Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1977 Oct;20(1):113–136. doi: 10.1016/S0006-3495(77)85539-2

Calcium diffusion in transient and steady states in muscle.

R E Safford, J B Bassingthwaighte
PMCID: PMC1473340  PMID: 901900

Abstract

Rates of diffusion through the extracellular space of thin sheets of myocardium from the right ventricular outflow tract of kittens were estimated at 23 degrees C for 45Ca2+ and an inert reference tracer, [14C]sucrose. The myocardial sheets were mounted in an Ussing chamber and equilibrated with Tyrode solution with varied calcium concentrations, Cao. The tracers were added to one side and their concentrations on the other side measured at 5-15-min intervals for 6 h. The apparent tracer diffusion coefficient for sucrose was 1.11 +/- 0.06 X 10(-6) cm2s-1 (mean +/- SEM, n = 74), 22% of the free diffusion coefficient; the lag time before reaching a steady state provided estimates of the intratissue volume of distribution or diffusion space of 0.41 +/- 0.15 ml/ml tissue (n = 74), a value compatible with expectations for extracellular fluid space. Over the range of Cao from 0.02 to 9.0 mM, the intratissue apparent diffusion coefficient for Ca, DCa, averaged 1.65 +/- 0.10 X 10(-6) cm2s-1, n = 74, which is 21% of the free DoCa, and was not influenced by Cao. Because transsarcolemmal Ca permeation is slow, DCa is the diffusion coefficient in the extracellular region. The paired ratios DCa/Ds averaged 1.32 +/- 0.05 (n = 67) for all levels of Cao but at physiologic or higher Cao averaged 1.45 +/- 0.07 (n = 39), close to the ratio of free diffusion coefficients, 1.53. Equations distinguishing transient from steady state diffusion were fitted to the data, showing that the apparent distribution volume of "binding sites" external to the diffusion pathway diminished at higher Cao in a fashion suggesting that a least two different Ca2+ binding sites were present.

Full text

PDF
113

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALDRICH B. I. The effects of the hyaluronic acid complex on the distribution of ions. Biochem J. 1958 Oct;70(2):236–244. doi: 10.1042/bj0700236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BLINKS J. R. INFLUENCE OF OSMOTIC STRENGTH ON CROSS-SECTION AND VOLUME OF ISOLATED SINGLE MUSCLE FIBRES. J Physiol. 1965 Mar;177:42–57. doi: 10.1113/jphysiol.1965.sp007574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beeler G. W., Jr, Reuter H. Membrane calcium current in ventricular myocardial fibres. J Physiol. 1970 Mar;207(1):191–209. doi: 10.1113/jphysiol.1970.sp009056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Birks R. I., Davey D. F. Osmotic responses demonstrating the extracellular character of the sarcoplasmic reticulum. J Physiol. 1969 May;202(1):171–188. doi: 10.1113/jphysiol.1969.sp008802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caillé J. P., Hinke J. A. Evidence for Na sequestration in muscle from Na diffusion measurements. Can J Physiol Pharmacol. 1972 Mar;50(3):228–237. doi: 10.1139/y72-034. [DOI] [PubMed] [Google Scholar]
  6. ENGEL M. B., JOSEPH N. R., CATCHPOLE H. R. Homeostasis of connective tissues. I. Calcium-sodium equilibrium. AMA Arch Pathol. 1954 Jul;58(1):26–39. [PubMed] [Google Scholar]
  7. ENGEL M. B., JOSEPH N. R., LASKINDM, CATCHPOLE H. R. Binding of anions by connective tissue: dermis and cartilage. Am J Physiol. 1961 Oct;201:621–627. doi: 10.1152/ajplegacy.1961.201.4.621. [DOI] [PubMed] [Google Scholar]
  8. Fawcett D. W., McNutt N. S. The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J Cell Biol. 1969 Jul;42(1):1–45. doi: 10.1083/jcb.42.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GERSH I., CATCHPOLE H. R. The nature of ground substance of connective tissue. Perspect Biol Med. 1960;3:282–319. doi: 10.1353/pbm.1960.0019. [DOI] [PubMed] [Google Scholar]
  10. GINZBURG B. Z., KATCHALSKY A. THE FRICTIONAL COEFFICIENTS OF THE FLOWS OF NON-ELECTROLYTES THROUGH ARTIFICIAL MEMBRANES. J Gen Physiol. 1963 Nov;47:403–418. doi: 10.1085/jgp.47.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HODGKIN A. L., KEYNES R. D. The mobility and diffusion coefficient of potassium in giant axons from Sepia. J Physiol. 1953 Mar;119(4):513–528. doi: 10.1113/jphysiol.1953.sp004863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haljamäe H., Linde A., Amundson B. Comparative analyses of capsular fluid and interstitial fluid. Am J Physiol. 1974 Nov;227(5):1199–1205. doi: 10.1152/ajplegacy.1974.227.5.1199. [DOI] [PubMed] [Google Scholar]
  13. JOSEPH N. R., CATCHPOLE H. R., LASKIN D. M., ENGEL M. B. Titration curves of colloidal surface. II. Connective tissues. Arch Biochem Biophys. 1959 Sep;84:224–242. doi: 10.1016/0003-9861(59)90572-7. [DOI] [PubMed] [Google Scholar]
  14. JOSEPH N. R., ENGEL M. B., CATCHPOLE H. R. Homeostasis of connective tissues. II. Potassium-sodium equilibrium. AMA Arch Pathol. 1954 Jul;58(1):40–58. [PubMed] [Google Scholar]
  15. Kushmerick M. J., Podolsky R. J. Ionic mobility in muscle cells. Science. 1969 Dec 5;166(3910):1297–1298. doi: 10.1126/science.166.3910.1297. [DOI] [PubMed] [Google Scholar]
  16. Langer G. A., Frank J. S. Lanthanum in heart cell culture. Effect on calcium exchange correlated with its localization. J Cell Biol. 1972 Sep;54(3):441–455. doi: 10.1083/jcb.54.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Manery J. F. Connective tissue electrolytes. Fed Proc. 1966 Nov-Dec;25(6):1799–1803. [PubMed] [Google Scholar]
  18. Martinez-Palomo A., Benitez D., Alanis J. Selective deposition of lanthanum in mammalian cardiac cell membranes. Ultrastructural and electrophysiological evidence. J Cell Biol. 1973 Jul;58(1):1–10. doi: 10.1083/jcb.58.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. NIEDERGERKE R. The rate of action of calcium ions on the contraction of the heart. J Physiol. 1957 Oct 30;138(3):506–515. doi: 10.1113/jphysiol.1957.sp005867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. PAGE E., BERNSTEIN R. S. CAT HEART MUSCLE IN VITRO. V. DIFFUSION THROUGH A SHEET OF RIGHT VENTRICLE. J Gen Physiol. 1964 Jul;47:1129–1140. doi: 10.1085/jgp.47.6.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Patlak C. S., Fenstermacher J. D. Measurements of dog blood-brain transfer constants by ventriculocisternal perfusion. Am J Physiol. 1975 Oct;229(4):877–884. doi: 10.1152/ajplegacy.1975.229.4.877. [DOI] [PubMed] [Google Scholar]
  22. Philpott C. W., Goldstein M. A. Sarcoplasmic reticulum of striated muscle: localization of potential calcium binding sites. Science. 1967 Feb 24;155(3765):1019–1021. doi: 10.1126/science.155.3765.1019. [DOI] [PubMed] [Google Scholar]
  23. Polimeni P. I. Extracellular space and ionic distribution in rat ventricle. Am J Physiol. 1974 Sep;227(3):676–683. doi: 10.1152/ajplegacy.1974.227.3.676. [DOI] [PubMed] [Google Scholar]
  24. Reuter H., Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol. 1968 Mar;195(2):451–470. doi: 10.1113/jphysiol.1968.sp008467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. SCHAFER D. E., JOHNSON J. A. PERMEABILITY OF MAMMALIAN HEART CAPILLARIES TO SUCROSE AND INULIN. Am J Physiol. 1964 May;206:985–991. doi: 10.1152/ajplegacy.1964.206.5.985. [DOI] [PubMed] [Google Scholar]
  26. Shaw M. Interpretation of osmotic pressure in solutions of one and two nondiffusible components. Biophys J. 1976 Jan;16(1):43–57. doi: 10.1016/S0006-3495(76)85661-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Suenson M., Richmond D. R., Bassingthwaighte J. B. Diffusion of sucrose, sodium, and water in ventricular myocardium. Am J Physiol. 1974 Nov;227(5):1116–1123. doi: 10.1152/ajplegacy.1974.227.5.1116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weidmann S. The diffusion of radiopotassium across intercalated disks of mammalian cardiac muscle. J Physiol. 1966 Nov;187(2):323–342. doi: 10.1113/jphysiol.1966.sp008092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weingart R. The permeability to tetraethylammonium ions of the surface membrane and the intercalated disks of sheep and calf myocardium. J Physiol. 1974 Aug;240(3):741–762. doi: 10.1113/jphysiol.1974.sp010632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wiederhielm C. A., Fox J. R., Lee D. R. Ground substance mucopolysaccharides and plasma proteins: their role in capillary water balance. Am J Physiol. 1976 Apr;230(4):1121–1125. doi: 10.1152/ajplegacy.1976.230.4.1121. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES