
STRUCTURE-STRENGTH RELATIONS IN

MAMMALIAN TENDON

Y. LANIR, Department ofBiomedical Engineering, Technion-Israel Institute of
Technology, Technion City, Haifa, Israel

ABSTRAcT The stress-strain relations in mammalian tendon are analyzed in terms
of the structure and mechanics of its constituents. The model considers the tensile
and bending strength of the collagen fibers, the tensile strength of the elastin fibers,
and the interaction between the matrix and the collagen fibers. The stress-strain re-
lations are solved through variational considerations by assuming that the fiber-
maxtrix interactions can be modeled as beam on elastic foundation. The tissue thus
modeled is a hyperelastic material. It is further shown that on the basis of the
model, the dominant parameters to the tendon's behavior can be evaluated from
simple tensile tests.

INTRODUCTION

The role of the tendon is to transmit mechanical force. The load-bearing elements in
the tendon are collagen fibers. Its efficiency as a force transmission element is exempli-
fied by the very low extensions (1-2%) it undergoes under physiological conditions.
Skin on the other hand, undergoes very large physiological deformations (stretch ratio
of up to 2.0), whereas its collagen consistency is similar to that of a tendon (Crisp,
1972). The most important reason for this difference is the structure of the collagen
fibers in these two tissues: in the tendon they are parallel, nearly straight, and aligned
in the direction of applied loads; in the skin they are structured in a three-dimensional
wavy array. Hence, the effect of collagen structure on the tissue's function is most
important. A most comprehensive review of the structure and function of tendon is
given by Elliot (1965) and Crisp (1972). The present work is confined to specific aspects
of structure and structure-function relations, namely those which affect the stress-
strain relations.
The geometry of the collagen fibers in the tendon was described as helical by Lerch

(1950), Verzar (1964), Cruise (1958), and Barbenel et al. (1971). Rigby et al. (1959),
and more recently, Yannas and Huang (1972) and Diamant et al. (1972) in a most de-
tailed study, determined that the fibers in rat tail tendon are planar and sinusoidally
shaped. Evans and Barbenel (1974) suggest that the collagen geometry may be sinu-
soidal in tail tendon and helical in others.

Stress-strain relations in tendons are reversible if strain does not exceed levels of
2-4% (Rigby et al., 1959; Abrahams, 1967; Partington and Wood, 1963). In the re-
versible range, tendons show marked nonlinear behavior. It is customary to divide
the curve into three ranges: the primary range of low strain in which the curve has a
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small slope; the secondary range of gradually increasing slope; and the tertiary range
of constant, high slope. Gibson and Kenedi (1968) show that the final slope at the ter-
tiary range corresponds to the slope of stress-strain curve of a straight collagen fiber
(Morgan, 1960). This is the case with skin and ligamentum flavum as well. From this
work and the works of Rigby et al. (1959), Vidiik and Ekholm (1968), Diamant et al.
(1972), and Millington et al. (1971), it can be concluded that, at the secondary range,
the behavior corresponds to the gradual straightening of the collagen fibers until they
are fully straight at the tertiary range.

Several models have been proposed for the stress-strain relation of tendons. Two
classes seem to be predominant. One is the class of macroscopic, phenomenological
models that attempt to approximate experimental results. Thus, Frisen et al. (1969)
presented a model consisting of springs, dashpots, and dry friction elements. Hartung
(1972) adopted the linear theory of locking materials to nonlinear cases. Haut and
Little (1972) used Fung's (1972) quasi-linear viscoelastic concept for rat tail collagen
fibers and proposed a simple power law for stress-strain relations under constant rate
of stretch.
Another class of models are those based on structural considerations. Lerch (1950)

proposed a ropelike configuration of the collagen fibers in tendons but did not develop
a workable model for stress-strain relations. Diamant et al. (1972) propose a model
for stress-strain relations based on their investigations of the structure of the collagen
fibers in the tendon. The tendon strength is associated with the bending rigidity of the
collagen fibers. The contribution of elastic fibers and matrix-fiber interaction are
ignored. The fibers are modeled as zigzag-shaped inflexible hinges. The stress-strain
relation is obtained by using the theory of elastica.

Their theory agrees with experimental stress-strain data only if the diameter is thick
(- 500 nm) compared to the observed amplitude and wavelength (- 200 nm). Under
these conditions the theory of elastica used in the model does not apply.

Dale et al. (1972) observed the changes of the collagen fiber geometry during strain.
By comparing results to theoretical prediction, they concluded that the fiber's shape
is a planar sine wave.

In a recent report Comninou and Yannas (1976) developed a stress-strain equation
for a single, sinusoidally shaped collagen fiber as well as for bundles of fibers embedded
in a matrix. The single fiber model results from linearization of Reissner's (1972)
one-dimensional finite-strain beam theory. The bundles of fibers in the tendon are
modeled as alternating, parallel fibers and matrix layers glued together. It is assumed
that initial waviness is small and that the elastic modulus of the matrix is much smaller
than that of the fibers. Under these assumptions Bolotin's (1966) analysis of composite
material of similar geometry is used to derive the stress-strain law for the tendon.
The results are not compared quantitatively to data, but show similarity to experi-
mental curves. Their model of the single fiber corresponds well with morphological
evidence. The layered model of fibers and matrix, however, does not agree with ob-
servations.
Another model in this class is the one proposed by Beskos and Jenkins (1975).

BIOPHYSICAL JOURNAL VOLUME 24 1978542



The tendon is modeled as an incompressible fiber-reinforced composite with con-
tinuously distributed inextensible fibers of helical shape embedded in a hollow right
circular cylinder. They solve the stress-strain relations of such a system by using
'the theory of internal constraints which was developed by Ericksen and Rivlin (1954).
Since the collagen fibers extensibility is not taken into consideration, the model pre-
dicts infinite strength at high strain, which is not the case.

In the present work a model for the tendon structure and structure-function rela-
tionship is developed. The fiber's geometry and mechanics as well as the interactions
between the fibers and the matrix is taken into consideration. Attention is paid to
the following questions: (a) How is the observed structure of collagen fibers main-
tained under equilibrium? (b) What is the function and interplay between various
tissue constituents under stretch? (c) What is the effect of the fiber mechanics and
geometry on the tendon's stress-strain relations? (d) What are the key parameters
dominating the tissue's behavior? (e) How can these parameters be evaluated from
simple mechanical tests?

THE PRESENT MODEL

Following the works of Diamant et al. (1972), Dale et al (1972), Vidiik (1968), and
Yannas and Huang (1972), we shall assume that the collagen fibers in mammalian ten-
dons are parallel, planar, and sinusoidally shaped. It will be further assumed that
this observed configuration represents the state of minimum energetic level of this sys-
tem, which contains the collagen fibers themselves, the matrix in which they are em-
bedded (ground substance), and the elastin fibers. Upon stretching, the energy of
the system changes due to the tensile and bending strength of the collagen fibers, the
matrix-fiber interaction, and the tensile strength of the elastin fibers. A simple work-
able model of one section of this system is shown in Fig. 1.

Although the role of elastin in undulating the tendon's collagen fibers has not yet
been proved, it has been shown by Daly (1969) that in the skin (which resembles the
tendon in many ways), and by Wood (1954, Fig. 2) for ligamentum nuchae, the role
of elastin is predominant on the mechanical behavior at low ranges of strain. Similar
results were obtained for arteries (Roach and Burton, 1957).
Consider an element of the collagen fiber (Fig. 2). In equilibrium its shape is given

by:

YO= AOsinf8X, (1)
where the x-axis coincides with the length of the fiber and I8 = 2wr/A. AO is the

COLLAGEN
F F

Fin- -Z ELASTIN Fe F

for A/2f

FIGURE 1 A simple model for the basic functional unit of the collagen-elastin system.

Y. LANIR Structure-Strength Relations in Mammalian Tendon 543



V xo x X0+AXO X+AX x

FIGURE 2 Free body diagram of an infinitesimal section of the collagen fiber. F, axial load;
Q, shear load; M, moments; qy, intensity of lateral matrix reaction; m, intensity of matrix reactive
moments.

initial amplitude and X is the wavelength. Upon stretching, the length changes from
ds to ds (1 + e) where e is the tensile strain of the collagen fibers. The additional
internal forces in the fiber (F, M, and Q) and the additional reactions of the matrix on
the wire (qy and m) are shown in Fig. 2. Comninou and Yannas (1976) analyzed the
behavior of a single fiber in a similar manner, but excluded the reactions of the matrix
(qy and m). By assuming that the horizontal force in each element of the fiber is
constant throughout its length, they formulated equilibrium conditions in the form of
a nonlinear second-order differential equation of th,. angle 4 (the angle between the
tangent to the collagen fiber at a point and the horizontal x-axis) in terms of the
length s. They solve the load-strain relations of the fiber by several approximations
based on the fact that the strain e is very small compared to unity. Herrmann et al.
(1967) also used this approach in their analysis of the response of reinforcing wires
to compressive state of stress. The reaction of the matrix was introduced by consider-
ing the wire as a "beam on elastic foundation" where the reaction of the foundation
is characterized by foundation constants. It was assumed that the wires' shape remains
sinusoidal upon deformation. Since e << 1 they further assumed that the wavelength
of the wires is constant and only its amplitude changes with the deformation. Lanir
and Fung (1972) showed that under these assumptions the load-strain relations of the
wire can be readily obtained from variational considerations. The variational ap-
proach will be used in the present work due to its simplicity compared to detailed
equilibrium analysis.

If a horizontal stretching load F is applied, the system of Fig. 1 will change its
length X. If the change of length AX is very small compared with X, then the effect
of this change on the geometry of the system can be neglected. Nevertheless, the value
of AX, however small, must be considered in evaluating the overall strain and the
magnitude of the external work applied on the system. These assumptions are common
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in cases in which the principle of virtual works is used. In the tendon, the overall
strain D is very low (-1-2%). We shall thus adopt the above approach.
Thus, the fiber (considered now as a beam on elastic foundation) with original shape

given by Eq. (1), changes upon stretch to:

Y = Asinf3X A =27r/X, (2)

where it is assumed that X is unaltered due to the smallness of e.
The following further assumptions are made: (a) The fiber obeys Hooke's law:

(b) The combined effect of matrix-fiber and fiber-fiber interaction under small strain
can be characterized by foundation constants. This assumption is reasonable since
the collagen fibers, although closely packed, are parallel to each other and change
uniformly upon stretch (Diamant et al., 1972; Dale et al., 1972).
The matrix exerts on the fiber a force in the y direction (qy) and a moment (m)

given by:

qy= Ky(YO- Y)= Ky(A0 -A)sin 3X, (3)

m = -Km - d(Yo - Y)/dX = -Kmf(Ao - A)cosf3X, (4)

where Ky and Km are foundation constants.
Hence the corresponding strain energies stored in a section of length X of the matrix

in the deformed state are:

WI = j Ky(YO- Y)2dX/2, (5)

W2 = f Km(d(YO - Y)/dX)2dX/2. (6)

By using Eqs. 1 and 2 we get:

WI = Ky(A0 - A)2X/4, (7)

W2 = Km _ 2(A0 - A)2 _X/4. (8)

Evaluation of the foundation constants can be done in certain cases as was shown by
Lanir and Fung (1972) and Herrmann et al. (1967), (Appendix I).
The strain energy stored in the fiber due to its bending is:

AD
W= ECI[(d2(Yo- Y)/dX2)2]dX/2, (9)

where Ec and I are the Young modulus and the moment of inertia of the fiber,
respectively.
By inserting Eqs. 1 and 2 into Eq. 9, we get:

W3 = EcI,84(AO- A)2X/4. (10)

The shortening of one wavelength of the fiber (AX) is (Appendix III):
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AX = f [(dYo/dX)2 _ (dY/dX)2]dX/2, ( 11)

or

AX = XI#2(A - A2)/4. (12)

The stretch load applied on the collagen fibers will be denoted F. The load applied
on the elastin fiber is Fe. Hence the total load is (Fig. 1):

F = FC + Fe, (13)

where FC is the horizontal component of Fc. The external work exerted on the system
is W4.
The variational equation of equilibrium is:

(aW4/OA)dA = (a W,/OA)dA + (aW2/9A)dA + (aW3/OA)dA, (14)

where (a W4/OA)dA = Fj((AX)/AA)dA.
By using Eqs. 7, 8, 10, and 12 we get from Eq. 14:

= (Ky/I2 + Km + ECI,32)(A0 - A)/A. (15)

The amplitude ratio 6 can be evaluated in terms of FC as:

a = A/Ao = [1 + FC/(KY/f2 + Km + ECI#2)]V'. (16)

The overall strain of the collagen fiber has two components: the geometrical strain,
DG, which results from the configurational change of the fiber during the stretching,
and the elastic strain, Dc, related to the extension of the fiber itself under the stretch-
ing load.
The amplitude A of the collagen in the tendon is small compared with the wave-

length A. Hence the elastic strain DC can be approximated by:

FC = DCEC* SC = DC* Kc (17)
where SC is the cross-sectional area of the collagen fiber and Kc is the "spring" constant
of this fiber.
By introducing Eq. 17 to Eq. 16 we get:

6 = (1 + aDc)'1, (18)

where

a = ECSC/(Ky/f2 + Km + ECIf2). (19)

The "geometric" strain of the fiber is given by DG = AX/A. By using Eq. 12 we
get for DG:

DG = f2(A2 - A2)/4. (20)

The total strain will be
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D = DC + DG = DC + (PAo/2)2(l _ 62) = DC + y(1 _ 652),
where y = (d AO/2)2.
By using Eq. 18 we get:

D = DC + y .A(A + 2)/(1 + A)2,

where A = a* DC.
The elastin fiber obeys Hooke's law. Hence:

Fe = Ee-S.D=K= -DI

(21)

(22)

(23)

where E,, S, are respectively the Young modulus and cross-sectional area of the elastin
fiber, and K, is a spring constant which incorporates the two of them.
By combining Eqs. 13, 17, and 23 we get:

F = FgD, + KID. (24)

Eqs. 18, 21, and 24 are three parametric equations of D¢, from which the relations
F = F(D) can be readily calculated.
The slope Kof the F(D) curve can be evaluated as follows:

K = dF/dD = (dF/dDc)(dDc/dD), (25)

and by using Eqs. 18, 21, and 24 we get:

K = Kc[l + 2'ya(1 + aDJ)3h'] + K,. (26)

From the above analysis it is apparent that four overall parameters specify the be-
havior of the tendon: The spring constants K, and K¢, the geometrical parameter y,
and the mixed mechanical geometrical parameter a (Eq. 19).
The effects of these parameters on the normalized load-strain relations are shown in

.

C-,

ct0

°O00 0.08 0.16 0.24 0.32 0.40 0.48 0.56 0.64
S1RARIN(E) . 10o-'

FIGURE 3 The effect of the ratio K,/KC on the normalized load-strain relations: -, K,/KC =0;
o,K,/Ke 1/30; X, K,/Ke =1/10. a-al 60and'y=-0.033.
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FIGUREa 4 The effect of the parameter a (Eq. 19) on the normalized load-strain relations: -
a - 50;o, a -160; x, a = 500. Ke/Kc 1 /30andy - 0.033.

Figs. 3-5. The levels chosen for the parameters are around the physiological ones
(Diamant et al., 1972). The resulting curves resemble experimental data.

Eq. 22 is identical to the one obtained by Comninou and Yannas (1976). In the
present work the model is generalized to include the effect of the matrix-fiber inter-
actions and the role of the elastin fibers is taken into consideration.

THE STRAIN ENERGY FUNCTION

A strain energy function can be derived for the tendon. The load under adiabatic or
isothermal conditions can then be derived from this strain energy function W as
F = d W/dD. The tendon can thus be regarded as hyperelastic.

0o.00 0.08 0.1l6 0.24 0.32 0.40 0.48 0.56 0.64
STFRRIN(E) .10-'

FIGURE 5 The effect of the parameter Fy( = j9Ao/4) on the normalized load-strain relations: -,
7 = 0.025; 0,7 = 0.033; x, Sy - 0.045. a = 160, and Ke/Kc 1/30.
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FIGURE 6 Comparison between the model's prediction and experimental data of Abrahams
(1967, Fig. 5). The obtained values of the parameters are: KC = 2.95 X 105=e 1.15 x 102; a =
1607.8; y = 1.22 X 10-2.

It is difficult to derive W as an explicit function of the overall strain D since the re-
lationship F = F(D) are implicit. It is possible, however, to express W as a function
of D and the elastic strain of the collagen fiber, De, in the following manner:

W = KeD2/2 + (KC/aY)[A2/2a - '(2A + l)/(1 + A)2], (27)

where A = a *Dc and from Eq. 22 we have:

D = A/a + 'yA(A + 2)/(1 + A)2. (28)

Upon derivation with respect to D we get:

dW/dD = K¢D + (K¢/a)(O/dA)[A52/2a - '(2A + l)/

(1 + A)2]/(dD/dA). (29)

By using Eq. 28 we get:

dW/dD = KeD + Kc~ (30)

By comparing Eq. 30 to Eq. 24 we conclude that F = d W/dD. The tendon is there-
fore hyperelastic.

THE INVERSE PROBLEM

In the inverse problem we wish to obtain information on the mechanics and structure
of the tissue constituents from simple mechanical tests.

In the tendon we can evaluate the key parameters AKe, ATE, a, and 'y which dominate
its mechanical response by fitting the set of the three parametric Eqs. 18, 21, and 24 to
experimental data. The value of the above parameters can be obtained by nonlinear
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least-square procedure. The success of this approach depends primarily on the close-
ness of the initial guess of the parameters to their "true" levels. One way of obtaining
a close initial guess is the following: At high strain the slope K approaches asymptotic-
ally to K, + Kc. Since KC/KC >> 1 (order of 100) we can evaluate Kc manually from
the slope at this region. Furthermore, by using Eq. 21, we have for the asymptotic line
(6 = 0):

D= DC+, (31)

and its equation in the F(D) plane:

F = D(Ke + Kc) - Key. (32)

This asymtotic line crosses the D-axis at:

DI = 7yKc/(Ke + Kc) - "y. (33)

The approximate levels of the K& and a can be obtained by solving the following
equations (Appendix II):

(a1)2 _ 1/(3 - 26') + A' = 0, (34)

a = (1-I6)/LY(')3], (35)

K, = Fl/'y - Kc(6')2, (36)

where 1 denotes the value at D = D I and

A' = [K' - F'Iy]/K1. (37)
We can now proceed to obtain improved evaluations of the four parameters (Kc, Ke, a,
and y) with one of several available nonlinear computer codes. An example of the re-
sults obtained by this method is shown in Fig. 6, where the original data is compared
with the model's predictions.

CONCLUSIONS

A mechanical model for the tendon is developed. The model considers a system of
undulated planar collagen fiber attached at numerous points along its length to straight
elastin fiber. Both are embedded in a matrix of ground substance. Upon stretch, the
elastin fibers' length increases, whereas the collagen fiber gradually becomes straight.
Its lateral displacement invokes a reaction of the matrix.

If these tissue constituents are considered as linearity elastic then the interaction be-
tween the collagen fiber and the matrix can be modeled as a beam on elastic founda-
tion. Load-strain relation can then be solved by means of variational considerations.
It is shown that the tissue is hyperelastic and its behavior is dominated by four param-
eters: Ke, Kc,-the spring constants of the elastin and collagen respectively; a, a
parameter defined in Eq. 19; and y = #2A 2/4, , = 2wr/A, where A is the wavelength
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and Ao is the initial amplitude of the collagen fiber. Finally it is shown that the value
of these parameters can be determined from simple tensile tests.

Receivedjorpublication 27 August 1977.
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APPENDIX I

Evaluation ofthe Foundation Constants KY andKm
Evaluation of the foundation constants Ky and Km was done for cases in which a fiber of cir-

cular cross-section is embedded in a matrix, and both fiber and matrix obey Hooke's law. Fiber-
fiber interactions are neglected.
By solving exactly the elastic problem of a sinusoidally shaped fiber in this system, Herrmann

et al. (1967) obtained the following values for Ky and Ki:

KY = 27rRGM[f#C,K,(#R)/2 + C2fBRK2(#R) - C3#2K,(fiR)/2], (I-1)

and

Km = 2rR2GM{CI[Kl(jR)/2R -,K2(i,R)]

-C2[#iRKI(#R) + (3 - 2vM)K2(fR)] - C3#Kj(6R)/2Rj, (1-2)

where R is the fiber's radius, GM and VM are the matrix shear modulus and Poisson's ratio, re-
spectively, K, is the modified Bessel function of the second kind and C,, C2, C3 are constants
whose values are functions of ,B, R, VM' Gm, VF' and GF and can be determined by solving a
set of three complicated algebraic equations. Another approach was used by Herrmann et al.
(1967) and by Lanir and Fung (1972). Here an assumption is made that the sinusoidally shaped,
thin fiber exerts on the matrix a sinusoidally varying force. By integration of Kelvin's solution
for a point force case one obtains the value of Ky. Herrmann et al. (1967) obtained for Ky:

KY = 16 rGM(l - Vm)I[2(3 - 4vm)Ko(,8R) + j#RK,(#R)]; (1-3)

Lanir and Fung (1972) showed that the actual value of Ky varies around the fiber circum-
ference between the following values:

Ky min =88rGM(l - vM)/[(3 - 4vm)Ko(iR) + #RK1(#R)], (1-4)
Kymax = 87rGM(l - Vm)/[(3 - 4vM)Ko(,fR)], (1-5)

where Ko is a modified Bessel function of the second kind.
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APPENDIX II

Derivation ofEqs. 34-36

For D = DI' = we have from Eqs. 18 and 21:

(61)2 = D'/y, (II-1)
D' = (1 - 5')/(a5'). (II-2)

Hence:

a(b)3,y= 1 -_ 5. (11-3)

From Eqs. 18 and 26 we have:

KC/KC = K'/KC - [1 + 2ay(b5')3]'-. (II-4)

By inserting Eq. II-3 to II-4 we get:

KC/Kc = K'/Kc - 1/(3 - 265). (11-5)

FromEqs.24andII-lwehaveforD = Dl = -y:

Ke/KC = F'/(-yKc) - (61)2. (II-6)

By comparing Eqs. II-5 and II-6 we get:

(61)2 _ 1/(3 - 265) + A' = 0, (11-7)
where

A' = (K' - Fl/y)/Kc. (II-8)

Hence 6' can be evaluated by solving Eq. II-7. The parameters a and Kc can now be eval-
uated.
From Eq. II-3 we have:

a = (1 - 51)/[7(51)3] (II-9)

From Eq. 11-6 we get:

Ke = F'/y - KC-(6I)2. (II-10)

APPENDIX III

Derivation ofEq. 11

The infinitesimal arc length ds is given by:

ds = (dX2 + d y2)1/2 = dX[l + (dY/dX)2]1/2. (1II-1)
In the collagen fibers of the tendon, the amplitude is small compared with the wavelength A.

Hence ,(d Y/dX)2 << 1 and the above equation can be expanded as a Taylor series as follows:
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ds = dX[l + (dY/dX)2/2 - (dY/dX)4/4 + . *.]. (111-2)

Due to the "flatness" of the fiber, the shortening of this infinitesimal section, d(AX) can be
approximated by:

d(AA) = dso - ds. (111-3)

Eq. III-3 can be integrated and we get:

rA
AX = f [(dYo/dX)2 - (dY/dX)2]dX/2, (III-4)

where terms of higher order of(d Y/dX) are neglected.
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