected with one microelectrode and the voltage recorded nearby (100 Am distant)
with another microelectrode. Measurements of the magnitude of the impedance were
routinely made in other experiments and could be fit by the circuit models and
parameters reported here. They are not presented, however, since they contain only
redundant information not necessary to determine the equivalent circuit or its
parameter values. Indeed, the magnitude data is not very useful since the errors in its
measurement are larger than those in the measurement of phase in the apparatus of
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FIGURE 6 The phase angle of the impedance of frog skeletal muscle fibers measured at an elec-
trode separation of 100 um. The solid line is the best fit of the mesh model, the dashed line is the
best fit ofthe restricted mesh model.

Valdiosera et al. (1974a). The phase data shown have been corrected for measured ex-
perimental errors and the theoretical curves have been fit to the data as described pre-
viously (Valdiosera et al., 1974a,b,c). Eq. 43 or 47 was used to describe the
admittance of the T-system; the T-system admittance was added to the admittance of
the surface membrane and from that sum the impedance of a one-dimensional cable,
representing the one-dimensional properties of the muscle fiber, was calculated. At
the electrode separations of 100 ,m used here, the three-dimensional effect was
negligible and therefore was not included. This is the procedure described by Valdio-
sera et al. (1974b) in their Eqs. 1, 2, and 5. Table II summarizes the results from five
fibers. ri and r are the internal longitudinal resistance and DC membrane resistance
of a unit length of fiber determined from measurements of the magnitude of impedance
at 1 Hz. The R,es, is an objective measure of fit, giving the percent deviation between
theory and experiment. The parameters Cw, C* and RL were determined by curve
fitting to the phase data. All other parameters were determined by independent
measurements and held constant during the curve-fitting procedure. The value of the
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TABLE II

CIRCUIT PARAMETERS IN NORMAL RINGER SOLUTION, a = 2.5 jm

Mesh Restricted mesh

Fiber r ri a C* cw RL ReS3 C, CW RL Ries,

104 Q-cm us/cm gm gF/cm2 AF/cm2 12/cm % F/2cm2 MF/cm2 Q/cm %
210-1 8.7 2.70 45 1.1 1.1 180 2.3 1.3 1.0 120 2.0
211-1 20.6 3.35 40 1.0 1.8 120 1.0 1.3 1.4 80 4.3
211-2 20.6 4.06 36 1.0 1.7 120 0.8 1.3 1.4 80 4.3
211-3 21.2 2.75 44 1.2 1.4 90 1.0 1.6 1.1 70 2.6
216-1 17.2 3.26 41 1.0 1.2 170 1.6 1.2 1.0 110 2.8

Mean 41 1.1 1.4 136 1.3 1.3 1.2 92 3.2
SEM 4 0.1 0.1 17 0.1 0.1 10

The radius is computed from an assumed internal resistivity Ri = 169 Q-cm. The sarcomere length is
2.5,um.

surface capacitance C* is marked with an asterisk to indicate that the area of mem-
brane used in its calculation is hypothetical, determined by assuming a smooth, un-
folded surface membrane, whereas the real surface membrane is known to include folds
and pockets often called caveolae (Dulhunty and Franzini-Armstrong, 1975). The cir-
cuit values presented in Table II should be calculated from morphometric and electri-
cal measurements at the same sarcomere length. However, in the absence of such data,
scaling is necessary. We scale the resistivity of the lumen of the tubules by scaling
the tortuosity factor linearly with sarcomere length, as implied by Eq. 29: in a fiber
that has volume independent of sarcomere length 6N(LT/AF) will vary as the
square root of sarcomere length. We do not choose to scale the capacitances nor
analyze their relative values since their dependence on sarcomere length may be more
complex. It is of interest that the restricted mesh model (with the value of 6, = 5 ,um
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FiGuRE 7 The phase angle of the input impedance of frog skeletal muscle fibers. The data is that
of Valdiosera et al. (1974c) taken from 12 fibers in their 1 CCCP solution. Each point is the mean
phase measured at that frequency. The standard error ofthe phase is indicated.
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FIGURE 8 The phase angle ofthe input impedance of frog skeletal muscle fibers. The data is that
ofValdiosera et al. (1974c) taken from 10 fibers in their*t CCCP solution. Each point is the mean
phase measured at that frequency. The standard error ofthe phase is indicated.

from Huxley and Taylor, 1958) does not fit the experimental data nearly as well as the
mesh model itself.

Figs. 7 and 8 and Table III present the data of Valdiosera et al. (1974c) from solu-
tions of different conductivity identified in the original paper. The points here repre-
sent the mean data from a number of muscle fibers. It is more difficult to distinguish
between the fit of the restricted mesh and mesh models, probably because these data
include a significant three-dimensional effect that adds a degree of freedom to the
curve-fitting procedure and thus reduces the accuracy of the best-fit circuit parameters.
The difference between the circuit values for muscle fibers in normal Ringer solution
shown in Table III and those shown in Table II is probably the result of biological
variation, except for C*, which is significantly affected by three-dimensional effects.

Fig. 9 illustrates the variation of luminal resistivity RL with the resistivity of the
bathing solution RB. The solid straight line describes the case of equal resistivity of
the bathing and luminal solution, the case expected to apply, since the lumen of the

TABLE III
CIRCUIT PARAMETERS IN SEVERAL SOLUTIONS, a = 2.5 Am

Mesh Restricted mesh

Solution cw Cm RL Rtest CW Cm RL Ries,

LF/cm2 gF/cm2 Ql-cm % sF/cm2 pF/cm2 Sl-cm %
A: Ringer 1.07 0.73 148 1.2 0.90 1.61 116 1.5
E: I CCCP 1.23 0.85 281 1.0 1.03 1.65 200 1.5
F: j CCCP 0.99 0.73 474 1.2 0.83 1.33 346 1.4
G: iCCCP 1.28 0.82 990 1.7 1.00 1.43 704 1.5
H:ICCCP 1.44 1.33 1263 1.1 1.15 1.86 834 2.2
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FIGURE 9 A plot of the resistivity of the lumen vs. the resistivity of the bathing solution. Note
the different scales on the abscissa and the ordinate. The location of the points is determined from
measurements of the morphometric parameters of muscle fibers and the parameters of the mesh
and restricted mesh model that produce the best fit to the experimental phase data. The straight
line shows the relation expected if the resistivity of the lumen equaled the resistivity of the bath-
ing solution. It should be emphasized that there are no parameters available to arbitrarily adjust
the slope of the line or the location of the points.

T-system is thought to be in diffusional equilibrium with the bathing solution. The
points do not fall around this line, but are consistently above it. It seems to us that
the most likely explanation of this deviation is an error in the morphometric measure-
ments used to computer RL, particularly since the derived value RL depends on the
square of LT/AF.S For example, if the morphometric parameters of Peachey
(1965) are used to describe tubules of elliptical cross section 800 x 260 A (and the node
spacing and sarcomere length are as reported in Table I), the tortuosity factor is about
0.09. The resistivity of the lumen of the tubules, determined by fitting the impedance
data and using Peachey's morphometric parameters, is about 30% of that reported in
Tables II and III. Thus, if Peachey's morphometric parameters and the corresponding
tortuosity factor were used, the resistivity of the lumen would appear to be much less
than that of the bathing solution!
Up to this point we have examined the dependence of the admittance of a muscle

fiber on the propagation constant, rm, of the tubular system by varying the frequency
of applied sinuosidal currents. Another independent variable that determines the ad-
mittance of the tubular system is the fiber radius, and so Hodgkin and Nakajima
(1972a,b) studied the capacitance of muscle fibers as a function of fiber size. They
measured the capacitance both from the voltage response to a step function of current

5The value for LT/AF was measured by Eisenberg and Peachey (1975) in l.0-,um-thick sections observed in
the high-voltage electron microscope. Thus, they measured the projection of the tubular length and their
measurement would be an underestimate. Undulations of the tubules in the longitudinal direction would
not be apparent in the projections measured and could cause as much as a 30%/0 error at a sarcomere length of
2.9,um.
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FIGURE 10 The variation of capacitance with fiber diameter. The data is from Hodgkin and
Nakajima (1972a,b) and we thank the authors for providing the data in numerical form. The up-
per data describes the low-frequency capacitance determined from the application of rectangu-
lar pulses of current, and the lower data are the high-frequency capacitance, determined from the
foot of the action potential. The theoretical curves are the predictions of the mesh model based
on the circuit and morphometric parameters shown in Table II (the dashed line) or Table III (the
solid line) for fibers in normal Ringer solution and the average of value of rf was 127 us from
Hodgkin and Nakajima, 1972b.

and from the foot of the action potential. The former estimates the total capacitance of
the surface and tubular membranes; the latter measures the capacitance of the surface
membrane and a small annulus of the tubular system. Fig. 10 compares the results of
Hodgkin and Nakajima with the predictions of the mesh model, assuming that the
specific properties and sarcomere length of the muscle fibers of Rana temporaria (used
in their experiments) are the same as those of R. pipiens. The dashed line is calcu-
lated with the data shown in Tables I and II, the solid line with data shown in
Tables I and III. The difference in the curves probably is mostly the result of biological
variation, although the difference in the y-intercepts (the value of C*) is un-
doubtedly influenced by the three-dimensional effects. The total capacitance curves
were computed with Hodgkin and Nakajima, 1972b, Eq. 12, with the appropriate
definition of the tortuosity factor (our Eq. 29). The effective capacitance during
the foot of the action potential was computed with Eq. 16 of Hodgkin and Nakajima
(1972b) with YT defined by yT/2lrr, whereYT iS computed from Eq. 43 by replac-
ingjw with l/Tf.

DISCUSSION

Sensitivity to Assumptions
A number of assumptions used in the analysis of our data and derivation of the mesh
model may introduce significant error. The most important assumption in the analy-
sis of the data is that the circuit elements of the circuit model are relatively pure
and can be described by resistors and capacitors. It is now known that the capacitance
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of nerve and muscle fibers (Armstrong and Bezanilla, 1974; Schneider and Chandler,
1973) is voltage-dependent and so the assumption of pure circuit elements is bound
to introduce some error. It is not possible to estimate this error without more
precise data concerning the time dependence of the nonlinear capacitive currents
found in muscle; however, consideration of the time scale reported suggests that
the errors will be introduced at quite low frequencies. The time scale of the non-
linear capacitive currents in muscle is of the order of 10 ms. Errors would be ex-
pected then in the range of frequencies centered at 16 Hz. It is interesting that in
this low-frequency range, most investigators have found a misfit to their impedance
data (Schneider, 1970; Valdiosera et al., 1974c); however, the misfit has been shown
to have little effect on the estimates of circuit parameters, since the estimates are
rather insensitive to the low-frequency data. Thus, if the main effect of the nonlinear
capacitive currents is confined to these low frequencies, the use of linear circuit
elements probably does not introduce too much error. On the other hand, it must
be kept in mind that there may be other properties of the nonlinear capacitive cur-
rents, not well studied at present, that could more seriously affect our results.
The most important assumption in the derivation of our model of the tubular

system is that the construction defined in Fig. 2 will allow the potential in a typical
tubular system to be described as a function of only one spatial variable; in other
words, the assumption that the potential spread is circularly symmetric. There are
three cases where one must question the assumption: first, if the shape of the fiber
is grossly asymmetric; second, if there are asymmetries within the branching of the
T-system itself; and third, if the longitudinal three-dimensional structure of the T-sys-
tem is significant. Mathias (1975) has conducted quite extensive numerical analyses
of branching networks and has observed that the admittance of several rectangular
networks is remarkably close to that of the mesh model presented here. One must
suppose that this result is not a coincidence but rather reflects an underlying ap-
plicability of the present mesh model to tubular networks in noncircular fibers.

Assymmetries within the tubular network at any given Z-disk certainly exist and
spoil circular symmetry. Electrical data is measured, however, from the tubules in
many Z-disks, from many fibers, and so represent the properties of an average tubular
network. Asymmetries in the tubular network can thus be important only if they
persist along the length of most muscle fibers, and there is so far no reason to sup-
pose they do.
The effect of the three-dimensional structure of the T-system is difficult to esti-

mate or analyze. There are few morphometric data on the number of longitudinal
connections between Z-disks but there are almost no numerical data describing the
overall three-dimensional geometry of the tubular system. Therefore, consideration
of this complication must be postponed until more anatomical data are available.

The Disk Model, the Mesh Model, and the Tortuosity Factor
Adrian et al. (1969a) constructed an electrical model of the T-system that includes
some effects of the branching of the tubules. The tubular system was described as

BIoPHYSICAL JOURNAL VOLUME 17 197784



a resistive medium uniformly distributed within the interior of a muscle fiber and
isolated by a membrane from the sarcoplasm (see also Falk and Fatt, 1964). A
correction factor, the tortuosity factor, was introduced to account for the different
properties of a T-system made of branching tubules and one made of a uniform
resistive medium. The tortuosity factor was computed for several models with fixed
regular geometries. There was some ambiguity in the determination of the tortuosity
factor, since the networks considered do not pack into the circular perimeter assumed
elsewhere in the analysis, but the networks considered by Schneider (1970) do pack
into such a perimeter and give the same results.

In a sense it is no longer necessary to consider model networks, since our expres-
sions for the admittance and potential contain all the morphometric and electrical
parameters necessary to specify the current flow and potential distribution within
the network. It remains desirable, however, to consider specific networks of resis-
tors to see if one can develop a physical understanding of the meaning of the
expressions, and indeed of the tortuosity factor. It is also important to consider
such special cases to check the validity of our formulae. Finally, it is particularly
important to consider such special cases to persuade the reader of the validity and
applicability of our general results.

In a qualitative analysis of the tubular system, two resistances, derived from the
specific properties of the T-system, may be defined. The effective resistance Rrad
(in ohms) to radial current flow i, (in amperes) in a single Z-disk is defined so
that the radial form of Ohm's law is valid:

U = 2I Rradir (50)

The other resistance has been specified by Adrian et al. (in slightly different form)
as a bulk resistivity RL (in ohm-centimeters) of the T-system, defined with respect
to the volume of the fiber, instead of the volume of the tubular lumen:

A RL (51)RL=VTIVF (1

These definitions are closely related to Eq. 3 and 6 of Adrian et al. (1969a). We
find it easier to consider the properties of a single Z-disk and so we consider the
analogous resistance RL for a single Z-disk by dividing the bulk resistivity by the
sarcomere spacing

a RL riT.

VT/A F LTIAF (52)

where VT/AF is the volume of the tubular lumen in a unit area of Z-disk, LT/AF
is the length of tubule in a unit area of Z-disk, and r1T is the resistance of a unit
length of tubular lumen. The resistance AL can be written in terms of the resistance
of one tubular branch Rb A LriT:
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AL Rb (53)
L(LT/AF)

Thus, RL is the resistance of L(LT/AF) tubules in parallel, which is just the number of
tubules in LI area of Z-disk. The tortuosity factor defined by Adrian et al. is given by

RL (54)
Rrad

The definition of RL can be misleading, however, since it might be taken to imply
that the radial resistance will decrease as the volume of tubules in a fiber increases.
Such indeed would be the case for both RL and Rrad if the volume is increased by
adding to each shell tubules that increase the number of parallel paths for current
flow. But such would not be the case for Rrad if the volume were increased by in-
creasing the path length for current flow, keeping everything else constant. Thus, we
are immediately aware that the relationship between Rrad and RL will be complex and
will depend strongly on the geometric and morphometric properties of the tubular
network.

Consider now two specific networks6 shown in Fig. 11. The diamond model is di-
vided into shells by constructing curves similar to those used in our derivation of the
mesh model (see Fig. 2). The curves define 6B which, for this model, is equal to
L/ 2. A unit cell is constructed that can be repeated to build the entire network and
from such a cell average morphometric parameters can be directly determined. For this
network the unit contains two branches of length L in a rectangle 6N = x/27E by
Ar = L/I of area L2. Thus, LT/AF = 2/L. The expression for the radial current
in a shell of perimeter 27rr is

i 2rr- 2 [U(r + Ar) - U(r)] = -r/-
6?.IRb Rb Ar'(5

which, by comparison with the finite difference representation of Eq. 50 gives Rrad =
Rb. Note the factor of 2/Rb in the center expression of Eq. 55 because there are
two branches for radial current flow at each node.7 The resistance AL can be deter-

6The derivation we have described applies to a wide variety of networks, namely to those networks in
which each constructed shell is the same and in which each branch length is the same. It cannot be used,
however, to analyze the "out-of-register squares" of Schneider (1970) or Fig. 11 (d) of Adrian et al. (1970).
Those networks are equivalent to an hexagonal array with the laterally oriented branches being one half
the length of the radially oriented branches, and the approach in the text assumes branches in all directions
to have, on the average, the same length. Such networks can be analyzed by modifying the equations for
current flow, but then the tortuosity factor would depend on the average branch length and probably the
ratio of branch lengths in different directions. With the available morphological evidence it does not seem

worthwhile to pursue this point further.
7The node spacing, 5N' can be used here because we know the number of radial branches at each node. In
the random case, however, it is necessary to use the branch spacing, 6B, since there does not appear to be a

direct method of determining the number of minus branches at each node.
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A: B:
DIAMONDS HEXAGONS

FIGURE 1 I Two networks of resistors to illustrate the application ofthe mesh and disk model to
specific circuits. The symbols are defined in the text.

mined from Eq. 53 and is Rb/2. The tortuosity factor defined by Eq. 29 of the mesh
analysis can be determined from the morphometric parameters of the unit cell and is
0.5 for the diamond model. The ratio RL /Rrad = 0.5 is thus equal to the tortuosity
factor as we expect from our derivation and the definitions of Adrian et al.
The analysis can be extended to the case where the tubules are not taut. Imagine

that the network is collapsed so that all dimensions are divided by p, but branch length
L is kept constant. The morphometric parameter LT/AF is now 2L/(L/p)2 = 2P2/L.
Since the branch current does not change, and Ar still equals 26NI the value of Rrad is
unchanged. The value of RL is changed, however, because the dimensions of the unit
cell are reduced. We then have AL/Rrad = l/(2p2); the tortuosity factor is also
1/(2pj). The tortuosity factor thus depends critically on the degree of tautness of the
tubules. This dependence undoubtedly contributes to the difference between the value
of T in Table II and in Adrian et al. (1969a).
Next consider the hexagonal network shown in Fig. 11. The orientation shown was

chosen so the constructed shells all have the same properties, as our analysis of a
random mesh assumes; other orientations of hexagons do not have this property.
This network is of particular interest since it has three branches per node and so is the
closest approximation to the tubular system among deterministic networks. Even so,
however, the morphometric parameters of the taut network shown in Fig. IlB are
quite different from those of a muscle fiber. The average morphometric parameters
can be determined from the unit cell which is a rectangle 6N = 6, by Ar. The
branch or node spacing alternates between two values; 6N = 6, = 3L/2 is the mean.
The shell spacing Ar = x/-/2. LT/AF iS then 2/V"L and RL is XP3Rb/2. The ra-
dial current is easily determined since the 0 branches do not contribute to the radial
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resistance:

27rr Ar AU = 27rr AU (56)
6N Rb Ar V2Rb Ar

Thus, Rrad = 3Rb and RL/Rrad = 0.5, again equal to the tortuosity factor of the
mesh model. The computation of an untaut network of hexagons gives the same result
previously described for untaut diamonds.
The previous examples illustrate the analysis of specific networks by the mesh model

or by methods used in the derivation of the disk model of Adrian et al. (1969a). In a
general case, such as the tubular system of skeletal muscle fibers, no specific network is
known. All that is available to describe the network is a set of morphometric param-
eters. We now show how these morphometric parameters by themselves can define a
revised disk model, which turns out to be identical to the continuous limit of the mesh
model.

In any network the potential drop between adjacent shells of width Ar is the radial
current times the resistance of a radial branch divided by the number of radial branches

AU 2irR/6b (57)

A general definition of Rrad, analogous to Eq. 50, can thus be written without con-
sideration of a tortuosity factor.

Rrad = Ar/IB (58)

This definition requires, however, a general geometric construction (see Fig. 2) and
analysis (see text near Eqs. 26 and 53) to define Ar in terms of morphometric param-
eters. Then,

Rrad =6N(Rb/L)(LT/AF) (59)

where

A NB AN (60)
2 6Bj

The differential equation for radial current in the disk model is derived by dividing
Eq. 57 by Ar, substituting Eq. 59, and taking the limit as Ar -k 0.

AU -8(1a 4 RL
hU dU i, Rt ~~~~~~(61)

Ar or 2wr r (61

where 'L is defined in Eq. 52 and T in Eq. 29. The derivation is completed by intro-
ducing an equation for the conservation of current (Adrian et al., 1969a, Eq. 7).
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The Tortuosity Factor

The tortuosity factor r has been defined as the ratio of the bulk resistance AL to the
effective radial resistance Rrad, although the above revised derivation suggests more
natural definitions. Therefore, a physical interpretation of r is best accomplished by
first considering those resistances. RL has already been discussed and is simply the
resistance of the parallel combination of all tubular branches in an area LI of Z-disk.
One physical meaning of the radial resistance Rrad is shown in its definition (Eq. 50);
however, the meaning of Rrad in terms of the network parameters is best considered by
examining the numerator and denominator of Eq. 59 separately. The numerator is
simply the number of tubules in an area 5o2 of Z-disk times the luminal resistance of
one tubule. In other words it is the total resistance of a series combination of all the
tubular branches in that area. The geometric factor r in the denominator of Eq. 59 can
now be defined physically as the ratio of the total series resistance of the branches at a
node divided by the effective radial resistance due to those branches. Since each of
these quantities has a physical meaning, the geometric factor itself can be determined
directly from specific networks. Indeed, that is one of the reasons for defining the
geometric factor as we have. For example, in the diamond network in Fig. 11 there are
two radial branches at each node, which are effectively in parallel. Thus,

2R = 4 (diamond network). (62)Rb

In the hexagonal network in Fig. 11,

- Rb = 3 (hexagonal network). (63)
rb 2

The value of r can also be determined directly from its definition, with identical re-
sults. The definition of r also shows why the name geometric factor is appropriate;
r depends only on the ratio of AN and 6B and so is independent of the amount of
tubular system and of the tautness of the tubular network.
The physical interpretation of AL and Rrad now permits a physical interpretation of

the tortuosity factor, which can be written

T = 4NAAFL/) =/(6ILTAr)2. (64)

The tortuosity factor thus is composed of two terms, one the geometric factor already
discussed, the other a morphometric factor, the ratio of the parallel resistance of the
tubular branches in area L2 to the series resistance of the tubular branches in area
6N. This morphometric factor (the denominator on the right-hand side of Eq. 64)
depends strongly on the degree of tautness in the network. For a general network in a
closed boundary 6NLT/AF changes in proportion to the change in dimension. The
proportionality constant, however, is different for different networks. The dependence
of AN(LT/AF) and the tortuosity factor on the deformation of a network can be
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clearly displayed by rewriting Eq. 64 by using Eq. 26:

T = (65)

Atr 2/
The factor L/Ar represents the length of tubule per unit distance in the radial direc-
tion, and is modified by NB/2 and the geometric factor to make the tortuosity factor.

Eqs. 64 and 65 show the dependence of the tortuosity factor on all the dimensions of
the network; however, neither explicitly includes the constraint that the total amount
of tubular system in a muscle fiber stays constant when the dimensions change, and so
they can be misleading if taken by themselves. Furthermore, in general Ar is not
directly known but must be computed from morphometric parameters. Thus, in most
respects Eq. 64 is the more general formulation.

Comparison with Previous Results
Our figures for the specific electrical properties of frog skeletal muscle fibers differ from
those of, for example, Valdiosera et al. (1974c) for three reasons: (a) different morpho-
metric parameters are used; (b) the mesh model is used to determine the expression and
value for the tortuosity factor; and (c) the mesh model is used to describe the proper-
ties of the T-system. The different value of the resistivity of the lumen of the tubules is
primarily a consequence of the different morphometric parameters and tortuosity fac-
tor. The different values of the specific capacitances are primarily a consequence of the
different morphometric parameters. The parameters reported are not very sensitive to
the discrete properties of the tubular mesh since these become important only at high
frequencies and in solutions of low conductivity.

APPENDIX

In order to proceed beyond Eq. 15 of the text, it is necessary to evaluate several mathematical
expectations similar to Eq. 17. We adopt the following nomenclature:

Elym or ymj - y IorY12,
EfUn,m I Un,,

Ef(y _- y,,)21 4 2

E{Y2- Yl)21 0,22
EI(Un,m nU,)2J

EI(Un, - Un)(y' - y1j)l = E{Un,mYmIl - Unyl nj1,and
Ef(U,,, - Un)(yAl - Y12) = EfUn,mYlmI2 - UnY12 1- AlI2, (Al)

where the negative sign on the covariance in the last expression is due to the physical require-
ment that Y12 < 0. Eq. 17 of the text can be written in general as

i+ = EfyMIIUn,m + Yl2Un+l,mI = y nU + n, + y12LU,n - n"+'. (A2)
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If we substitute expressions similar to Eq. A2 for the average currents in- and i°, then the full ex-
pression for Eq. 15 of the text is

(n + )(y Un + Y12 U,+l) + (n - (y Un + y12 Un-,)

-n(2 - NB6B/BN)(YlI + Y12) Un + (n + J)(pn7 n +12) + (n - )(AnX - nI)
-n(2 - NbB N)( - = (A3)

The covariances, for example onl, can be expressed as

Al = P0oI1(o,, (A4)
where Pis the correlation coefficient for ym' with U ,. The correlation coefficient is expected
to be much less than unity and the individual variances are much less than the mean values.
Thus, the covariance terms can be neglected. An equation for the expected value can also be
written with an exact argument. Eq. A3 specifies a combination of covariances and mean values
of the potential that must equal zero. There are situations described by this equation in which
the variance can be modified with a fixed average potential distribution. For example, networks
with definite deterministic branch lengths but with random interconnections should have no
variance in the admittance of individual branches; from Eq. A4 we see that the covariances
would also be zero. This and similar situations can be described by Eq. A3 only if two separate
expressions are individually equal to zero, one involving just the mean value of the potential,
another involving just the covariances. Thus, either approximately or exactly, one can write

(n + ')Un+, + (n - )Un- - n(2 + n2)Un = 0 (A5)

where

2 = aNB(NB + I) > 0, (A6)

since8

-Yll1/YI2 cosh FL > l .

This expression for potential is analyzed in the text and is shown to have the approximate
solution of a zero-order hyperbolic Bessel function when t is small.
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