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ABSTRACT The passive electrical properties of a cable can be measured by injecting
a step of current at a point and fitting the resulting potentials at several positions
along the cable with analytic solutions of the cable equation. An error analysis is
presented for this method (which is based on constant membrane resistance) when the
membrane resistance is not constant, but increases linearly with time. The increase of
rm produces a "creep" in the membrane potential at long times, as observed in cardiac,
skeletal, and smooth muscle. The partial differential equation describing the time-
varying cable was solved numerically for a step of current and these "data" were fit
by standard constant-resistance methods. Comparing the resulting parameter values
with the known true values, we suggest that a correction of the standard methods is
not satisfactory for resistance changes of the kind observed; instead, the cable equation
must be solved again for the particular form of rm(t). The practical implementa-
tion of a method by Adrian and Peachey for measuring the membrane capacitance and
an approximate method for estimating the rate-of-change of membrane resistance are
discussed in appendices.

INTRODUCTION

In a companion paper (I) we encountered the problem of determining the electrical
constants of a synthetic strand of cardiac muscle in which the membrane resistance

varied with time. In this circumstance, the solution of the partial differential equation
for a one-dimensional cable has no straightforward solution; indeed, no analytic solu-

tion could be found for the case of interest in which the membrane resistance varied
linearly with time. The only recourse was to fit the recorded waveforms with numerical
solutions of the equation and so obtain the cable parameters that gave the best fit in

each case.
The characteristic feature in the recordings from such preparations was that the

membrane potential displacement in response to a step of current did not approach a

steady value, but crept up slowly throughout the duration of the step. This kind of

response has apparently been observed, not only in other preparations of cardiac
muscle (2-6), but also in skeletal (7-9) and smooth (10-12) muscle. The solution to our

problem had, therefore, a broader application. In a strict sense, the "standard"
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methods of Hodgkin and Rushton (13) for obtaining the electrical properties of a
cylindrical cell based on the analytic solution of the cable equation are invalidated
in these circumstances. However, since the alternative of obtaining numerical solu-
tions of the cable equations is, at best, inconvenient, and the computation facilities
are not generally available, we inquired into the possibility that the standard methods
might still be used to obtain at least an approximate value for some of the cable pa-
rameters. In particular, we have attempted to evaluate the error in the values of the
cable parameters that would result from using the standard methods under such cir-
cumstances and have developed criteria to guide the investigator in their safe use.

DEFINITIONS

(See text for discussion of normalized units.)
b Slope of early V vs. T"2 plot.
cm Membrane capacitance per unit length.
CA Cm from Adrian-Peachey (8) method.
CG cm from Gage-Eisenberg (14) method.
CH Cm from half-maximum (13) method.
IO Amplitude of input current step.
r, Longitudinal resistance per unit length.
rm Membrane resistance per unit length.
7m Initial value of membrane resistance.
Ro Input resistance of cable at X = 0.
t Time.
T Time in normalized units.
Tmax Largest value of T used in finding CA.
TO. X = O intercept of half-maximum plot.
V Transmembrane potential.
x Distance along the cable.
X Distance x in normalized units; current source at X = 0.
a Time rate of increase of membrane resistance.
a Spacing of voltage and current electrodes.
X Length constant.
v Slope of line in half-maximum plot.
Tm Membrane time constant.

METHODS

The partial differential equation

1 32V a3J' v = 1
rax2 Cm t rm(t)

with boundary conditions of an input current step at x = 0 and zero axial current at the other
end was solved by the Crank-Nicolson implicit method (15). The membrane resistance rm
was assumed to increase linearly with time:

rm(t) = Im(l + at) (2)

where ?m and a are constants.
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A normalized system of units was used in all calculations, i.e. times are given in units of
membrane time constants and lengths are given in units of length constants (both referred to
t = 0 when the membrane resistance began to vary with time); to avoid confusion, the normal-
ized variables will be represented throughout the remainder of this paper by the symbols T
and X. At T = 0, resistances and capacitances have a value of 1.00. The amplitude of the
input current step was set to make V(0, o) = 1 when the membrane resistance was constant.
A cable length of 5 (length constants) was simulated in 100 segments with "electrodes" located
at 0.05, 0.5, 1.0, and 1.5. The time step of integration was 0.00125 (time constants), a value
chosen to make the mesh ratio (see, for example, 16) equal to 0.5.

All straight lines were fitted numerically by the least-squares technique. Arrival times for the
half-maximum point at the electrode locations were computed by treating the potential at
T = 5 as the "maximum" value and interpolating between potentials recorded at time intervals
of 0.1 (time constants).

RESULTS

Our purpose was to evaluate the applicability of methods for obtaining the passive
electrical properties of a one-dimensional cable in a situation in which they are (sensu
stricto) inapplicable, in particular, where the membrane resistance is a linear function
of time. It is natural to present this evaluation in the style of a classical cable analysis
in which the experimental data-the potential displacement at various sites in response
to a step of current-are obtained from numerical solutions of Eqs. 1 and 2. From
this data, the input resistance, the length constant, and the time constant are deter-
mined and from these (by the appropriate formulae) the electrical cable parameters
were derived. Comparisons between these "experimentally" determined values and the
known true values from which the numerical solutions were obtained will be described
in the relevant section of the results.

Resistance

Fig. 1 shows two examples of computed potential distributions V(X, 1) for two rates-
of-change of membrane resistance, a = 0 and a = 0.2 (the latter is comparable to the
value observed in a synthetic strand of cardiac muscle, 1). In the following, this data
will be analyzed by standard cable methods, with the distribution in Fig. 1 A (a = 0)
serving as a control and error check. In Fig. 2, the potentials at T = 5 are plotted
against distance on a semi-logarithmic scale. Straight lines fitted through these points
yield the input resistance Ro (the intercept at X = 0) and the length constant X (the
negative of the reciprocal of the slope). With these two "measurements," r, and rm
were calculated from the following equations and the values listed in Table I.

ri =RA° (3)

rm = RoX (4)

Capacitance
Three approximate methods have been suggested for extracting the additional informa-
tion required to calculate the membrane capacitance, cm. Hodgkin and Rushton (13)
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FIGURE 1 Transmembrane potential V(x, t) for a step input of current at the end of a cable of
length 5. A: constant membrane resistance (a = 0). B: a = 0.2. See text for discussion of units.

refer to a method that uses the velocity of propagation of the half-maximum potential.
The time of occurrence of the half-maximum potential at each electrode is plotted
against distance from the current injection point and a straight line fitted through these
points has a slope v of approximately Tm/2X, i.e. the half-maximum point propagates
at a velocity of about 2X/Tm (see 17). Fig. 3 shows this plot for the distributions of
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FIGURE 2 Transmembrane potentials from Fig. I at T= 5 plotted as a function of distance.
Crosses: a = 0 (Fig. I A). Circles: a = 0.2 (Fig. I B). Straight lines fitted by least-squares
method.
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TABLE I

NORMALIZED CABLE PARAMETERS DERIVED FROM DATA IN FIG. I
BY "STANDARD" METHODS

Data ri rm CA CG CH

Fig. I A(a = 0) 1.00 1.00 1.32 1.04 1.00
Fig. I B(a = 0.2) 1.05 1.67 1.37 1.30 1.21

ri and c's should be compared with true values of 1.00 and rm with I + 5 a (see text).

Fig. 1. Gage and Eisenberg (14) showed that the X = 0 intercept Tr12 of the same
plot is equal to 0.2274T. (for time-invariant membrane) and we have calculated mem-
brane parameters by this method also. Finally, Adrian and Peachey (8) described a
method that derives cm from the slope b of the early potential record near x = 0 (see
Appendix A). In Fig. 4, the potentials at the electrode closest to the current injection
point have been plotted versus time with Tmax = 0.25. The straight line was fitted to
the points without the requirement of passing through the origin. Only a single line
and set of points are shown, since the points for a = 0 and a = 0.2 are indistinguish-
able on this graph.
The membrane capacitance was thus calculated by each of the following equations

and the values were listed in Table I:

_ (21o)2Ro
rXb2

c 0.2274 RoX

2z
CH -

Ti,2

(5)

(6)

(7)

x

FIGURE 3 Time of occurrence of half-maximum potentials at the three distant electrode sites
plotted from the distributions of Fig. I as a function of distance. Crosses: a = 0 (Fig. I A).
Circles: a = 0.2 (Fig. I B). Straight lines fitted by least squares method with a free intercept.
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FIGURE 4 Early transmembrane potential at X = 0.05 for a = 0 (Fig. I A) plotted versus tl/2 for
Adrian and Peachey (8) method. Straight line fitted by least squares method.

(Io is multiplied by a factor of 2 in Eq. 5 because the numerical solutions were for a
semi-infinite cable.) When rm is constant (a = 0), the standard methods give accurate
values for the cable parameters (except for the practical application of the method of
Adrian and Peachey: see Appendix A).
When a = 0.2, the resistance values deviate considerably from unity, primarily

because there is no way of getting a good estimate of the input resistance when it is
continually changing. Capacitance values based on the propagation of a "half-
maximum" are also in error because there is no steady maximum. The error in CA iS
not much greater at a = 0.2 than at a = 0, because the method is based on measure-
ments during a short time interval during which rm changes by only a small percentage.

Error Dependence on Alpha
The calculations illustrated above for two values of a were repeated for additional
values up to a = 0.8 and the results are shown in Fig. 5 A. For ri and cm, the
deviations from the known value of 1.00 are plotted as functions of a, the rate of in-
crease of rm. The measurement of rm itself is compared with the known value at the
end of the measurement period, i.e. at T = 5.
While there is considerable error in most of the parameters for a > 0, the increase

with a is not uniform or even monotonic. The error in ri does increase uniformly,
however, and the estimate is remarkably good, considering the substantial change in
shape of the potential distributions. The reason for this is evident in Eq. 3; as rm in-
creases, both Ro and X increase and their ratio stays approximately constant. The
cancellation is not exact, however, because the effects are not in phase. The measured
value of rm lies, as might be expected, between the value 1.00 at the start of the current
pulse and the instantaneous value at T = 5 when X and Ro are measured. The lags in

BIOPHYSICAL JOURNAL VOLUME 17 1977150



0
i ° r0.2 0.4 06 0.2 0.4 0.6 0.o8

a CH.i

-20%_ '-.'.

rm rm

-60% _

FIGURE 5 Error resulting from calculating (by standard methods) the passive electrical param-
eters of a cable in which the membrane resistance, Tm' increases linearly with time, rm =
Fm(l + at), plotted as a function of a. A: electrodes at X = 0.05, 0.5, 1.0, and 1.5 (same loca-
tions as in Figure 1). B: electrodes at X = 0.05, 0.4, 0.8, and 1.2.

effect on Ro and X which nearly cancelled out for r, now combine (Eq. 4) to produce
a larger error in rm.
The errors in parameter values also vary with the spacing of the measuring elec-

trodes. In Fig. 5 B (where the electrode spacing has been reduced to 0.4) the error
curves for cG and CH are changed substantially while the others are only slightly af-
fected, compared with Fig. 5 A.

DISCUSSION

It was our original hope in undertaking these calculations that by tabulating a series of
correction factors from numerical calculations as described above, we could derive
reasonably accurate values for passive membrane parameters by correcting values ob-
tained from "standard" methods when the membrane resistance increases with time.
The results of the calculations show that the standard methods (based on constant
parameters) do indeed produce errors in computing the membrane resistance or
capacitance when the resistance is changing with time. However, the magnitude of
these errors, and hence the correction factor, depends strongly on unknown quanti-
ties-the membrane time constant and length constant (the scales in Fig. 5 are func-
tions of these quantities). This means that at best an iterative process would have to
be used to correct values obtained by standard methods and a large number of error
curves would be necessary to represent the error surfaces adequately. Moreover, even
if it were practical to correct derived passive parameters by using such error curves, a
different set of curves would be necessary each time a new functional dependence of
rm on t was assumed. Therefore, the only way to derive accurate passive membrane
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parameters from a cable when r. varies with time is to solve the appropriate partial
differential equation numerically and fit parameters by nonlinear curve-fitting tech-
niques, as we chose to do originally (1).
The curves in Fig. 5 do have some general utility; they can be used to judge when a

full numerical fit is necessary. The linear form for rm(t) should be a good approxima-
tion for other functional forms when the total variation of rm is small. To use Fig. 5,
it is necessary to know the value of a for the experimental data: a means of estimating
a is described in Appendix B based on the time and length constants from standard
methods.

It might be argued that the case we have chosen (rm changing uniformly along a
cable) is likely to represent the true events in only a limited number of cases and a more
likely general circumstance is that rm varies with distance as well as time. It is un-
likely, however, that this or any other choice of assumptions would alter our basic con-
clusion, namely that the standard methods cannot be used when there is substantial
creep for whatever cause. Should one pursue the alternative of numerical computa-
tion, as we did previously (1), than the choice of a cause for the creep is decisive and
must be based on other knowledge of the preparation.
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APPENDIX A

In a paper on the membrane capacitance of frog skeletal muscle fibers, Adrian and Peachey (8)
described an approximate method for extracting the membrane capacitance from square-pulse
measurements on a cable-like preparation when the membrane resistance rm is not known. If
(t/Tm)'12 iS small, the error function in the Hodgkin and Rushton (13) solution for V(O, t) is
replaced by a square root:

V(Ot) 0[Io tr, 1 (Al)
LrICAJ

Measured values of V(0, t) at early times are plotted against the square root of t and then

C -r (A2)

where b is the slope of a straight line fitted through the experimental points.
The accuracy of the capacitance value, CA, obtained from this approximation depends on

the details of how the approximation is applied to the data, e.g. what range of time is used in
fitting the line, whether or not the line is fitted through the origin, etc. To evaluate the ef-
fects of these details, approximate membrane capacitances have been calculated by the method
of Adrian and Peachey from solutions for V(x, t) in a one-dimensional cable in response to
a step of input current at x = 0. A normalized system was used so that all times are in units
of membrane time constants and the approximate capacitances can be compared to a correct
value of 1.00; again, the symbols T and X will be used for the normalized variables. For
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FIGURE 6 Membrane capacitance CA calculated by the Adrian-Peachey (8) method for various
values of Tmax and methods of fitting. Solid line: correct value. Dashed line: line fit with
adjustable intercept. Dotted line: line fit through origin. Dot-dash line: relative accuracy of
square-root approximation for error function. A: values based on potentials measured at
X = 0. B: values based on potentials measured at X = 0.05.

X = 0, Hodgkin and Rushton's solution was evaluated by summing an asymptotic series for
the error function. For X > 0, solutions for V(X, 7) were obtained numerically by the
implicit Crank-Nicolson method (15). A few of these solutions were checked for accuracy with
the analytic solutions of Hodgkin and Rushton.

First, what is a reasonable value fpr Tm., the time limit for plotting V, so that T for
any point is "small compared with the membrane time constant"? In Fig. 6 A, the lowest curve
shows how the error of the square root approximation for the error function increases as Tmax
increases. The error in the derived CA is larger, however, since CA iS proportional to
the reciprocal of the square of the slope. The upper two curves in Fig. 6 A show the values of
CA derived from straight lines fitted through the experimental points either with a free inter-
cept at T = 0 or passing through the origin. Clearly, a much more accurate value of cA is
obtained by fitting the line through the origin.

This conclusion must be qualified, however, because the experimental voltages usually plotted
are not V(0, 7), but rather V(6, 7) where 6 is the (small) spacing between the current and
voltage electrodes. To illustrate the effect of nonzero 5, Fig. 6 B shows the results for CA
when 5 = 0.05 (length constants), a reasonable electrode spacing. Now the error in cA does
not approach zero as Tmax is made smaller, but actually goes through a minimum at Tmax =
0.25. This is a result of the propagation of V from X = 0 to X = 5; there is a delay in
V at X = a and the slope of V is no longer given accurately by the chord. In fact for
Tmax < 0.37, cA derived from a line fitted with a free intercept is more accurate. The
error in the approximate membrane capacitance from the method of Adrian and Peachey thus
increases sharply as 5 is made larger than zero and accuracy requires the use of potentials
recorded as close as possible to the current injection point (but this is forbidden by three-
dimensional considerations, 18).

APPENDIX B

No exact formula for computing a from voltage records has been found when the membrane
resistance varies with time, but the following approximate method is sufficiently accurate for
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estimating the error in fitting passive parameters. According to the solution of Hodgkin and
Rushton (13) for the case of constant membrane resistance, the potential V(x, t) is propor-
tional to the length constant X. Taking the ratio of potentials at two times, t2 > t1 >> t and
the same position x,

V(x, t2) , A2 Frm(t2)1'/2 [i + t2l/2(B)
V(x,t1) AI [rm(ti)J [1 + at,]

Let the ratio of voltages in Eq. B 1 be equal to a and solve for a:

a -l_
a = 2I (B2)

t2- t,a

For example, when t, = 4 and t2 = 5 (time constants), taking a from the numerical cal-
culation for a = 0.1 gives an approximate value of a from Eq. B2 of 0.118. Eq. B2 gives
values of a that are not in error by more than 25% for a < =0.8 with these valies for t,
and t2.
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