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Risk of opioid dependence is genetically influenced. We recruited a sample of 393 small nuclear families (including
250 full-sib and 46 half-sib pairs), each with at least one individual with opioid dependence. Subjects underwent
a detailed evaluation of substance dependence–related traits. As planned a priori to reduce heterogeneity, we used
cluster analytic methods to identify opioid dependence–related symptom clusters, which were shown to be heritable.
We then completed a genomewide linkage scan (with 409 markers) for the opioid-dependence diagnosis and for
the two cluster-defined phenotypes represented by 1250 families: the heavy–opioid-use cluster and the non–opioid-
use cluster. Further exploratory analyses were completed for the other cluster-defined phenotypes. The statistically
strongest results were seen with the cluster-defined traits. For the heavy–opioid-use cluster, we observed a LOD
score of 3.06 on chromosome 17 (empirical pointwise ) for European American (EA) and AfricanP p .0002
American (AA) subjects combined, and, for the non–opioid-use cluster, we observed a LOD score of 3.46 elsewhere
on chromosome 17 (empirical pointwise , uncorrected for multiple traits studied) for EA subjects only.P p .00002
We also identified a possible linkage (LOD score 2.43) of opioid dependence with chromosome 2 markers for the
AA subjects. These results are an initial step in identifying genes for opioid dependence on the basis of a genomewide
investigation (i.e., a study not conditioned on prior physiological candidate-gene hypotheses).
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Opioid dependence (OD) is associated with serious med-
ical, legal, social, and psychiatric problems. OD has a
lifetime prevalence of 0.4%,1 and the combined lifetime
prevalence of OD and opioid abuse is 0.7%.2 The mag-
nitude of the disability and suffering attributable to OD
has made the need for improved understanding and
treatment of the disorder an important public health
issue. Elucidating the genetic basis of OD would rep-
resent major progress toward understanding the etiology
of this disorder.

Risk of OD, like the risk of many other forms of
substance dependence, is influenced by genetic factors,
as demonstrated by adoption studies (in the general case
of substance dependence) and by twin studies. Tsuang
et al.3 studied 13,000 Vietnam-era male twin pairs,
among whom drug abuse was defined as at least weekly
use of any of a variety of drugs. Significant pairwise
concordance rates showed a familial basis for every drug
considered. The difference in pairwise concordance rates
for MZ and DZ twins was significant for the abuse of
marijuana, stimulants, cocaine, and all drugs combined.
For OD specifically, MZ twin tetrachoric correlation was

, and DZ correlation was , with0.67 � 0.11 0.29 � 0.21
an estimated heritability of 0.43, an (unique environ-2e

ment) of 0.31, and “nonadditive” genetic components
accounting for an estimated 26% of the variance. MZ
concordance was 13.3% (4/30), and DZ concordance
was 2.9% (1/34). For most drugs studied (marijuana,
stimulants, sedatives, heroin, and other opioids), there
was evidence of both shared and specific (“unique”) risk
factors; unique risk factors were most important for her-
oin abuse.

Kendler et al.4 also examined the specificity of genetic
risk factors for substance dependence (involving can-
nabis, cocaine, hallucinogens, sedatives, stimulants, and
opiates) in male twins. In this sample of nearly 1,200
male twin pairs, there were high levels of comorbidity
for both drug use (tetrachoric correlations 0.60–0.85)
and drug misuse (tetrachoric correlations 0.67–0.85 for
substance abuse and/or dependence). Model fitting re-
vealed that one common genetic factor exerted a rela-
tively potent influence on risk of both use and misuse
of all six substances. There was a modest effect of specific
genetic factors on risk of substance use but not abuse
or dependence. A common shared environmental factor
was also found to exert an effect on risk of substance
use and, to a lesser extent, on risk of abuse or depen-
dence. OD, compared with the other substance-depen-
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Table 1

Demographics of Sample, by Site

SITE

GENOTYPED SUBJECTS

All
No. (%)

Male
Mean Age

(years) AA EA

Yale 575 242 (42.1) 39.1 357 218
MUSC 221 112 (50.7) 38.0 109 112
UConn 578 285 (49.3) 39.7 267 311
McLean 245 106 (43.3) 40.9 114 131

Total 1,619 745 (46.0) 39.4 847 772

Table 2

Recruitment of Families, by Site

SITE

FAMILIES

All AA EA

Yale 205 123 82
MUSC 98 45 53
UConn 231 101 130
McLean 100 45 55

Total 634 314 320

dence phenotypes, showed the lowest loading on the
common genetic factor (0.48) and the highest loading
on the single unique environmental common factor
(0.80). In this study, in contrast to the study of Tsuang
et al.,3 OD showed no contribution from substance-
specific additive genetic factors. Although Kendler et al.4

hypothesized that this difference might be the result of
environmental characteristics of the Vietnam twin co-
hort studied by Tsuang et al.,3 the small number of in-
dividuals with OD in both studies means that either
study could have had selection bias or inadequate sta-
tistical power. Karkowski et al.5 studied substance-de-
pendence genetics in a cohort of 1800 female twin pairs.
The resolution of this sample for OD was quite small;
this was reflected in the great difference in OD herita-
bility estimated from a univariate model (0.52), com-
pared with that from a multivariate model (0.10).

To our knowledge, there have been no previously pub-
lished studies of OD with genomewide scope. However,
published work supports population-specific association
with certain candidate genes. OPRM1 encodes the m-
opioid receptor; markers at this locus have been reported
to be associated with OD6 or with opioid and alcohol
dependence combined.7 Xu et al.8 reported a highly sig-
nificant association of DRD2 haplotypes with OD in
Chinese subjects.

In the present study, we sought to identify the chro-
mosomal location of genes that increase risk of OD and
related traits identified using data reduction and cluster
analytic approaches. The use of cluster analysis to iden-
tify subgroups that might increase genetic homogeneity
for linkage was part of the originally planned approach9;
we also applied the approach used here in a recently
published linkage study of cocaine dependence (CD).10

We collected 634 small nuclear families at four sites in
the eastern United States, with the recruitment condition
that families have at least two siblings with either CD
or OD.10 Of the families included, 393 had at least one
subject with OD, and 235 had at least two individuals
with OD. Those 393 informative families are included
in the present study.

Subjects and Methods

Subject Recruitment and Assessment

There were four recruitment sites for the study: University
of Connecticut Health Center (Farmington), Yale University
School of Medicine (New Haven, CT; APT Foundation),
McLean Hospital (Belmont, MA; Harvard Medical School),
and Medical University of South Carolina (Charleston), here-
after referred to as UConn, Yale, McLean, and MUSC, re-
spectively. Families were recruited on the basis of screening
results suggesting that two siblings would meet diagnostic cri-
teria for OD (at the UConn and Yale sites) or CD (at all sites).
Some subjects with CD had comorbid OD and were infor-

mative for the present study. Subjects with a primary diagnosis
of a major psychotic illness (schizophrenia or schizoaffective
disorder) were excluded as probands. Once an affected sibling
pair (ASP) was recruited, additional siblings and parents were
recruited whenever possible, regardless of affection status.10

Demographic details and recruitment by site are presented in
tables 1 and 2. This sample includes the subjects from our CD
linkage study (when they were informative for OD) plus ad-
ditional subjects.

Subjects gave informed consent, as approved by the insti-
tutional review board at each clinical site, and a certificate of
confidentiality for the work was obtained from the National
Institute on Drug Abuse, National Institutes of Health. Sub-
jects were interviewed using the Semi-Structured Assessment
for Drug Dependence and Alcoholism (SSADDA) for psychi-
atric diagnosis, as described elsewhere.10,11 The reliability of
SSADDA for the diagnosis of OD was excellent, with test-
retest reliability of (based on 120 subjects) and in-k p 0.94
terrater reliability of (based on 173 subjects).11 Thek p 0.91
diagnosis of OD was based on application of a computer al-
gorithm that uses DSM-IV diagnostic criteria to the SSADDA
data.12

Genotyping

In most cases, DNA was obtained from immortalized cell
lines, but, for some subjects, DNA was obtained directly from
blood or saliva. The Applied Biosystems mid-density linkage
mapping set 2.5, augmented by 15 additional STR markers,
was used as described elsewhere.10 We genotyped a total of
409 markers spanning the genome, including 391 autosomal
markers and 18 X-chromosome markers. Marker map posi-
tions for analyses were based on the sex-averaged Marshfield
map (Center for Medical Genetics Web site).
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Table 3

Demographic Characteristics and Comorbid Psychiatric and Substance-Use Disorders

CHARACTERISTIC

WHOLE SAMPLEa

( )n p 2,881

SAMPLE WITH

DSM-IV OD
( )n p 666

CLUSTER E
( )n p 346

CLUSTER A
( )n p 730

No. (%)
of Subjects

No. with
Missing Data

No. (%)
of Subjects

No. with
Missing Data

No. (%)
of Subjects

No. with
Missing Data

No. (%)
of Subjects

No. with
Missing Data

Male sex 1,492 (51.8) 0 373 (56.0) 0 197 (56.9) 0 275 (37.7) 0
EA ethnicity 1,331 (46.2) 0 452 (67.9) 0 253 (73.1) 0 203 (27.8) 0
ASPD 175 (12.0) 1,421 87 (13.6) 28 46 (13.8) 13 72 (10.0) 12
Compulsive gambling 135 (9.2) 1,420 56 (8.8) 30 24 (7.2) 12 65 (9.1) 12
Panic disorder 109 (7.4) 1,412 73 (11.4) 26 51 (15.1) 9 29 (4.0) 8
Agoraphobia 60 (4.1) 1,426 26 (4.1) 29 18 (5.4) 11 27 (3.8) 17
PTSD 149 (10.2) 1,414 69 (10.8) 26 39 (11.6) 10 69 (9.6) 10
Major depression 195 (13.4) 1,431 96 (15.2) 35 50 (15.2) 17 87 (12.2) 15
Bipolar disorder 77 (5.2) 1,408 39 (6.1) 24 26 (7.8) 11 29 (4.0) 5
Tobacco dependence 984 (65.4) 1,376 492 (73.9) 0 263 (76.0) 0 422 (57.8) 0
Alcohol:

Dependence 653 (43.4) 1,376 296 (44.4) 0 164 (47.4) 0 306 (41.9) 0
Abuse 350 (23.3) 1,376 149 (22.4) 0 77 (22.3) 0 169 (23.2) 0

Cocaine:
Dependence 1,238 (82.3) 1,376 559 (83.9) 0 294 (85.0) 0 587 (80.4) 0
Abuse 46 (3.1) 1,376 28 (4.2) 0 15 (4.3) 0 15 (2.1) 0

Opioid:
Dependence 666 (44.3) 1,376 666 (100.0) 0 346 (100.0) 0 0 (0) 0
Abuse 31 (2.1) 1,376 31 (4.7) 0 0 (0) 0 0 (0) 0

NOTE.—ASPD p antisocial personality disorder; PTSD p posttraumatic stress disorder.
a “Whole sample” includes nongenotyped parents.

Phenotypic Cluster Analysis

We identified clusters of symptoms that could lead to valid
OD subtyping, using binary symptom indicators from the
opioid assessment section of SSADDA; this strategy is similar
to the one we used for our study of CD.10 DSM-IV classifi-
cation of OD may not represent the optimal OD-related phe-
notype for genetic mapping; other phenotypes might identify
sets of subjects that are more genetically homogeneous. The
strategy for the development of qualitative and quantitative
traits included nonparametric data reduction, iterative two-
stage clustering on the observed dimensions, and the assign-
ment of probability of cluster membership in each cluster for
each individual. Multiple correspondence analysis,13,14 a non-
parametric data reduction method, was used to identify the
underlying dimensions in the data. Each study participant with
phenotypic data was assigned a score for each of the retained
dimensions by use of a procedure that is conceptually similar
to assigning factor scores. Next, a multistage clustering strat-
egy was used to identify distinct subgroups. The first stage was
an iterative k-means partitioning with the use of several dif-
ferent starting points and a larger-than-expected k ( ).k p 50
Nearest centroid sorting was used for the k-means clustering.
The second stage involved cross-classification of the results of
the k-means clustering and retention of the groups that con-
sistently clustered together. These groups and the remaining
observations were then used with an agglomerative hierarchi-
cal clustering to identify the final cluster structure. Ward’s
method was used for the agglomerative hierarchical clustering.
(This method avoids the idiosyncrasies that can occur with
different starting seeds for k-means clustering. It also identifies

intact groups for the hierarchical clustering that are joined
before the agglomerative process. The intention is to retain the
strengths of both types of clustering while mitigating their
weaknesses.) A comparison of the within-to-between-group
variation on variables other than those used to form the groups
and group profiles provided the basis for selection of the final
cluster solution. SPAD software (DECISIA) was used for both
the multiple correspondence analysis and the clustering algo-
rithms. SAS software15 was used for subsequent analyses, in-
cluding cluster profiling. Binary logistic regression was used
to estimate the probability of cluster membership for each
study participant for each of the clusters. Variables selected
for clustering were used in the estimation of the probability
of cluster membership. The natural logarithm of the proba-
bility of membership in each group was the dependent mea-
sure in the quantitative-trait analyses. Heritability of the log
of probability of group membership was computed using
SOLAR.16 Although cluster assignment differentiates severity
of opioid dependence (between some clusters), subjects as-
signed to different clusters differ in other features too (table
3), such as substance-use disorders and other comorbidities,
demographic features, and mode of drug administration (e.g.,
injection vs. some other method). The clusters identified may
be characterized briefly as follows.

Clusters with no or low opioid use (A and B).—Cluster A
(“non–opioid users”) was the largest cluster, containing
slightly more than half of the sample. None of the members
of this cluster received a diagnosis of OD. Of cluster B members
(“low-opioid users”), 38% received a diagnosis of OD. De-
mographic characteristics differentiate the clusters. Cluster A
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Table 4

Pedigree Characteristics

Characteristic Total AA EA

No. of genotyped subjects 1,619 847 772
Mean age (years) 39.4 40.9 37.9
No. of pedigrees analyzed 634 314 320
No. of pedigrees with:

1 Subject with OD 158 80 78
2 Subjects with OD 204 48 156
3 Subjects with OD 26 10 16
4 Subjects with OD 5 1 4

No. of pedigrees with at least 1 subject:
With OD 393 139 254
In cluster A 389 251 138
In cluster B 115 48 67
In cluster C 127 52 75
In cluster D 90 32 58
In cluster E 254 76 178

No. of full-sib pairs with OD 250 56 194
No. of half-sib pairs with OD 46 33 13

Table 5

Cluster Heritability

Cluster Heritability P

A (non–opioid users) .61 7.1 # 10�22

B (low-opioid users) .32 4.7 # 10�6

C (moderate-opioid users) .63 1.1 # 10�19

D (heavy-opioid and mixed-
substance users) .65 2.0 # 10�25

E (heavy-opioid users) .40 4.4 # 10�9

contained a higher proportion of African Americans (AAs) and
women. Although individuals in cluster A and the majority of
individuals in cluster B were not opioid dependent, the ma-
jority of individuals in these groups were cocaine dependent
(80% and 90% of clusters A and B, respectively). Of cluster
A subjects, 5% were dependent on substances other than co-
caine, whereas 20% of cluster B subjects were.

Clusters with moderate or heavy opioid use (C, D, and
E).—Clusters C (“moderate-opioid users”), D (“heavy-opioid
and mixed-substance users”), and E (“heavy-opioid users”)
comprised 10%, 7%, and 23% of the sample, respectively.
Again, there were demographic differences among the clusters.
More than 40% of clusters C and D was AA, whereas only
28% of cluster E was AA. All three clusters had comorbid
CD, at prevalences of 72%, 93%, and 85%. The reported
average number of lifetime episodes of opioid drug use ex-
ceeded 4,000 for all three clusters and was 14,700 for clusters
D and E. For all subjects in these three clusters, the reported
duration of time during which they used opioids most heavily
was 13 years (on average), and 195% of these individuals were
opioid dependent (100% of cluster E subjects). A majority of
all three groups (57%, 72%, and 79% in clusters C, D, and
E, respectively) reported injecting opioids. A majority of cluster
D members (61%) reported that they “got higher and stayed
higher longer than others” when they first started to use
opioids (compared with 47% of cluster C and 48% of cluster
E). Cluster D also had higher rates of abuse and dependence
on other substances, including alcohol, marijuana, stimulants,
sedatives, tobacco, and other substances. Additionally, cluster
D members were more likely to have major depression and
cocaine-induced paranoia than any other group. Members of
cluster E were users of both cocaine and opioids but were less
likely to use other drugs than were members of cluster D. More
than 95% of cluster E reported that they had made a failed
attempt to quit use of opioids.

Sample characteristics, including cluster assignments, are
presented in table 4. (Detailed information about cluster anal-
ysis procedures and results will be presented in a separate

publication.) We present linkage results here for clusters A and
E only, because they were the largest clusters (1250 informative
families each) and therefore provided reasonable power for
linkage analysis. Exploratory analyses were completed for the
other clusters (data not shown).

The heritability of the natural logarithm of the probability
of group membership was computed using SOLAR,16 with ad-
justment for sex and European American (EA) ethnicity. It
should be noted that, because this sample was ascertained us-
ing an ASP strategy (although for OD and CD diagnosis, not
for cluster membership), heritability estimates are potentially
inflated. Heritability for the log of the probability of cluster
membership for each of the clusters is shown in table 5.

Linkage Analysis

Valid assignment of subjects to populations.—There are
known differences in patterns of use and in substance-depen-
dence risk between AA and EA individuals.17–20 Also, different
populations could contain different important risk loci, and
the contribution of a set of risk loci could vary by population.
It is thus important to evaluate linkage separately by popu-
lation, but self-reported racial background might not always
identify population groups optimally. Therefore, as in our
study of CD, we used a Bayesian model-based clustering
method to assign individuals to populations21 on the basis of
ancestry proportions inferred from genotype data (table 6).
This method is implemented in the program STRUCTURE.
For STRUCTURE runs, we used 100,000 iterations for the
burn-in, with a run length of 100,000. Included in the analyses
were 390 STR markers from the genomewide scan.

Estimation of marker-allele frequencies.—The results of ASP
linkage analysis are sensitive to marker-allele frequencies, es-
pecially when little parental information is available, as for
our sample. In this situation, identity by descent (IBD) must
be estimated on the basis of observed identity by state and
population allele frequencies; population allele frequencies
generally differ between EAs and AAs. If we had analyzed our
sample of AA and EA small families as a single group, inac-
curate IBD estimates would have resulted. Therefore, in all
stratified analyses and in the combined analyses, all linkage
results were obtained using IBD values that were calculated
using the appropriate population allele frequencies.

Inconsistency checking.—Inconsistency checking was ac-
complished (as described elsewhere10) by using PedCheck22 and
Merlin23 to identify Mendelian inconsistencies and probably-
incorrect genotypes on the basis of estimation of the proba-
bility of double-crossover events. We checked for errors in
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Table 6

Cluster Assignment Compared with Self-Described
Ethnicity

SELF-REPORTED

ETHNICITY

CLUSTER

ASSIGNMENT

(%)

AA EA

Native American/American Indian 1.3 .4
Asian .0 .0
Pacific Islander .4 .0
African American/black:

Not of Hispanic origin 90.4 2.4
Of Hispanic origin 3.8 4.9

Caucasian/white:
Not of Hispanic origin .9 68.2
Of Hispanic origin .0 17.9

Other 3.3 6.3
Totala 100.1 100.1

a Percentages add up to 1100 because of rounding.

specified family relationships, using PREST (pedigree relation-
ship statistical test).24 When a potential pedigree error was
detected, ALTERTEST24 was used to determine relationships
compatible with the observed genotype data. After correction,
PREST was run again to confirm that family relationship re-
assignments were consistent with estimated IBD patterns.

Parametric linkage analysis.—We performed parametric
linkage analysis, using the package FASTLINK.25,26 All linkage
analyses were two-point, unless stated otherwise. We tested
four different models: recessive and dominant models with
high (0.75) and low (0.25) penetrances. These values were
chosen in an attempt to limit the number of models while
covering as much of the parameter space as possible. Suscep-
tibility-allele frequency was set at 0.01 for dominant models
and 0.14 for recessive models. The frequency of 0.14 for re-
cessive models corresponds to the 0.01 frequency for dominant
models under the assumption of a constant population prev-
alence—that is, q based on the frequency of cases under a
recessive model ( ) versus a dominant model ( ). Mul-2 2q p � 2pq
tilocus linkage analyses were performed for chromosomal
regions showing genomewide evidence of linkage with indi-
vidual markers or suggestive evidence of linkage with adjacent
markers. These analyses, comprising up to three markers at a
time, were performed using the program MLMAP, a modifi-
cation of the MFMAP program.27 Unlike in MFMAP—in
which several other models of inheritance are tested on the
basis of the initial model—in MLMAP, the model of inheri-
tance is fixed to the one model that gave the optimal two-
point LOD score.

Nonparametric linkage analysis (model free).—We per-
formed a model-free analysis using Genehunter-Plus.28 This
analysis includes affected subjects only, a robust but (especially
with a data set such as ours, which includes many discordant
sib pairs) conservative approach. IBD status was estimated on
the basis of observed identity-by-state status for both popu-
lation subsets (i.e., EAs and AAs) separately, by use of observed
allele frequencies for each group. The data were also analyzed
for the population groups separately, to detect areas of interest

that might be apparent in one subgroup only, and for the
population groups combined, to detect loci where both sub-
groups contribute to linkage. In the combined analysis results,
the IBD files were combined before calculation of the non-
parametric LOD, also called the “Kong and Cox allele-sharing
LOD.”29

Estimation of empirical P values.—Type I error rates for LOD
scores 13 were determined by analyzing 50,000 replicates of
a fully informative simulated unlinked marker in the pedigrees
under the null hypothesis of no linkage by use of the software
SLINK.30–32 The specific set of pedigrees, missing data, and
model parameters for each simulation corresponded to those
used in the actual analyses yielding the significant LOD scores.
Each replicate was analyzed using the program FASTLINK.25,26

The proportion of the replicates with a LOD score exceeding
the observed values from analyses of the actual data was con-
sidered to be an empirical P value.

Results

Population Group Assignment

Using STRUCTURE, we stratified our total data set
of 1,619 individuals in 634 families into 314 AA families
and 320 EA families, with 847 and 772 genotyped sub-
jects, respectively. As noted elsewhere,10 Hispanic fam-
ilies did not cluster into a distinct third population
group; instead, they were allocated into the AA or EA
group. All subjects who reported that they were of white
Hispanic origin clustered in the EA group, whereas sub-
jects who reported that there were of black Hispanic
origin clustered into the AA and EA groups in almost
equal proportions (table 6).

Pedigree information is summarized in table 4. Of
this total set of families ascertained for ASPs with CD
and/or OD, there were 235 families with two or more
members with OD (including a total of 250 informative
full-sib pairs and 46 half-sib pairs; see “Inconsistency
checking” in the “Subjects and Methods” section for
discussion of sibship assignment). By population group,
there were a total of 59 AA and 156 EA families with
two or more members with OD, including a total of 56
AA and 194 EA full-sib pairs and 33 AA and 13 EA
half-sib pairs. (Half-sib pairs are more informative for
linkage analysis than full-sib pairs.33) Thus, although
there were more AA than EA subjects with CD,10 the
OD-affected part of the sample shows a predominance
of EA subjects. In addition, there were 158 families (80
AA and 78 EA) who had one member with OD and an
unaffected sibling. These discordant sib pairs were in-
formative for parametric linkage analysis.

Relationship Assignment

On the basis of the results of PREST, we reclassified
367 individuals; four sibships were reclassified as parent-
child pairs, 123 individuals who were thought to be full
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Table 7

Linkage Results for Cluster Phenotypes

CHROMOSOME

AND LOCATION (cM) TRAIT

ETHNIC

GROUP(S)

PARAMETRIC

ANALYSIS

NONPARAMETRIC

ANALYSIS

Type, Modela LOD Type LOD

Chromosome 3:
177.8 Cluster A AA Two-point, R, HP 2.04 Multipoint 1.69
177.8 Cluster A AA and EA Two-point, R, HP 1.91 Multipoint 2.10

Chromosome 11:
16.7 Cluster A EA Two-point, D, LP 1.69 Multipoint 2.20

Chromosome 17:
75.0 Cluster A EA Two-point, R, LP 3.46 Two-point 1.98
103.5 Cluster E AA and EA Two-point, R, HP 3.06 Two-point 1.88
103.5 Cluster E EA Two-point, R, HP 2.18 Multipoint 1.51
117.8 Cluster E AA and EA Two-point, R, HP .72 Multipoint 2.27

NOTE.—Listed are locations for which parametric linkage analysis reached a LOD score of 1.9 and/
or model-free nonparametric linkage analysis reached a LOD score of 2.2, meeting the criteria for
suggestive linkage evidence proposed by Lander and Kruglyak.35

a D p dominant; HP p high penetrance (0.75); LP p low penetrance (0.25); R p recessive.

sibs were reclassified as half sibs, and 240 individuals
were reclassified as unrelated and were excluded from
the study; these included 38 duplicates and 24 MZ twins.

Linkage Analysis

DSM-IV OD.—The highest LOD score (2.43) for the
trait of DSM-IV–classified OD was obtained from para-
metric analyses (by use of a dominant-inheritance and
high-penetrance [0.75] model) at position 221.1 cM on
chromosome 2 in AAs. Two additional suggestive-link-
age findings were observed for OD: a LOD score of 1.99
at 82 cM on chromosome 5 in AAs, under a dominant
model with low penetrance (0.25), and a LOD score of
1.93 at 9.2 cM on chromosome 6 in EAs, under a re-
cessive model with high penetrance. We also observed a
LOD score of 1.75 on chromosome 16 in EAs, under a
recessive model with high penetrance. Finally, we ob-
served a LOD score of 1.76 on chromosome 17 at 103.5
cM, in the combined (EA and AA) sample, under a re-
cessive model with high penetrance. (Lander and Krug-
lyak35 proposed a LOD score of 1.9 as the value for
“suggestive” linkage.)

Analysis of Clusters.—In analyses of cluster traits, we
observed two LOD scores 13.0, one of which exceeded
3.3 and thus met the level of genomewide significance.
Three other LOD scores were between 1.9 and 3.0 (table
7) and met the level of suggestive linkage.35

Cluster E (heavy-opioid users).—For cluster E, we ob-
served results of interest under both parametric and non-
parametric models, on chromosome 17 (fig. 1). At 103.5
cM, we observed a LOD score of 3.06 for EA and AA
subjects combined, under a recessive, high-penetrance
model. At the same location, nonparametric analysis re-
sulted in a LOD score of 1.88. (Note that this is the
same location where we observed a LOD score of 1.76

for the DSM-IV–classified OD trait under the same
model.) At 117.8 cM, the multipoint parametric LOD
score was 2.27.

Cluster A (non–opioid users).—Interestingly, the high-
est LOD score for this study (3.46) was observed for
cluster A, which included no subjects with OD; however,
most of these subjects were dependent on substances
other than opioids (80% were dependent on cocaine,
58% tobacco, 42% alcohol, and 25% marijuana). For
this trait, we observed a multipoint parametric LOD
score of 2.20 on chromosome 11 at 16.7 cM. On chro-
mosome 17 at 75 cM, we observed a LOD score of 3.46
in EAs under a recessive, low-penetrance model; at the
same location, we observed a nonparametric LOD score
of 1.98.

Computer simulations were used to evaluate empiri-
cally the significance of the two LOD scores 13. The
point empirical P value corresponding to the LOD score
of 3.46 for linkage to cluster A (non–opioid users) in
313 EA families was .00002. The pointwise empirical P
value corresponding to the LOD score of 3.06 for link-
age to cluster E (heavy-opioid users) in EA and AA fam-
ilies combined was .0002.

Discussion

We present evidence, from linkage analyses based on
ASPs assessed because they share OD or CD, that
strongly supports a risk locus for a trait defined by symp-
toms related to heavy opioid use on chromosome 17
(LOD score 3.06; ). At this location, we alsoP p .0002
observed a LOD score of 1.76 for DSM-IV OD. We
identified a putative risk locus elsewhere on chromosome
17 (LOD score 3.46; ) for a trait (cluster A)P p .00002
generally defined by the presence of substance depen-
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Figure 1 Linkage analysis results for chromosome 17 in EA and AA subjects, including subjects with DSM-IV–classified OD (teal bars)
and subjects in cluster A (yellow bars) and cluster E (blue bars and black line) (see main text for cluster characteristics). Results of nonparametric
multipoint analysis and parametric two-point linkage analyses with a recessive, high-penetrance model are shown. Emp. p empirical.

dence other than OD. This may represent a locus that
protects against OD specifically, in the context of gen-
eral substance-dependence susceptibility. This signal is
∼22 cM from a possible linkage observed for conduct-
disorder symptoms in adolescents34 and could plausibly
represent the same underlying locus. However, our ob-
served linkage signal extends distal from the peak (fig.
1), and the conduct-disorder signal is more proximal.
For this cluster, which is not opioid dependent but is
dependent on other drugs, the second highest LOD score
observed was on chromosome 11p, in proximity to a
region where linkage to or association with several
forms of substance dependence—alcohol dependence,36

habitual cigarette smoking,37 and polysubstance depen-
dence38—has been reported. Also, for this same trait, we
observed LOD scores consistent with possible linkage at
177.8 cM on chromosome 3. This location is consistent
with several previous linkage or association reports for
related traits34,36,38 and was also observed in a subset of
this same sample for the trait of CD.10 Further, we ob-
served a LOD score of 2.43 for DSM-IV–classified OD
on chromosome 2 at 221.1 cM (D2S126) in AAs. We
had observed a similar LOD score in the same popu-
lation (AAs) at the same location for a CD-related trait
(“heavy cocaine use, later onset”).10 Thus, some of these

results are consistent with previous reports of linkage to
substance dependence other than OD.

As in our study of cocaine, we detected the statistical-
ly strongest linkage evidence with phenotypes derived
using cluster analysis of opioid-related items on the
SSADDA interview. Our interpretation of this result is
that, by means of cluster analysis, we were able to iden-
tify subgroups of OD-affected individuals with increased
genetic homogeneity, reducing “noise” that might ob-
scure linkage signals. The chromosome 17q results are
consistent with this hypothesis. Interestingly, we ob-
served a LOD score of 1.76 for DSM-IV–classified OD
on chromosome 17 for the EA and AA populations com-
bined, but when we used the cluster E diagnosis defi-
nition (i.e., the cluster characterized by the most-severe
OD symptoms), the evidence for linkage increased by
more than an order of magnitude, to LOD score 3.06.
Genes identified by this method would be expected to
be relatively specific to subjects who meet the definition
of the linked cluster. Such possible linkages might be
more vulnerable to being spurious, because they relied
on subsets of the sample; however, the sample size in-
volved was still reasonably large. Replication in addi-
tional samples or verification by identification of genes
associated with the trait is particularly important for
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these cluster-defined traits. We infer that the cluster strat-
egy actually reduced genetic heterogeneity because (1)
the clusters have less intragroup variation than between-
group variation on the items of interest and, (2) empir-
ically, even in subsets of our sample, we have significant
linkage and association results for the clusters. Our re-
sults support the idea that this is a powerful and useful
refinement for OD diagnosis.

There are, to our knowledge, no previous genomewide
studies of OD, but there have been numerous candidate-
gene studies. The most widely studied candidate gene to
date for OD is the gene encoding the m-opioid receptor,
OPRM1.6,7,39 Elsewhere, we report that variants in each
of the two observed haplotype blocks at this locus are
associated with drug (including opioid) and alcohol de-
pendence.40 This gene maps to 6q24-q25 and is not in
close proximity to any of our strongest linkage signals.

Although the nonparametric analysis results are not
identical to the results from parametric analysis—
because the analyses are based on different algorithms,
and they use different aspects of the family data—in
most cases, the results of the different analyses are con-
sistent. Whereas nonparametric analysis uses informa-
tion from only affected subjects, parametric analysis uses
data from both affected and unaffected subjects, and
thus requires classification of affection. We feel that this
is a very useful classification in the present sample, for
several reasons.10 First, because most affection-status in-
formation in this sample derives from siblings, we as-
sume that environmental exposures (such as exposures
to opioid drugs) are correlated. Second, to the extent
that this was not the case, the lack of exposure should
be at least partially genetically determined. For sib pairs
who share affection status for some form of substance
dependence other than OD, there should be an increased
likelihood that their discordance for OD reflects genetic
factors specific to OD risk, rather than to general sub-
stance-dependence risk.

On the basis of demographic characteristics and opioid-
use histories, the cluster analytic approach yielded phe-
nomenologically distinct OD-related clusters, confirmed
by estimates of the heritability of the trait embodied in
cluster membership. We used this approach for clinical
subtyping in our study of CD.10 In that study and the
present one, because the choice and implementation of
the clustering algorithm as well as data quality and the
stability of the underlying groups can influence the va-
lidity of cluster analysis results, we applied a multistage,
iterative approach to identify cluster membership. This
effectively repeated the clustering to achieve stable
groups. The advantages of the modified strategy are that
the clustering is repeated with several starting points,
and two different methods are used to obtain stable clus-
ters; this should increase the generalizability of the clus-
ter results.

Our analysis involved a parametric approach, in which
we tested dominant and recessive parametric models
with high and low penetrance. Although the issue of
applying multiple models, and then correcting for the
resulting multiple (usually correlated) statistical tests, re-
mains a controversial issue, it is often the case that add-
ing parametric models increases the power to detect link-
age.41 Consistent with the theoretical reasons to test
several models, there is already evidence, specifically in
the context of substance-dependence genetics, that some
loci act to increase risk in a way that presently can be
best explained through a recessive mechanism.42,43 For
our parametric analyses, we tested a limited number of
models. A Bonferroni correction for multiple tests is
clearly too conservative, since these models are not in-
dependent, but our results should still be viewed in the
context of these tests. Major peaks were observed in the
different analyses and in multiple models. In addition,
we considered the EA and AA parts of the sample sep-
arately, but this does not constitute multiple testing in
the conventional sense. First, we could not make the
assumption that we could perform valid analyses on a
combined data set because, as discussed above, the
marker-allele frequencies are different in different pop-
ulations (which could lead to false-negative and false-
positive results). Second, there is no a priori reason to
assume that the risk loci are the same in genetically dif-
ferent populations; for many phenotypes, it has been
shown empirically that they are not.10,44 This difference
underlies part of the theoretical basis of the technique
of admixture mapping.45 The results in EA and AA sub-
samples can be appropriately viewed as reflecting two
separate studies (the results of which sometimes confirm
each other and sometimes do not), although the data
were collected and analyzed concurrently.

Because performing more tests increases type I error,
we used simulations of an unlinked marker to test the
type I error rate directly in the data. Applying this
method, we found that the chance that the reported LOD
score of 3.46 represents a type I error is 1 in 50,000
( ). Consideration of multiple traits and mod-P p .00002
els in different samples introduces a concern about
whether the LOD score results fully account for an in-
creased probability of type I error. This concern is pred-
icated on the assumption that multiple independent tests
were performed. Although assignment of affection status
across the OD cluster traits is mutually exclusive, these
traits are highly correlated with DSM-IV drug-depen-
dence diagnoses and are not independent. Neither are
the parametric models independent; for a given mode of
inheritance, the models in our study differed by only the
penetrance assumption (0.25 vs. 0.75). The parametric
and nonparametric analyses test different null hypoth-
eses and do not require correction for multiple testing.
When one is able to confirm a significant linkage finding



www.ajhg.org The American Journal of Human Genetics Volume 78 May 2006 767

for a trait by analyzing the same trait with different
methods, it clearly makes this finding more robust, not
less. In recognition of the growing awareness that the
definition of multiple testing, as well as the appropriate
corrections to use when the tests are not independent,
are not clear, we addressed this issue by implementing
a point simulation method that enabled us to derive
empirical estimates of significance for any particular
result.

Our approach simulated 50,000 replicates of a fully
informative marker, which is equivalent to simulating
∼167 genome scans based on the assumption of 300
independent marker tests. (The number of independent
tests is difficult to quantify.) Our empirical P value es-
timates are robust, considering that the estimates ob-
tained from a simulation of a genome scan are based on
many markers that are much less informative than the
fully informative ones specified in our simulation. Under
the assumption that there are ∼300 linkage groups and
without correction for the increased information from
the simulated markers (a conservative approach), the
linkage result for non–opioid users has an approximate
genome-based empirical significance of 0.003, and the
result for heavy-opioid users yields a genome-based sig-
nificance of ∼0.03, uncorrected for multiple analytic
models and diagnosis definitions.

This study has several limitations that should be
noted. Foremost among these is the limited statistical
power for mapping a complex trait with a set of 393
informative families (158 of which were informative for
parametric analyses only, because they included only one
affected subject). Because the cluster analyses identified
subgroups of subjects, the samples for those analyses
were smaller, and the need to analyze separately by pop-
ulation group engendered a further loss of power. Fi-
nally, the conformation of the pedigrees—most included
an ASP and an additional sibling or one parent at best—
limited the genetic information because of a lack of di-
rect observation of IBD (as a result of the general lack
of availability of both parents). In practical terms, the
latter limitation is almost impossible to remedy through
collection of both parents, because of the medical and
social consequences of OD in the United States—for ex-
ample, its destructive effects on family relationships, the
subjects’ wish to avoid involving their parents in the
study, and deaths of relatives as a consequence of their
own substance dependence. However, this limitation
could plausibly be addressed directly through study of
OD in other societies in which OD-affected families
might be less fragmented. It could also be addressed
indirectly through an increase in genetic information via
an increase in marker density—for example, by using a
relatively dense panel of SNP markers rather than a mod-
erately dense panel of ∼400 STR markers. The infor-
mation increment is estimated to be close to 75% in

families for which parental genotypes are unavailable
but to be !50% in families for which parental genotype
information is available.46 Evans and Cardon47 also em-
phasized that very dense SNP maps provide the greatest
increment in linkage information when parental geno-
types are unavailable. For example, Schaid et al.48 com-
pared genomewide microsatellite data with SNP data
from the 10K Affymetrix chip in a study of prostate
cancer susceptibility and found that, with the SNP data,
average information content increased from 41% to
61%. This resulted in the discovery of some previously
unseen putative linkage peaks. Since the average family
size for that study (2.8 affected genotyped individuals
per family) is comparable to ours, we would expect a
comparable increase in information from the use of a
denser SNP map. These studies consistently showed
an increase in empirically useful information from the
high-density SNP panel, in the form of more and (some-
times) narrower linkage peaks and greater statistical
significance.

Elucidating the genetic basis of OD could represent
major progress in understanding the etiology of OD and
could contribute to the development of biologically
based treatments for the disorder. Our 10-cM genome-
wide linkage scan identified several genomic regions de-
serving further study that, we conclude, are likely to
contain risk loci for OD or related clinical syndromes.
Further research will be required to identify disease-
influencing loci that map within these genomic regions.
Previous research has demonstrated the possibility of
remarkable success in identifying risk loci for substance-
use disorders on the basis of genetic linkage data—for
example, the GABRA2 gene was identified as a risk-
influencing locus for alcohol dependence,49 a finding that
was replicated,50,51 and the CHRM2 locus was identified
as a risk locus for alcohol dependence and depression,52

a finding that also was replicated.42 We are hopeful that
similar progress can be made in identifying risk-modi-
fying genes for OD.
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