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ABSTRACT We have approached the problem of nerve excitability through three ques-
tions: (a) What is the diagram for a channel? That is, what conformational states can
the protein assume, and what transitions between these conformations are permitted?
(b) What is the channel conductance associated with each conformation the channel
can assume? (c) How do the rates for conformational transition depend upon mem-
brane potential? These three questions arise from a standard statistical mechanical
treatment of a nerve membrane containing several classes of identical, independent
channels. Gating of channels, in this view, is associated with conformational changes
of the channel protein, and it is assumed these conformations are distinct. The precise
formulation of these questions is presented in terms of the theoretical treatment, and
the approaches we have taken to answer the questions are indicated. Our present re-
sults indicate: Transition rates should depend exponentially on membrane potential over
a limited voltage range, but probably will show a more complex dependence for ex-
tremes of the range; channels probably can take on only two conductances, open and
shut, but more complicated situations are not entirely excluded; the diagram for a
channel cannot be determined from standard voltage clamp data alone, but by study-
ing gating currents and conductance fluctuations, it should be possible to select be-
tween alternative plausible physical mechanisms.

Ever since the publication of the Hodgkin and Huxley (1952) analysis of nerve ex-
citability 25 years ago, a clear goal of membrane biophysics has been to give a physical
account of the phenomena described by their equations. One important step in ap-
proaching this goal is to decide what questions must be answered to provide such an
account. Even formulating these questions precisely is, however, a difficult task and
depends on the theoretical framework chosen. My goal here is to describe the frame-
work within which my laboratory has approached the problem of nerve excitability, to
give a statement of the questions that must-within this theoretical context-be
answered, and to indicate some experimental strategies we have adopted in an attempt
to find answers.
Our starting place is to assume that separate channels exist for the various current

components (Na, K, etc.) revealed in voltage clamp experiments, and to suppose that
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channels of a given type are identical and independent of each other and of other types.
Further, we postulate that gating occurs by conformational changes in the channel
protein, and that a given type of channel can assume only specific and distinct con-
formational states. From these starting assumptions a standard statistical, mechani-
cal formulation of the problem defines the questions that experiments must be de-
signed to answer. The treatment given here is a more complete version of the one
indicated by Magleby and Stevens (1972).
The discussion that follows will start with a presentation of the differential equations

appropriate to describe channel behavior. I will then focus on the problem of transi-
tion rates from one state to another, and particularly on the voltage dependence of
these rates. The treatment of transition rates is formulated in terms of protein-
membrane field interactions, and uses techniques similar to those standard in statistical
theories of dielectric properties. Finally I will summarize the questions that arise from
this formulation of the problem and indicate some of our experimental approaches
to them.

THE MASTER EQUATION APPROACH

Because channels of a given type have been assumed to be independent and identical,
we need treat only a single channel; the properties of an ensemble of such channels is
then related simply to those of the single channel. A standard way to treat non-
equilibrium behavior is through a master equation (see Zwanzig, 1964), and this ap-
proach becomes particularly simple for a system such as a channel with only a rela-
tively small number of distinct conformations (see Oppenheim et al. 1967).

Suppose a channel can have n conformations: 1, ...., k, ... n, and let Pk(t) be the
probability of finding the kth conformation at time t. For a membrane with N channels,
we would measure the average conductance g(t) given by

n

g(t) = NZE YkPk(t) (1)
k = I

where YK is the average conductance of a channel in conformation k; the quantity
Zk'YkPk(t) is just the average conductance of one channel. To calculate a membrane
conductance as a function of time, then, we must know the probability Pk (t) of each
conformation and the associated conductance Yk .
The probability of each conformation is governed by a master equation. To write

the master equation for a channel we must know first, what conformations the channel
can have and which transitions between conformations are possible, and second, at
what rates the permitted transitions occur and how these rates depend on voltage. The
master equation that describes the behavior of our n-conformation channel is then

dPk(t)/dt = S ajkPI(t) - 5 akjPk(t), (2)
ij

where aYjk is the transition rate from conformation]j to conformation k, and the sum-
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mations above include all permitted transitions. Eqs. 1 and 2, together with informa-
tion about the values for rate constants ajk, give a complete description of channel
behavior.

VOLTAGE DEPENDENCE OF TRANSITION RATES

The existence of "distinct conformations" has been assumed, which means, in this
context, that various principal conformations of the channel-gate can be identified and
that the channel must pass through a higher energy and infrequently occurring transi-
tional conformation to go from one conformation to another. In this situation, the
rate constants a°k ( V) as a function of membrane potential V are given by absolute
rate theory (see for example, Prigogine and Bak, 1959):

aik(V) = ve-#Ujk(V) (3)

where v is an attempt rate, Ujk (V) is the free energy difference between the jth confor-
mation and the transition conformation that separates j from k, and /3 = l/kT (k is
Boltzmann constant, T is temperature). To understand how voltage influences ajk ( V),
we must know Ujk(V), and this quantity can in turn be calculated if the general de-
pendence on voltage of the free energy of a conformation is known. We turn now to a
study of the free energy Uk(V) of the kth conformation (either principal or tran-
sitional). The approach to be used is basically similar to that first adopted by Kirk-
wood (1939) in his treatment of the dielectric constant; specifically, the voltage de-
pendence of Uk(V) will be expressed in terms of the energy Uk(O) in the absence
of applied field. In this way the complicated molecular interactions that occur can be
separated from the effect of applied electric fields.
The free energy of the kth conformation is calculated, in the standard way, from the

partition function Zk for conformation k according to Uk = - alnZk /dlA. The confor-
mation k is made up of a number of states with somewhat different arrangements of the
constituent atoms. For example, the channel might be in conformation k with or
without a H+ dissociated from some particular carbosylic acid group. Call each ar-
rangement of atoms, consistent with the integrity of channel structure, a state of the
channel, and designate energy of the rth state by w,(V). The partition function is
then calculated from the energies w,(V) of the states that make up the kth confor-
mation in the standard way,

Zk S e ,wr(v) (4)
Peek}

where the notation "r & fkj" indicates that the sum extends over all states that con-
stitute the conformation k. Note that "distinct conformations" are defined so that the
barrier separating them is appreciably larger than the barriers between the states that
constitute any particular conformation. The next step in obtaining an expression for
the voltage dependence of Uk, and hence of ajk, is to separate the energy Wr(V) in
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terms of the energy of the rth configuration in the absence of an applied field and the
contributions due to the presence of the field.
The rth state consists of a particular arrangement of atoms which have an energy

Wr(O) for a zero membrane potential. The energy includes not only such factors as
strain in bonds and hydrophobic interactions, but also electrical interactions between
the various charges and dipoles and the reaction field they cause in the environment
surrounding the channel. As the same configuration r is maintained and the field V/a
(V is membrane potential, a is membrane thickness) is superimposed on the existing
fields deriving from the arrangement of atoms, the energy of the rth configuration
changes by field-charge and field-dipole interactions and by the work of distortion
polarization of atoms and bonds. The energy due to the presence of the field is thus
reflected in three terms that add to the zero-voltage energy:

V V2
Wr(V) = w,(O) - a Z qrsfrs - SE rs -2 (5)

aselkJ a 2a2 r' (5

where: - (V/a). se ki qrsfrs is the energy due to charge-field interaction, with qrs the
sth charge that occurs in the rth state, fr, the distance through the membrane that the 5th
charge has in state r, and with the sum running over all charges for conformation k;
- V/a Esk Ars - n is the energy due to dipole-field interactions, with Mrs the dipole
moment of the sth dipole in the rth state, n the unit vector normal to the membrane
plane, and with the sum extending over all dipoles in conformation k; _(V2/2a2).
br is the energy due to distortion polarization with the simplyfing (but not essential)
assumption that polarization is proportional to the applied field, the proportionality
constant being br. This term for distortion polarization takes into account the di-
electric properties of the channel and surrounding lipids that remain when all atoms

are constrained to remain in the positions of the rth state so that polarization by fixed
dipole orientation is excluded (see for example, Debye's 1929 discussion of contribu-
tions to polarizability of a material.)

It should be emphasized that the applied field above is constant, but the actual field
within the membrane doubtless varies wildly from point to point. Even in the absence
of applied field (i.e., V = 0), there would be, within the channel structure, a very com-
plicated field arising from the particular arrangement of changes, dipoles, etc. that
constituted the rth state. Nor would applying a constant external field necessarily just
add a constant to the existing intrinsic field, because the distortion polarization would
not be uniform through the membrane structures. Nevertheless, the energy contribu-
tions in Eq. 5 use only the applied field because of the linearity of electrostatics and
the use of Kirkwood's method for expressing energies with an applied field present in
terms of the energy of the same configuration of atoms with no field applied.
The task now is to make appropriate approximations that simplify Eq. 5. The first

step is to simplify notation by defining the quantity x,(k) for the rth state of con-
formation k by the equation
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Xr(k) = Ej q3rs+s Aprse.no (6)
sE Sky sE Ikj

With this notation Eq. 5 is written

Wr(V) = w,(O) - (V/a)x,(k) - (V2/2a2)br.
The sums that make up x,(k) in Eq. 6 can each be divided into parts: one part that

depends on both r and k, one part that depends upon k but not on r (as long as r is a
state that is part of conformation k), and a third part that depends on neither k nor r.
Physically this means that certain charges and dipoles have the same magnitude and
position for all states of the channel (or at least all states with low enough energy to
occur with appreciable frequency), others are the same for all states of one or more
conformations but not for all conformations, and others have different values for vari-
ous states that constitute one conformation. For example, a particular dipole might
(a) have the same moment for every state the channel could assume; (b) have the same
moment for all states of (say) an open conformation but a zero moment for all other
states of the channel; or (c) have somewhat different values for various states of a par-
ticular conformation. This dipole would contribute to: the sum independent of r and k
for (a), the sum that depends on k but not r for (b), and the sum that depends on r
(and k) for (c). Rewrite Eq. 6 to divide Xr(k) into the parts that depend on r and
on k, and do not, for simplicity, include the component independent of both:

X,(k) = mk + mr(k). (7)

Here mk is the part of the sums in Eq. 6 that has the same value for each of the states r
that make up the conformation k, and m,(k) arises from contributions whose value
varies with the r states. In an analogous way, replace the distortion polarization term
b,(k) by the sum bk + b,(k) and do not write the component that has the same value
for all states in all conformations. The energy of the rth state of conformation k can
now be expressed

W,(V) = w,(O) - (V/a)[mk + mA(k) + (V/2a)(bk + br(k)]. (8)

Because only energy differences between various conformations at a fixed voltage will
be important for the following discussion, omission of quantities common to the
energies of all states (of all conformations) will not affect the final results.
The partition function for the kth conformation is

Zk = E exp {-d [wr(O) - (i kk nr(k) ±1 (bk br(k))l
rE Iki La 2a + /

= exp [ (k +2 b)] exp { f Wr(O) - a(nr(k) +jV br(k))]}

(9)
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From this partition function we can, using the relation Uk = -dZk/da, calculate
the free energy of any conformation as a function of applied field. Eq. 3 can then be
used to obtain the voltage dependence of transition rates between conformations. Be-
cause Eq. 9 is still rather complicated, we turn now to some further simplifications.

The Low Field Limit

If the energies associated with the membrane potential are not too large, we may fol-
low the procedure, standard since Debye (1929), of expanding about V = 0 the voltage-
dependent part of the exponential that contains the quantities m,(k) and b,(k)
and retaining only the first two terms of the expansion. This low-field approximation
gives the expression

In Zk(V) Vd (ik + 2a bk) + In E e-wr() + inrm(k) + a2 b,(k) (10)

The free energy of the kth conformation is then approximately
a ln Zk(V)U(O V V2b

Uk(V)- Uk() - a k k

V inm (k)eWr(O)
aZk(O) relkl

- V2 z:b()e 1r
2a2Zk(O) refkl bke(11)

Define the effective dipole moment Mk by

Mk = Mk + I E mr(k)e wr(o) (12)
Zk(0)

and the total distortion polarizability

Bk = bk + 1 ) br(k)eWr(O) (13)

The free energy of conformation k is then

Uk(V) = Uk(0) - (V/a)Mk - (V2/2a2)Bk. (14)
The term Bk reflects differences in distortion polarization that occur between various

conformations. The contribution of Bk should be small compared to other terms,
however, because the distortion polarizability of atoms and bonds should not be suffi-
ciently anisotropic to produce energy contributions from this source comparable to
those from fixed charges and dipoles (see, O'Konski et al, 1959; LeFevre, 1965). The
energy of the kth conformation, then, should be of the form
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Uk(V) = Uk(0) - (V/a)Mk (

The transition rate from conformation j to k depends exponentially on the difference
between two energies of this form so

ajk(V) = v exp [-13(Ujk(0) - - Mik)], (16)
a

where the double subscripts indicate appropriate differences between quantities sub-
scripted (e.g., Ujk(O) = Uj*k(O) - Uj(0), and U,*k(O) is the energy with V = 0 of the
transitional conformation going from j to k). Presumably the largest contribution to

Mik is the alteration in number of charges on the protein that accompanies conforma-
tional changes (e.g. Schlecht, 1969; French and Hammes, 1965; Giannini et al., 1975).

Approximations outside the Low Field Limit

If the low-field approximation is not valid, the energy of the kth conformation is
(again neglecting distortion polarization)

a 2a2 - ln _ k
Uk(V) = Uk(O) - a Mk -

'

bk -
a InE exp _ m,

(17)

The last term on the right of this expression is, in general, quite complicated. A plaus-
ible simplification can result, however, by considering which contributions are likely
to dominate the energy w,(V) of a state.
The quantity m,(k) in Eq. 17 contains contributions from bond and group dipoles

and from the presence of charges that experience a fraction of the membrane potential.
Bond and group dipole moments are on the order of ID (see, for example, Hill et al.,
1969), which means that a single bond can provide, in a 100 kV/cm field, energies that
amount to only about 1% of kT. Again, protein structure suggests that significant
changes in energy due to differences in bond dipoles between various states of a single
conformation cannot be large. One electronic charge moving about 25 A in a 100
kV/cm field changes energy by lkT unit. If the channel protein had a dissociable
charge located within a membrane crevice, and if both the associated and dissociated
states of the charge occur with the channel in conformation k, then the term (V/a)m,(k)
could be comparable to kT for two states of a single conformation. In fact the only ap-
preciable contributions to (V/a)m,(k) seem likely to arise through changes in the num-
ber of charges due to voltage driven association or dissociation.
Once membrane potential V is too large for the low-field approximation to hold with

sufficient accuracy, the natural procedure is to terminate the power series expansion
that led to Eq. 10 after the V2 term rather than after the V term. Eq. 15 would then
be changed into

Uk(V) Uk(O) - (V/a)mk - (V2/2a2)pk, (18)
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where Pk is the contribution from terms in V2. Although this equation would hold
over a somewhat larger voltage range than Eq. 15, the approximation might still not
be adequate in all instances.

For cases to which this approximation applies, the transition rates would be

a°k = V exp { (uik(o) - mk -Pk (19)

where the double subscripts again indicate the result of taking the difference between
the appropriate two terms of the form given in Eq. 18.
To examine the situation in which the above approximation is inadequate, suppose

that the sum on the right of Eq. 17 contains only two terms corresponding to a single
electronic charge being bound or dissociated. In this case, the sum reduces to

Zi e-(wr(o) -(V/a)mr(k)) e-uo + -(UI-qfV/a)

where U0 is the energy with the charge bound to its site, U1 is the energy when the
charge is dissociated with zero membrane potential, q is the charge, and f the distance
through the membrane field that the charge moves when it dissociates. The free en-
ergy Uk(V) of the kth conformation now becomes for this situation

Uk
(V) U (0) - (Vla)Mk+ U0 + (Ul - qf V/a) exp I - fi(Ul - Uo - qf V/a)}Uk()= Uk(O) (Vam 1 + exp 1-j3(U1 - U0 - qfV/a)j

(20)
The simplicity of Eq. 16 and 19 is lost here, and the expression becomes still more com-
plicated if the above approach is generalized to include cases with more than only two
terms in the sum. Nevertheless, Eq. 20 might well be expected to be a useful approxi-
mation when a single dissociable charge dominates the sum.

QUESTIONS TO BE ANSWERED

The equations developed above serve to define the three main questions my laboratory
uses to approach nerve excitability. (a) From Eq. 2: What is the diagram for a channel?
That is, how many principle conformations are there, and between which conforma-
tions are transitions permitted? (b) From Eq. 1: What is the conductance yk associated
with each conformation k? (c) From Eq. 3: How does the transition rate depend upon
membrane potential? More specifically, to what extent is the low field limit (Eq. 16)
applicable, and what are the values of the effective dipole moment differences (Mjk in
Eq. 16)? When the low field limit fails, will the next approximation (Eq. 19) be suffi-
ciently accurate, or is the actual case far from the low field situation (for example,
Eq. 20 for the simplest case)? I will indicate briefly the approach my laboratory has
taken, or is taking, to each of these questions.

Because the diagram for excitable membrane channels is not known, experimental
investigation of transition rates between various conformations is difficult; measured
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relaxations in general reflect multiple transition rates and a transition that dominates
at one voltage need not be appreciable at other voltages. In view of the difficulties with
studies of this question on electrically excitable membranes, we have turned to the
study of voltage effects on gating in a model system. Specifically, we have investigated
voltage effects on the closing rate of channels activated by acetylcholine at the frog
neuromuscular junction.

In our original investigations (Magleby and Stevens, 1972; Anderson and Stevens,
1973; Dionne and Stevens, 1975) we found that the logarithm of the closing rate
constant depends linearity on membrane potential. That is, the transition rate from
the open to the closed conformation has a voltage dependence described accurately
by Eq. 16. As Magleby and Stevens (1972) pointed out, the logarithm of the rate
constant should, for large enough voltages, exhibit a dependence on V2 (see Eq. 19),
but they were unable to detect the presence of this effect. The low field approximation
thus appears adequate over the entire range of voltages realizable in these voltage
clamp experiments (- 150 to +50 mv). The normal component of the dipole moment
change between the open conformation and the transition state (M in equation 16) is
about 50 D.
The experiments discussed above were done on Rana pipiens. More recently, E.

Neher, J. H. Steinbach, and I (unpublished observations) have done similar experi-
ments on neuromuscular junctions from Rana temporaria and found that the logarithm
of closing rate varies nonlinearly with voltage. In this case, the transition rate constant
has the form given by Eq. 19. Our results could be accounted for if the open state of
the channel has a dissociable charge buried partway within the membrane that has a
somewhat different binding constant in the two species of frog.
The conclusion from our observations is that, at least for the acetylcholine-activated

channel, the low field approximation gives an adequate characterization of the transi-
tion rate constant over a wide voltage range in one instance, and over a somewhat more
restricted range in another. If our experience with the acetylcholine-activated channel
at the neuromuscular junction can be extrapolated to the nerve membrane, we would
answer question (c) by tentatively supposing transition rates to be described by Eq. 16
for at least a restricted voltage range, but would anticipate that an equation of the form
of Eq. 19 would be necessary in at least some cases.
To discover the conductance associated with each conformation of a channel with-

out knowing what or how many conformations the channel can assume is, of course,
difficult. Nevertheless, some progress can be made on this question by using fluctua-
tion analysis. The basic idea is to discover whether the single channel conductance
(estimated by fluctuation analysis: see e.g., Neher and Stevens, 1977) has the same
value for all membrane potentials, or varies (say) in parallel with the overall membrane
conductance. If excitable membrane channels, like acetylcholine-activated channels
(Neher and Sakmann, 1976), have only two conductance states, open and closed, the
single channel conductance should-except for single channel rectification that can be
taken into account by measuring the instantaneous voltage-current relation-have the
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same value for all membrane potentials. If, on the other hand, channels have lower
conductances in some conformations and higher in others, the single channel con-
ductance should reflect the higher and lower values at voltages that tend to favor par-
ticular conformations. Unfortunately, this test can be less definitive than one would
like. If the measured single channel conductance is not independent of voltage, this
implies that something more complicated than identical, independent open-shut chan-
nels is present. A single channel conductance that does not vary with membrane po-
tential is most simply explained by an open-shut channel mechanism, but specific ex-
ample of channels with multiple conductances that give the same result can easily be
constructed.

Preliminary answers to question (b) have been obtained by Begenisich and Stevens
(1975) for potassium channels, and by Sigworth (1977) for sodium channels in frog
node of Ranvier. Both studies found that single channel conductance is independent
of membrane potential with a value of about 4 pS for potassium channels and value
about twice that for sodium channels. A tentative answer to question b, then, is that all
conformations have one of two conductances depending on whether the channel is
open or closed. If this simplest conclusion is incorrect, then at least very definite con-
straints are placed upon the possible distribution of conductance among the channel
conformations. Specifically, the system must give an approximately constant value
for the quantity a2/(g(l - f)) where a2 is the varience of conductance fluctuations,
g is the mean conductance, and f is the ratio of g to the maximum obtainable con-
ductance.
The most difficult problem, within the context of the theory presented here, is to

answer question a, that is to determine the diagram for a channel. The standard ap-
proach, originally adopted by Hodgkin and Huxley (1952), is to infer a kinetic mecha-
nism from the average behavior of a population of membrane channels studied under
voltage clamp. This approach is still the best source of information about the channel
diagram, but unfortunately cannot place enough constraints on possible mechanisms
to permit a decision between various plausible alternatives. I have given a specific
example of two physicially different mechanisms that give identical predictions about
the results of any conceivable measurements of mean ionic currents, (Stevens, 1972)
and it is not difficult to construct others. Further, because of inprecision in measure-
ments, an even larger number of diagrams are, in practice, indistinguishable.
Although different diagrams may make indistinguishable predictions about mean

currents flowing through a population of channels, two classes of experiments can,
in general, permit discriminations between mechanisms. The first approach is to mea-
sure gating currents, that is, the currents associated with the change of effective dipole
moment (M in Eq. 16, for example) associated with the movement of the channel
from one to another conformation (see Armstrong, 1975). If the voltage dependence of
transition rates is known, then a diagram permits predictions to be made about gating
currents. The value of this approach is that distinct diagrams that predict about the
gating currents. A version of this approach has recently been pursued by Armstrong
and Bezanilla (1977).
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A second approach is to study the spectrum of conductance fluctuations that arise
from the random opening and closing of channels. This spectrum can, by standard
procedures, be predicted from Eq. 2 and a knowledge of the conductances associated
with each conformation. In general, different diagrams give different spectra even
when the predicted mean currents are indistinguishable. A specific example of how
this approach might be used has been given earlier (Stevens, 1972) and Ruff (1977) has
recently employed the method to distinguish between diagrams associated with differ-
ent possible local anesthetic actions at the postsynaptic membrane channels. My
laboratory is currently pursuing this program in an attempt to discover the diagram
for channels in the frog node of Ranvier membrane; that is, we are trying to get an
answer for question a.

If the theoretical framework presented here proves to be appropriate for understand-
ing nerve excitability, the study of gating currents and fluctuations should be the key
for discovering channel diagrams, and could then eventually lead to a complete
theory for electrical excitability.

This work was supported by U.S. Public Health Grants NS 12961 and NS 12962.
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