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ABSTRACT The dielectric constant (E) and refractive index (n) of a bilayer lipid mem-
brane is determined from the known values of the polarizabilities of the carbon-
carbon and carbon-hydrogen bonds. It is assumed that the hydrocarbon chains are
hexagonally arranged in an all-trans conformation perpendicular to the plane of the
membrane. The only variable in the calculation is the average separation between the
chains and the theory relates e to this separation. The calculation and results differ
significantly from those presented in a 1968 publication by Ohki. It is shown that a
thin membrane is not homogeneously polarized by the applied field. This effect is
analysed and the dependence of e on the membrane thickness is determined. The
theoretical results are in good quantitative agreement with experimental measurements
on bulk paraffins and on oriented multilayers of saturated fatty acids. The most im-
portant conclusion is that the dielectric constant for an applied field perpendicular to
the membrane (which is the appropriate value for capacitance measurements) differs
by only a few percent from the value for the macroscopic (bulk) liquid hydrocarbon.
Thus the dielectric constant of a bilayer membrane can be approximated by the value
for the appropriate bulk hydrocarbon.

INTRODUCTION

One of the easiest and most frequently made measurements of a membrane property is
the electrical capacitance (C). An important use of the capacitance is as a measure of
the thickness (d) of the hydrocarbon region of a membrane by the use of Eq. 1:

C = E/47rd (1)
The use of this expression is limited primarily because of the uncertainty about what
value should be used for the dielectric constant (E). Although it is possible to measure
the dielectric constant of a macroscopic liquid that resembles the hydrocarbon region
of the membrane, it is questionable whether this value is representative of a membrane
in which the hydrocarbons have a markedly anisotopic orientation and which is only
about 30 A thick. Because of this orientation, the value of El, for a field parallel to
the hydrocarbon chains (normal to the plane of the membrane) should differ from the
E1 for a field perpendicular to the chain (in the plane of the membrane). In Eq. 1,
c-l should be used while measurements on the bulk liquid yield only some average of

11 and c, . This anisotropy shows up as a birefringence in optical studies of the mem-
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brane and it is possible to measure directly the index of refraction (n ,n1) in the
two directions. Since the hydrocarbon region is nonpolar, n for this region can be sim-
ply related to the c of the hydrocarbon region (for light in the visible range) by Eq. 2:

2n= (2)

However, the value of n actually measured represents an average over both the hydro-
carbon and polar regions of the membrane and therefore can only be used to provide
an estimate of thee 11 needed in Eq. 1.
The absence of a direct experimental approach increases the importance of trying to

determine e 11 from theoretical considerations. Ohki (1968, 1969, 1970) has derived the-
oretical values for E1I and E, by a detailed molecular approach in which the dipole in-
teractions in the hydrocarbon region of the membrane were directly calculated. How-
ever, Ohki's theoretical results do not agree very well with experimental measurements
on built up layers of barium stearate. Recently, Den Engelsen (1976) has argued that
the molecular approach of Ohki cannot, in general, be applied to this type of calcula-
tion. Den Engelsen has used a different theoretical approach, in which the hydrocar-
bon chain is replaced by a cylindrical hole and the rest of the membrane is modeled by
a continuum approximation. The theoretical values of e obtained by this continuum
approach are in good agreement with experimental ellipsometric measurements re-
cently obtained by Den Engelsen and his colleagues. The purpose of this paper is to
show that the molecular approach can provide useful information about the values of e
in lipid membranes and that the difficulties with Ohki's results are not inherent in this
approach but are due to some specific erroneous assumptions.

GENERAL THEORETICAL CALCULATION

The derivation of the relation between the capacitance and e (Eq. 1) is usually based on
the assumption that the dielectric is uniformly polarized by the applied field. Since it
will be shown that this assumption is not valid for thin membranes, this assumption
will not be used in the derivation of the general results in this section. To evaluate the
dependence of e on the membrane thickness, the general relations will first be applied
to the special case of a thick membrane, in which one can assume uniform polarization.
These results will be compared with experimental values of e for bulk hydrocarbons.
Then, the calculation for the thin, nonuniformly polarized membrane will be presented
and these results will be compared with experimental measurements on lipid bilayers.
The derivation for the case of an applied field parallel to the axis of the hydrocarbon

(perpendicular to the membrane surface) is based on an analysis of the Gaussian box
drawn in Fig. 1. The hydrocarbon (insulating) region of the membrane is indicated by
the two parallel lines. The box is drawn so that the left-hand surface is in the bulk so-
lution far enough from the membrane that the electric field (E) is zero, while the other
surface is in the hydrocarbon region of the membrane. [The theory and notation used
in this section follows, in general, the treatment presented in a recent monograph by
Bottcher et al. (1973).] Because of the applied field, an amount of charge, Q per unit
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FIGURE I Schematic representation of hydrocarbon dipoles induced by a field applied parallel to
the hydrocarbon axis.

area, is accumulated external to the hydrocarbon membrane. First, assume that all
these external charges are fixed in position and then the hydrocarbons are removed
and a vacuum is left. Then, according to Gauss's law, there will be a uniform field in
the membrane region given by:

E° = 4irQ. (3)

When the hydrocarbons are replaced there will be an additional charge in the box due
to the induced dipoles. The E field will then be given by:

E(x) = 47r[Q + q(x)], (4)

where q(x) is the charge in the membrane region of the box as a function of the position
of the surface of the box. It will be assumed that the membrane dipole (CH2) groups
are arranged in planes parallel to the surface, and from symmetry considerations, all
the dipoles in a given plane have the same dipole strength. Thus, q(x) will be zero
unless the surface of the box passes through the line connecting the dipoles in the ith
plane (separated by a distance 1,) in which case it will equal -se, (where e, is the charge
of the dipole in the ith plane and s is the number of dipoles per unit area in a plane).
Thus, the average value ofE in the membrane is given by:

d ~~~~~N
E JdI E(x)dx = E° - 4 Eeirs , (5)

Where d is the thickness of the hydrocarbon region and N is the number of planes.
Since 4Ie, is, by definition, the dipole strength (pi), Eq. 5 can be written in the form:

E = E°-47P, (6)
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Where P is the polarization vector and is defined by:

pPj; = =P; P=s/b, (7)

where p is the dipole density and b is the distance between dipoles in adjacent planes.
In general, the dielectric displacement (D) and the dielectric constant (e) in the mem-
brane are defined by:

D = E = E + 4lrP. (8)

Comparing Eqs. 6 and 8, we can see that for an applied field parallel to the hydrocar-
bon axis:

D = E°ll. (9)
From these relations, the expression for the capacitance (Eq. 1) can be obtained
immediately:

C = Q = (E°/41r) = d*(10)AO dE (10)

The purpose of this detailed derivation was to emphasize the point that the value of e
(defined operationally by Eq. 1) can be obtained rigorously in terms of the average
value of the membrane dipoles (p), even if the membrane is not uniformly polarized.
The strength of each dipole is obtained from the relation:

pi = aEi, (11)

where a is the polarizability and E1 is the "local" field that acts on the ith dipole.
The vector E; is the superposition of the field El (defined above) and field due to all
the other dipoles (not including pi) in the hydrocarbon region:

E = E- Tfij . pj (12)

where T is the dipole field tensor and is defined by:

T = r-3(I - 3r-2rr); Tij = 0, (13)

where rij is the vector directed from dipole i to j and I is the unit tensor. Since the in-
duced field is parallel to the applied field (in the direction e):

E°= Eoe; E1= Eie; p =pe, (14)

and Eq. 12 can be reduced to a scaler equation:

e -E = e - p/a = p/ia = E- Tijp1;

T= e-T1 ije. (15)
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For example, for an applied field parallel to the hydrocarbon (z) axis:

T-y= r-3(1 - 3r 2z)z (16)

THICK MEMBRANE

For the special case of a thick membrane, the surface effects can be neglected so that all
thep's are identical and Eq. 15 can be immediately solved:

P aE= _ T= Tij, (17)

where i is any dipole that is not near the surface. From Eqs. 7, 8, and 17 the expression
for e or x (susceptibility) is obtained:

e- I ap Eo
X 4= l+aT= (18)

To complete the derivation, it is necessary to know the relation between Eo and E,
which depends on the direction of the applied field. This relation is obtained from the
boundary condition that D is continuous in the direction normal to the membrane
surface, while E is continuous in the direction of the plane of the surface. Thus for an
applied field normal to the membrane (see Eq. 9):

= = E. (19)

For a field applied parallel to the membrane:

EO = E1. (20)

From Eqs. 19 and 20 the final expressions for the dielectric constant for a field parallel
() and perpendicular (E1) to the hydrocarbon chains are obtained:

4w 1 + all(TI, - 4irp)' (21a)

4lw = 1a1T1 (21b)47r I + a, Tl(1b

It is important to note the difference in the two expressions that results from the
boundary conditions. Ohki (1968) did not take account of this and used Eq. 21a for
both e1c and E . This should produce a very large error in his calculation of qj.
The theoretical calculation of E then requires evaluation of T (Eq. 17) for the as-

sumed molecular structure of the membrane. The summation in Eq. 17 is approxi-
mated by an exact sum over the near dipoles and an integral approximation for the far
dipoles. This far integration is simplified by using the classical approach of Clausius
and Mosotti. This approach involves making a hole in the dielectric around the
dipole. The "local" field (E,) can then be written as the superposition of (a) the
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sum over the dipoles in the hole, (b) the field from the charge on the surface of the hole
(Eh), and (c) the internal field in the dielectric (E):

Ei=E + Eh-ZE Tipi- (22)
hole

This can be rewritten as:

E =E + (P ) E[ I 4l (K )] (23)

where Eq. 8 and the following relations have been used.

P =-; Eh = K P, E T1j = Th (24)
P hole

The value of K depends on the shape of the hole and the direction of the applied field.
From Eqs. 8 and 1 1:

E-1 E= P= paEi. (25)
4r

Finally, solving Eqs. 23 and 25 for e:

E- I pa (26)
4r 1 - pa[K - (ThIp)]

The form of this solution is independent of the direction of the applied field although
the values of a, K, and Th depend on this direction. The calculation of e then requires
the determination of: (a) the polarizabilities of the unit dipoles (a), (b) the sum over the
interactions from the dipoles in the hole (Th) and (c) the value of K. These three
calculations will be described in the next three sections.

Polarizability ofthe Unit Dipole
An exact calculation of the polarizability (a) of a molecule requires a complete
quantum mechanical solution and is only possible for very simple molecules (Phillips,
1969). However, it has been shown that it is possible to accurately predict the polar-
izability of hydrocarbons if one assumes that the contribution to the polarizability
from each bond is simply additive. This procedure involves an empirical assignment of
the polarizability of, for example, the C-C or C-H bond and simply adding them
(vectorially) to determine the total polarizability of the molecule (Denbigh, 1940). The
approximations involved in this procedure are essentially the same as those that allow
the use of the concept of a bond length. That is, to a first approximation one assumes
that the length of a C-C bond is independent of the other atoms attached to the car-
bon and that there is no interaction between the bonds. Similarly, one can define the
polarizability of a C-C bond from the assumption that there is no interaction between
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the bonds. It is important to note that the polarizability assigned to the C-C bond is
not the polarizability of a "bare" C-C bond (which does not exist). It is the em-
pirical polarizability that when assigned to the bond allows one to predict the molecu-
lar polarizability on the assumption that the bonds do not interact (are additive).
We have emphasized this point because it implies that when the interaction between
the dipoles is determined by summing over Tj, it is essential that one does not include
the interactions between bonds in the same molecule, since these have already been ac-
counted for by the additivity assumption. This is very important because the nearest
C-C bonds are only separated from each other by about 1 A, and the dipole interac-
tion between these bonds is so large that the susceptibility becomes infinite or negative.
This is another point at which we feel Ohki's solution is incorrect. In his calculation of
the interaction between dipoles, he summed over all the neighbors, including those
on the same molecule. To avoid the problem of the very large interactions between the
nearest neighbors, Ohki took as his unit dipole a C2H4 group (so that the neighbors
were further apart), rather than the CH2 unit that we used. Further analysis of Ohki's
calculations are presented in the appendix. In this section we will calculate the polar-
izability of the CH2 unit averaged over the rotation of the hydrocarbon chain about its
axis. In the next section, the interaction between this CH2 unit and all neighboring
CH2 groups not on the same molecule will be determined.
To determine the polarizability of the CH2 group, one must know how it is oriented

in the membrane. We have made the simplifying assumption that the hydrocarbon
chains are all in the trans conformation, perpendicular to the plane of the membrane

I5

FIGURE 2 Affangement of the hydrocarbon chains. It is assumed that the chains are in all-trans
conformation perpendicular to the plane of the membrane and are free to rotate about the chain
axis (dotted line). The carbon-hydrogen bonds remain in the membrane plane during this rota-
tation. In the calculation the CH2 group is replaced by a unit with the same polarizability located
at the center of the C--C bond (solid circles). The C-C bond distance projected on the chain
axis is b, the separation between the chains is a, and 00 is the angle between the C--C bond and
the chain axis.
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(Fig. 2) and are arranged in a regular hexagonal array (Fig. 3). This should be a good
approximation to the membrane in the low temperature "crystalline" state but is only a
rough approximation to the "liquid" phase. In addition, we are neglecting the effect of
any ethylenic double bonds and the CH3 terminal group. We will use the polar-
izabilities assigned by Denbigh (1940) to the C-C andC-H bonds:

a_c = 1.88 A3

ac-c = 0.02 A3

(E || C-C bond)
(E I C-C bond)

c _H = 0.79A (E 1i C-H bond)

ac-H = 0.58 A3 (E I C-H bond).

E 11 Hydrocarbon Axis. As is shown in Fig. 2, the C-H bonds all lie in the
plane of the membrane or perpendicular to E:

aCH1aHiS = aC-H = 0.58 A3, (27)

where a'CH means I to the C-H bond. In the hexagonal array the hydrocarbon
chains are free to undergo rapid rotation about the chain axis. Thus, in the calculation
of the interaction between neighboring chains (there is no interaction between groups
on the same chain), the polarizability should be averaged over this rotation. As is
shown in Fig. 2, the C-C bond rotates on the surface of a cone at an angle 00 =
cos-' v/273 to the chain axis as the chain rotates about its axis. Since:

a(0) = all cOS20 + a' sin20, (28)

FIGURE 3 Hexagonal arrangement of hydrocarbon chains. The calculation of E involves a direct
summation over dipoles in a cylindrical hole and a continuum assumption for the dipoles that lie
outside that hole. The calculation was carried out for cylinders with the two different radii, in-
dicated by the circles. The hexagonal region indicates the dipoles included in the direct sum.
The x and y axes are for the case of an applied field perpendicular to the membrane, and the
z' and z" axes indicate the two orientations of the field in the membrane plane that were
considered.
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we obtain:

aCgaiS =alc(- ) + ac(- )= 1.88()+ 0.02(t)= 1.26A. (29)

E I to Hydrocarbon Axis. As the chain rotates about its axis, the C-H
bonds rotate in a plane perpendicular to the axis. Then aEcEH can be obtained by aver-
aging over the angle between E and the direction of the bond (0):

ElaxiS- 1 dk(alc-H COS + aC-L- H sin2 )

2 C[a-H + aC-H] = 0.685 A3. (30)

The angle 0 between the C-C bond and E is given by the relation:

cosO = sin 00cosk, (31)

where 00 is the angle between the C-C bond and the chain axis and ) is the angle of
rotation of the chain about its axis. Since cos 00 = :

coO = Vi73cosk, sinO = - 3/3cos2k.
Then, averaging over 0:

El axis =1 -dk(accOS2 0 + 2c 0)aC C 2ir J0 C sin

a( c + ac = 0.33 A (32)

Finally, the polarizability of the CH2 unit is obtained simply by adding the con-
tributions from one C-C bond and two C-H bonds:

a11 acElc_ + 2aCII H = 2.42 A3,

,= aC-c + 2aC-H = 1.70 A3. (33)

where a I and al are the polarizabilities of the CH2 unit parallel and perpendicular
to the molecular chain axis, respectively.

Summation over Near Interactions

In the low-temperature crystalline phase the hydrocarbon chains are in a close-packed
hexagonal structure with a separation of about 4.8 A. In the liquid phase this packing
becomes looser and less orderly and the average interchain distance is increased to
about 5.0 A. This interchain distance ("a") is the only adjustable parameter that
enters into the calculation of E.
A diagram of the assumed lattice structure is shown in Figs. 2 and 3. Each CH2

group is taken as a unit dipole placed at the center of the C-C bond. In the plane of
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the membrane the dipoles form a triangular lattice at a separation of a and a unit cell
area of A = a2 '7-2T The C-C bond distance is 1.54 A and its projection on the
molecular axis is 1.54 cos O = 1.257 A, which is now the distance between two
neighboring CH2 groups on the same chain and will be denoted by b. The number den-
sity of the dipole units is then:

PCH2 = (A b)-' = (V3/2 a2b)'l. (34)

The continuum approximation used for the region outside the hole should become
exact as the hole becomes larger and the calculated value of E should become inde-
pendent of the hole size if the hole is big enough. To test this approximation, the cal-
culation was carried out for two different values for the radius (R) of the hole and
different values for the hole length (h). The two circles in Fig. 3 indicate the two values
of the radius used and the solid line outlines the hexagonal region of dipoles included
in the summation. The radius of the circle (R) was chosen so that the continuum num-
ber of dipoles in the hole was equal to the number of discrete dipoles in the summation:

7rR2 = Nv Ta2/2, (35)

where N is the number of dipoles in a single plane and the dipole density (Eq. 34) has
been used.

E 11 to Hydrocarbon Axis. For this case E and the z axis is directed normal
to the plane of the paper and the x and y axis are oriented as shown in Fig. 3. The ex-
pression for Th (Eqs. 16 and 24) can then be written in the form:

Th" =Zr (p2 - 2z2); p2 = X2 + y2 (36)
Ill

where the subscript j indicates the distance between the dipole j and the dipole at the
origin and the brackets around j indicates that dipoles that belong to the same hydro-
carbon chain as the dipole at the origin are not included in the summation. For the
larger region in Fig. 3 the summation in Eq. 24 is over dipoles that have z coordinates
of 0, ib, ... nb and (x,y) coordinates of (±a,0), (i2a,0), (-3a,0), (+1/2a,
-iv'/2a),, (-43/2a, ----I/2a), (+:5/2a, -i-v/2a), (0, a-va), (-ia, -t-va),
(±2a, ±v'Ta), (+l/2a,4-3VT/2a), (i3/2a, 30v/2a). The dipoles that be-
long to the same hydrocarbon as the dipole at the origin (x = y = 0, z = 0,

.b,... 4nb) are not included.
E 1 to Hydrocarbon Axis. The direction ofE (and z) now lies in the plane of

the paper in Fig. 3. We carried out the summation for the two different orientations of
E(z' and z") indicated by the two lines in Fig. 3. The results for these two orienta-
tions, which are at the two extremes, differed by only 0.1% and in the paper the
average of these two values was used.

Calculation ofField Due to Surface Charge on the Hole (K)
E Parallel to Molecular Chain Axis. The hole is a cylinder of radius R and
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length h with its axis parallel to the hydrocarbon chains and centered on the dipole of
interest (Fig. 3). For E parallel to the axis, the surface charge is induced only on the
ends of the cylinder. For a polarization P the charge induced on a ring of radius r and
thickness dr at the end of the cylinder is given by:

de = - 2rrPdr. (37)

From symmetry considerations the field on the dipole at the center of the cylinder must
be in the axial direction and is given by:

dE= de cos 0. (38)

The total field due to the surface charge is then given by:

2

EcyI = 47rPh p-2dp = 47rP[1 - h(R2 + h2)-1/2], (39)

where the following relations have been used:

r2 + h2 = p2; rdr = pdp; cosO = h/p. (40)

From the definition of K (Eq. 24):

K1 = 47r[1 - h(R2 + h2)-'/2]. (41)

E Perpendicular to Molecular Chain Axis. In this case the charge is induced
on the cylinder walls. The surface charge (de) in a region located at an axial distance x
and polar angle 4 is given by:

de = -PR cosq dx do. (42)

The field exerted in the direction parallel to E is given by:

=- de si=R 2_dE 2d sinOcos4; sinO = R, r2 - x2 + R2. (43)

Finally, integrating over the entire surface:

r/2 r~~~~h
EJ = 8PR2 j cos2 ckd4 j (X2 + R2)-3/2 dx = 27Ph(h2 + R2)-1/2. (44)

And

K1 = 27rh(h2 + R2)-'/2. (45)
Calculation ofthe Dielectric Constant ({e)

The values of el and E1 are then determined by substituting the above expressions for
al, ac, Thl, Th', K", and K1 into Eq. 36. The values of e and e_ as a function of
the radius and length of the hole (for a = 5.0 A) are shown in Table I. It can be seen
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TABLE I
EFFECT OF HOLE SIZE ON e FOR A THICK MEMBRANE (a = 5.0Ab = 1.257 A)

Hole length
Hole
radius 17b 21 b 25b 29b 33b 37b 41 b

I'll 2.29a 2.160 2.146 2.138 2.134 2.131 2.128
3.19a 2.155 2.141 2.134 2.130 2.127 2.125 2.124

e 2.29 a 2.283 2.290 2.293 2.296 2.297 2.298
3.19a 2.268 2.277 2.281 2.284 2.286 2.287 2.288

that e changes by less than 1% in going from the smaller to the larger radius and that e
has approached to within 1% of its limiting values for h greater than 21 b (26 A). The
results for the largest hole (R = 3.19a, h = 41b) are tabulated in Table II and
plotted in Fig. 4 as a function of the interchain distance.

Comparison with Bulk Dielectric Constant ofLiquid Paraffins
X-ray diffraction analysis (Warren, 1933; Pierce, 1935) has indicated that the n-
paraffins in the liquid phase have a local hexagonal ordering similar to that assumed in
the theoretical calculation for the membrane, and therefore the dielectric constant
(CEb) of the bulk liquid is approximately equivalent to an average over all possible
orientations of the membrane:

Eb =
1 (E( + Cy + CA) = I C1I + 2f - (46)

The density and refractive index (and therefore the dielectric constant from Eq. 2) of a
large number of liquid hydrocarbons have been tabulated by Egloff (1939). The value
of C1b is relatively independent of chain length and has a value of about 2.06 at the
melting point. To compare this experimental value with our theoretical calculation, it
is necessary to know the value of the average interchain distance (a). It has usually
been assumed that this distance is about 5.0 A for the liquid paraffins. For this value

TABLE II

THEORETICAL VALUES OF AND e_ FOR A THICK MEMBRANE

a P Pa11 pa1 Kx1 Kj T 11 Ts

-3~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~A AA
4.75 0.0407 0.0985 0.0692 1.7372 5.4146 0.06847 -0.03423 2.245 2.534
4.80 0.0399 0.0965 0.0678 1.7666 5.3999 0.06817 -0.03409 2.219 2.479
4.85 0.0391 0.0945 0.0664 1.7960 5.3852 0.06788 -0.03394 2.194 2.427
4.90 0.0383 0.0926 0.0650 1.8255 5.3704 0.06759 -0.03379 2.170 2.378
4.95 0.0375 0.0907 0.0637 1.8551 5.3557 0.06729 -0.03365 2.146 2.332
5.00 0.0367 0.0889 0.0625 1.8847 5.3408 0.06700 -0.03350 2.124 2.288
5.05 0.0360 0.0872 0.0612 1.9143 5.3260 0.06670 -0.03335 2.101 2.247
5.10 0.0353 0.0855 0.0600 1.9440 5.31 12 0.06641 -0.03320 2.080 2.208
5.15 0.0346 0.0838 0.0589 1.9738 5.2963 0.06611 -0.03306 2.059 2.171
5.20 0.0340 0.0822 0.0578 2.0036 5.2814 0.06582 -0.03291 2.039 2.136
5.25 0.0333 0.0807 0.0567 2.0334 5.2665 0.06552 -0.03276 2.019 2.102
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FIGURE 4 Theoretical value of the dielectric constant of a thick membrane for a field applied
parallel (f11) and perpendicular (e1) to the membrane plane as a function of the average
separation (a) between the hydrocarbon chains.

ofa (Table II): el, = 2.124; e._ = 2.288; and from Eq. 46: Eb = 2.23, about 8% larger
than the experimental value of 2.06. Although this agreement between theory and ex-
periment is satisfactory, the following arguments show that the agreement may
actually be much better than this.
The value of 5.0 A for the interchain separations was obtained from a calculation

of the volume per molecule in the liquid and with the assumption of a hexagonal
packing arrangement. This calculation is based on the assumption (Muller, 1932) that
the separation between the CH3 groups at the chain ends has the same values as in the
crystalline phase (determined from X-ray diffraction). However, it is possible that
when the hydrocarbon melts and the average interchain separation increases, the CH3
groups could slightly interdigitate and the average length per chain might be less than
in the crystal state. Thus, as an alternative approach, we have determined the inter-
chain separation by an approach that does not require any assumption about the
length per chain. We assume that the molecular volume (1V,) for a paraffin that con-
tains n carbon atoms is described by the following equation:

Vn = [a2x/v/2][(n - l)b + 2d], (47)

where the first set of brackets is the cross-sectional area for hexagonal packing
(Eq. 34) and the second set is the chain length where b is the length associated with
each C-C bond (1.257 A) and d is the additional length associated with each CH3
group. A plot of V,, versus n for a series of paraffins should be a straight line whose
slope should provide an estimate of the interchain distance (a). Such a plot is shown
in Fig. 5 for saturated straight chain paraffins containing an even number of carbon
atoms (n = 18-34) with the hydrocarbon density at the melting point (Egloff, 1939).
The straight line in Fig. 5 is a least squares fit with a slope of 29.63 and an intercept of
11.06, corresponding to an a of 5.22 A and d of 0.86 A. This value of d is approxi-
mately equal to length of theC-H bond (1.09 A) and is significantly smaller than the
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FIGURE 5 Plot of the molecular volume of straight chain liquid n-paraffins at their melting
point as a function of the number of carbon atoms. The straight line is a least square fit to the
data.

value determined for the crystalline phase. Using a value of a of 5.22 A in Fig. 4
(and Eq. 46) yields a theoretical value for Eb of 2.09, very close to the experimental
value of 2.06. Although the X-ray diffraction pattern for the liquid hydrocarbons is
consistent with an interchain separation of 5.0 A, these data are probably not good
enough to distinguish between a value of 5.0 and 5.2 A.

THIN MEMBRANES

It has been established by electron diffraction that the hydrocarbon chains in films
built up from repeated bilayers of unsaturated fatty acids (e.g., barium stearate) are
hexagonally arranged with their axis perpendicular to the plane of the membrane
(Germer and Storks, 1938). Thus these films have a structure similar to that assumed
in our theoretical calculations and should provide a good experimental test. Blodgett
and Langmuir (1937) first measired the values of the refractive index parallel (n1 ) and
perpendicular (n1) to the membrane plane. More recently, Den Engelsen and his
colleagues (for review, see Den Engelsen, 1976) and Tomor and Srivastavo (1973) have
determined n by ellipsometry. As mentioned in the Introduction, n for the hydrocar-
bon region can be related to e by the use of Eq. 2. The value of n that is actually
measured has contributions from both the polar head groups and the hydrocarbon
regions, so that there is some uncertainty in the value for n for the hydrocarbon region.
However, for the long-chain fatty acids, the relative contribution from the polar head
groups should be small. Den Engelsen (1971) obtained values of n1 = 1.549 and
nL = 1.518 for a mixture of cadmium arachidate and arachidic acid (C2OH002).
For a chain separation (a) of 4.85 A (determined from electron diffraction), our pre-
dicted theoretical results (Table II) for a thick film are (by using Eq. 2) nl = 1.48 and
nL = 1.56, which are within 5% of the experimental values. However, it is disturbing
that we predict the wrong sign for the optical birefringence (n1 - nL). This dis-
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crepancy might be due to the application of a thick membrane model to a bilayer
membrane, and in this section the effect of membrane thickness will be examined.

If it is assumed that the membrane is uniformly polarized (PA = pj), then one can
derive Eq. 26 and the only possible effect of membrane thickness is that it limits the
size of the hole that can be used. However, as is shown in Table I, the value of e for a
hole 21 carbon atoms long (a very thin membrane) differs from the limiting value for a
thick membrane by only about 1%. Thus, this effect of membrane thickness is negli-
gible. However, a thin membrane is not uniformly polarized and this effect will be ex-
amined in this section. From symmetry the value ofp should be the same for all atoms
in the same plane parallel to the membrane surface. Then, summing T,j over all the
dipoles in a given plane, one can write Eq. 15 as:

Pi = a[EO - Z (48)

where PA is the dipole strength in the ith plane, and S,j is the interaction of all
the dipoles in jth plane with a dipole in the ith plane, and N is the number of planes
(carbon atoms) across the membrane.

Eq. 48 can be written in matrix form in terms of the dimensionless variable p,':

[I + aS]p' = I; p' = pi/aE0. (49)

Eq. 49 can then be solved for pi' by inverting the N x N matrix. The expression for
S5j is determined by the following procedure. The interaction is divided into an exact
summation over the near dipoles (SM) plus an integration over the far dipoles (Sfj).
For example, for an applied field parallel to the axis, T,j is given by Eq. 30, and the in-
teraction between the near dipoles in planej (by using the smaller circle in Fig. 3) with
a dipole in plane I is given by:

n
a' 2(jb)' (2a)2 - 2(jb)2 (+ a)2 - 2(jb)2=l 6 - (j) (2) 2(b) (v- ) -2j (50)

- [a2 + (jb)2]5/2 [(2a)2 + (jb)2]5/2 [(V'-a)2 + (jb)2]5/2f

As discussed above, there is no interaction between dipoles on the same hydrocarbon
chain. The far interaction component of S1j is given by:

Sf= 2sjX [r2 - 2(jb)2] rdr =
41rR2 (51)ij [r2 ~+ (jb)2 ] -%/-a2[R2 + (jb)2]3/2

where R is determined from Eq. 35 and s is the number of dipoles in a plane per unit
area (Eqs. 7 and 44). With S,j known, Eq. 49 can be solved for the p!. Table III
gives an example of one such calculation for a membrane 37 atoms thick. It can be
seen that p' varies from a value of 0.6330 at the membrane surface to 0.4736 at the
center.
From the definition of e for a nonuniformly polarized membrane (eq. 8):

e = 1 + 47rP/E = 1 + 4irapp'(E0/E). (52)
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TABLE III

VARIATION OF p' FOR A MEMBRANE 37 CARBON ATOMS IN THICKNESS (a = 5.0 A)

Position 1 (edge) 2 3 5 7 9 12 15 19 (middle)

p' 0.6330 0.5472 0.5026 0.4798 0.4764 0.4751 0.4742 0.4737 0.4736

Finally, E can be related to El by Eqs. 19 and 20 and Eq. 52 solved for e:

1 = (1 - 4wapj')-'; eI = 1 + 4irapi' (53)

The values of el, and Eq as a function of membrane thickness (N) are listed in
Table IV and compared with the corresponding value determined as described above
for a thick membrane (Eq. 26). (The slight difference, about 1%, between the bulk
values in Tables II and IV is due to the smaller hole used in Table IV.) It can be seen
that in going from a very thin membrane (N = 19) to a thick membrane, e1 decreased
by about 8% and Eq increased by about 4%. Although these changes are small, their
direction improves the agreement between our theoretical results and experiments on
built-up films of fatty acids. For example, the experimental values of n I = 1.549 and
n = 1.518 for arachidic acid are now within 2% of our values (from Eq. 2) for
a = 4.85 A (the value determined from electron diffraction) and N = 37. However,
we still predicted the wrong sign for the optical birefringence. Possible reasons for
this uiscrepancy are: (a) Errors in our calculation: in particular we have neglected
correlations in the polarization of neighboring dipoles; (b) Error in interpreting the
optical measurements as representing just the hydrocarbon region of the membrane,
since the observed birefringence could result from an anisotropic orientation of the
polar head groups; (c) Although the experimental value of e is given exactly in terms
of the average polarization (Eq. 53), the interpretation of n for a nonuniformly po-
larized membrane is more complicated since each plane will tend to scatter light
separately. Cherry and Chapman (1969b) have shown that if the variation in n for the
different layers is small, then the experimental value of n is equivalent to the average
value for the membrane, which is the assumption that we made in the above compari-
son. However, this is only an approximation and could account for the discrepancy.

TABLE IV
DEPENDENCE OF e ON MEMBRANE THICKNESS (N)

a =4.85A a = 4.95A a = 5.05o a = 5.15A
N

El El( 1 { 1 (I1
19 2.3885 2.3347 2.3275 2.2494 2.2684 2.1729 2.2152 2.1040
25 2.3366 2.3568 2.2793 2.2691 2.2256 2.1906 2.1753 2.1200
31 2.3074 2.3706 2.2521 2.2815 2.1998 2.2018 2.1511 2.1301
37 2.2871 2.3801 2.2331 2.2900 2.1825 2.2094 2.1350 2.1370
43 2.2730 2.3871 2.2201 2.2962 2.1702 2.2150 2.1234 2.1421
49 2.2623 2.3924 2.2100 2.3010 2.1609 2.2193 2.1147 2.1459
55 2.2540 2.3965 - 2.3047 2.1536 2.2226 2.1079 2.1490

Thick (N = ) 2.1879 2.4311 2.1404 2.3356 2.0957 2.2505 2.0536 2.1742
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The theoretical values can also be compared with experimental measurements of
n1 and n_ on black lipid membranes (Cherry and Chapman, 1969a; Den Engelsen and
de Koning, 1975). This comparison is a much weaker test of our calculations because:
(a) the structure and composition of these membranes are uncertain; (b) the con-
tribution of the polar head groups of lipids such as lecithin will be greater than for the
fatty acids; and (c) the measurement of nf and nL on these membranes is less direct
and requires additional assumptions. In any case, the experimental values of
n= 1.47 and nL = 1.45 for a lecithin-decane membrane are in good agreement with
our result of 1.48 for both n1 and nL for N = 37 and a = 5.05 A (a reasonable value
since these membranes are in the fluid phase).

CONCLUSION

The primary purpose of this analysis was to determine the value of e that should be
used in Eq. 1 in order to relate capacitance measurements to membrane thickness. As
discussed above, el should be used in Eq. 1. Most investigators have assumed that the
dielectric constant for some appropriate bulk hydrocarbon would be a reasonable ap-
proximation to el. The most important result of our analysis is that it provides a
theoretical justification for this assumption and an estimate of the error involved in
using it. For example, for a = 5.0 A, the value of el for a membrane bilayer (N = 37)
differs from the bulk value of e (from Eq. 46, with the results for a thick membrane) by
about 2%. This general conclusion, that e I is well approximated by the bulk value,
should be relatively independent of the specific structure and composition of the mem-
brane. The value of e has a strong dependence on the distance between the hydrocar-
bon chains (a), as can be seen from our theoretical calculations (Fig. 4) or from com-
parison of the experimental value of n = 1.43 for the bulk (liquid) hydrocarbon with
the value of n, of 1.55 for films of arachidic acid in the solid (crystalline) phase. Thus,
a significant error would be introduced into the determination of membrane thickness
from Eq. 1 if bulk values of e for the liquid hydrocarbon were used for membranes
thought to be in the solid state.

APPENDIX

Further Comparison with Calculations ofS. Ohki
In addition to the points discussed in the text, there are several other aspects of Ohki's analysis
that we believe are in error. First, it appears that he made an error in the calculation of the
polarizability of the C2H4 unit that he used. In his Eq. 21, Ohki has given the general ex-
pression for the polarizability of a hydrocarbon unit:

a = a-I + I (yc-c - 2YC-H)ZE Fj (IA)

where the sum is over all the carbon-carbon (C-C) bonds in the unit. The tensor F is diag-
onal (Fe) if the C-C bond is parallel to the x axis (perpendicular to the membrane
surface). In the trans conformation, the C-C bonds are not parallel to the x axis, F is
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not diagonal, and Ohki transformed F in order to diagonalize it. However, an error was made
in this transformation because his final result (Eq. 32) can be rewritten as:

aC2H4 = aC2H4 1 + a(yC_C - 2Yc-H) Fl, (2A)

where F1 is the form of the tensor for a C-C bond parallel to the x-axis. Comparing
Eqs. I A and 2 A, it can be seen that the polarizability that Ohki used for the C2H4 unit is
equivalent to assuming that both the C-C bonds in the C2H4 unit are parallel to the x
axis, which is incorrect.
We have not been able to reproduce the calculation of Tlsum in the appendix of Ohki's

paper. He obtained a value of 0.0699 for a = 5.0 A and we obtained a value of -0.13
when we tried to reproduce it. Using our value would introduce a very large error into Ohki's
calculation of the dielectric constant. Finally, a relatively minor point, Ohki used a square
lattice in the membrane plane while we used a hexagonal lattice.

We wish to thank Dr. Bernard Goodman for his helpful discussions.
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