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Report

Coverage and Power in Genomewide Association Studies
Eric Jorgenson and John S. Witte
Department of Epidemiology and Biostatistics and Center for Human Genetics, University of California–San Francisco, San Francisco

The ability of genomewide association studies to decipher genetic traits is driven in part by how well the measured
single-nucleotide polymorphisms “cover” the unmeasured causal variants. Estimates of coverage based on standard
linkage-disequilibrium measures, such as the average maximum squared correlation coefficient (r2), can lead to
inaccurate and inflated estimates of the power of genomewide association studies. In contrast, use of the “cumulative
r2 adjusted power” measure presented here gives more-accurate estimates of power for genomewide association
studies.
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With millions of validated SNPs now available as a result
of the International HapMap Project and other SNP dis-
covery projects, investigators are faced with the decision
of which SNPs to use in genomewide association studies.
One of the most important factors that investigators
must take into account in making this decision is cov-
erage, a measure of how well the genotyped SNPs reflect
all variants in the genome. Coverage is determined by
the degree of linkage disequilibrium (LD) between SNPs
that are in the genotyping set and those that are not.
Genomewide association studies will have little power
in regions of the genome that are not covered and, in
such regions, may fail to find an association when one
truly exists.

Several recent articles described large sets of SNPs
and their coverage, including an article by Hinds et
al.,1 which described a set of 1.6 million SNPs, and a
HapMap study,2 which described 1 million SNPs. To
measure the ability of their 1.6 million SNPs to cover
unobserved SNPs, Hinds et al.1 compared their SNP set
with SNPs from the SeattleSNPs project.3 The Seattle-
SNPs project has generated an effectively complete set
of common (minor-allele frequency ) SNPs[MAF] � 5%
in 1100 genes by studying 24 European Americans and
24 African Americans. By including the same subjects
used in the SeattleSNPs project in the development of
their own SNP set, Hinds et al.1 were able to examine
directly the LD between their set and the effectively com-
plete SeattleSNPs set. They also limited the effect of var-
iation in SNP ascertainment due to sample size by ex-
amining only SNPs with an allele frequency �10%.

Hinds et al.1 presented two metrics of coverage (table
1). The first is a threshold metric—that is, the percentage
of all known SNPs above a given LD (r2) threshold with
measured SNPs:

j

1 2threshold metric p Y p 1Fm 1 r ,� i ij
ip1

where j is the number of all known SNPs and Yi is an
indicator variable that equals 1 if the maximum r2 for
that SNP, mi, is greater than a given r2 value and equals
0 if it is not.

The second metric is the average maximum r2, which
is the average across all SNPs of the highest r2 value
between each known SNP and any measured SNP:

j

1—2average maximum r p m p m . (1)� ij
ip1

For the European Americans studied, 73% of all com-
mon ( ) SNPs had an with at least2MAF 1 10% r 1 0.8
one measured common SNP, and the average maximum
r2 was 0.84. For the African Americans studied, the val-
ues were lower, with 54% of all common SNPs having
an with at least one measured common SNP,2r 1 0.8
and the average maximum r2 was 0.72. These values
demonstrate that the majority of common SNPs in the
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Table 1

Average and Threshold Coverage Metrics from Two
Studies

Study and Sample

SNPs with
Maximum

2r 1 .8
(%)

Average
Maximum

r2

Perlegen:
African American 54 .72
European American 73 .84

HapMap:
Yoruban African 45 .67
CEPH European American 74 .85
Chinese and Japanese 72 .83

NOTE.—The Perlegen study compared Perlegen SNPs
with SeattleSNPs, and the HapMap study compared
HapMap SNPs with ENCODE SNPs.

SeattleSNPs data set are highly correlated with the SNPs
selected by Hinds et al.1

The HapMap study presented a similar analysis—in
this case, it was a simulated comparison of 1 million
HapMap SNPs with data from the ENCODE study in
which 48 subjects were completely resequenced for 10
regions 500 kb in length (table 1). Here, the analysis
examined three groups: one with 16 Yoruban African
subjects, one with 16 CEPH European American sub-
jects, and one with 8 Chinese and 8 Japanese subjects.
By use of the threshold metric of coverage, the2r 1 0.8
HapMap SNPs provided coverage of 45%, 74%, and
72% for the Yoruban African, European American, and
Asian populations, respectively. By use of the average
metric of coverage, the average maximum r2 for Hap-
Map SNPs for the three populations was 0.67, 0.85,
0.83, respectively.

The LD measure r2 is directly related to the sample
size required to detect an unmeasured causal variant by
use of another measured variant. Specifically, sample size
must be increased by a factor of to detect an un-21/r
measured variant, compared with the sample size for
testing the variant itself.4,5 The implicit assumption in
presenting threshold and average r2 metrics of large sets
of SNPs is that studies will have sufficient power in using
these SNP sets if the sample size is increased by the re-
ciprocal of the threshold value or average maximum r2.

The required sample size for a desired level of power
is not, however, a simple function of 1/(threshold r2) or
1/(average maximum r2). The power to detect a causal
variant is a function of sample size, n; the maximum r2

value, m; and all other parameters that affect power
(effect size, disease-allele frequency, etc.), which we de-
note here as y. Thus,

power p 1 � b(n,m,y) ,

where b is the type II error.

Power can be expressed as a function of the effective
sample size, which is the product of the sample size and
the maximum r2 value. The average maximum r2 ad-
justed power is then

—1 � b(n # m,y) ,

where is as given in equation (1).—m
Since there is often a widespread distribution in r2

values, which are both greater and less than the average
or threshold value, the average and threshold r2 metrics
can give inaccurate estimates of the power of a study.
Instead, a metric that correlates more directly with
power uses the cumulative distribution of maximum r2

values—that is, the “cumulative r2 adjusted power,”
which equals

j

1
1 � b(n # m ,y) ,� ij

ip1

where j is the number of potentially causal variants and
mi is the maximum r2 for a given SNP. This is equivalent
to the weighted sum of the power for sample sizes ad-
justed for each r2 threshold. Thus, the cumulative r2 ad-
justed power equals

1

[1 � b(n # m,y)]w ,� m

mp0

where m is the r2 threshold; n is the actual, unadjusted
sample size; is the power for each max-1 � b(n # m,y)
imum r2 value, determined by the adjusted sample size,

; and wm is the percentage of all SNPs with then # m
particular maximum r2 value.

To compare the cumulative r2 adjusted power with the
power expected using the average maximum r2 metric,
we used information from the study by Hinds et al.1

(and from personal communication with D. Hinds) (fig.
1). Tagging SNPs (tSNPs) were chosen using a pairwise
r2-based LD bin method (see the article by Hinds et al.1

for additional details). We used the simple but powerful
model of a population-based case-control study and a
range of allele frequencies (0.01–0.99) and odds ratios
(ORs) (1.2–2.0) under a multiplicative model, with var-
ious a levels (0.05 to 10�8) and a range of sample sizes
from 100 cases and 100 controls to 3,000 cases and
3,000 controls. To look at the effect of varying each
parameter on study power, we chose the initial param-
eter values to be allele frequency 0.3, OR 1.5, a level
10�6, and a sample size of 1,000 cases and 1,000 con-
trols. We then varied each parameter individually, keep-
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Figure 1 Cumulative distribution of maximum r2 values from
the study by Hinds et al.1

Table 2

Sample Size Increases Required for 80% Power
with Average and Cumulative r2 Adjustments

SAMPLE AND SNPS

SAMPLE SIZE INCREASE (%)
FOR 80% POWERa WITH

Average r2

Adjustment
Cumulative r2

Adjustment

European American:
All SNPs 21 41
tSNPs 27 48

African American:
All SNPs 46 134
tSNPs 50 139

a Power for a case-control study with one un-
matched case per control, disease-allele frequency 0.3,
OR 1.5, a level 10�6, and a log additive (multiplica-
tive) model.

ing the other parameters constant. All power calcu-
lations were performed using the software Quanto,6

version 0.5.
Results from our comparisons are given in figure 2.

The greatest differences in estimates between the average
r2 adjusted power and cumulative r2 adjusted power oc-
curred in the range generally required to detect effects
(i.e., ). Looking first at the effect of samplepower 1 80%
size, we found that estimates for the average maximum
r2 adjusted power were similar or slightly less than those
for the cumulative r2 adjusted power when the sample
size was !1,600 subjects (800 cases and 800 controls)
for the European American sample and !1,800 subjects
(900 cases and 900 controls) for the African American
sample (i.e., for low values of power in fig. 2A). For
larger sample sizes (i.e., when power was 150%), the
average metric provided estimates of power that were
inflated relative to the cumulative metric. The greatest
difference between estimates for the European American
group was 12% (98% for average metric vs. 86% for
cumulative metric), which occurred at a sample size of
2,800 subjects. For the African American group, the
greatest difference was 20% (97% vs. 77%), which oc-
curred at a sample size of 3,200 subjects.

In examining a range of ORs, we found that the av-
erage metric provided similar or lower estimates of
power than those from the cumulative metric for ORs
!1.5 (i.e., for low values of power in fig. 2B). For ORs
11.5, the average metric provided inflated estimates of
power, with the greatest difference between the two met-

rics occurring at OR 1.7. Here, the difference between
the average and cumulative metrics was 11% (99% vs.
88%) in European Americans and 21% (96% vs. 75%)
in African Americans.

Allele frequency also had an effect on the difference
between estimates of power from the two metrics (fig.
2C), with the average metric providing inflated estimates
at allele frequencies between 0.3 and 0.7. The greatest
difference in estimates occurred at an allele frequency of
0.5 for both European Americans (9% difference [89%
vs. 80%]) and African Americans (12% difference [76%
vs. 64%]).

In addition, the two metrics differed in their estimates
of power across the range of a levels examined (fig. 2D).
At , the average metric provided an underes-�7a � 10
timate of power, compared with the cumulative metric
estimate. At , the average metric provided an�7a 1 10
inflated estimate of power, with the greatest difference
occurring at for both European Americans�4a p 10
(10% difference [98% vs. 88%]) and African Americans
(17% difference [93% vs. 76%]).

Both the average and cumulative r2 adjustments can
be used to determine the sample size increase required
to achieve the same power as testing variants directly.
Compared with the sample size of a study that has 80%
power to test variants directly, given our baseline pa-
rameters (described above), sample size must be in-
creased 21% for the European American sample and
46% for the African American sample, if tested using
the average maximum r2 metric. If the cumulative ad-
justed r2 metric is used, considerably larger sample size
increases of 41% for the European American sample and
134% for the African American sample will be required
(table 2). In both cases, use of the average maximum r2

metric results in an underestimate of the increase in sam-
ple size required for sufficient power.

The differences in estimated power and required sam-
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Figure 2 Effects of varying parameter values on average and cumulative r2 adjusted power. Plots are based on a case-control study with
1,000 cases and 1,000 unmatched controls, disease-allele frequency 0.3, OR 1.5, a level 10�6, and a log additive (multiplicative) model. For
each plot, power was calculated by varying one parameter while holding the other parameters constant. AA p African American; EA p
European American. A, Sample size is varied from 100 cases and 100 controls to 3,000 cases and 3,000 controls. B, OR is varied from 1.2 to
2.0. C, Disease-allele frequency is varied from 0.01 to 0.99. D, The a level is varied from 10�8 to 0.05.

ple sizes between these coverage metrics are mainly be-
cause of the percentage of SNPs that are in low LD with
the SNPs in the genotyping set. An example of this can
be seen in figure 2A, in which large increases in sample
size provide nearly complete power for the average met-
ric but not for the cumulative metric. The difference is
more pronounced in the African American sample,
which has a higher density of SNPs with low values of
maximum r2 than does the European American sample.
This also drives the differences in estimated power be-

tween the European American and African American
groups in terms of the percentage of SNPs having a max-
imum with a genotyped SNP (14% and 29%,2r ! 0.5
respectively).

To illustrate this point, we examined the increase in
power for various levels of r2 when the sample size is
increased by 25% and 100% (table 3). Increasing the
sample size by 25% led to increases in power of slightly
greater than 0.2 for variants with maximum r2 values
in the range of 0.6–0.8. When the sample size was in-
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Table 3

Effects of Sample Size Increases
on Power for Various Values of r2

r2

POWERa

FOR

INITIAL

SAMPLE

POWERa FOR

SAMPLE SIZE

INCREASE OF

25% 100%

.1 .00 .00 .01

.2 .01 .02 .11

.3 .04 .09 .33

.4 .11 .21 .60

.5 .20 .37 .80

.6 .33 .55 .92

.7 .47 .70 .97

.8 .60 .81 .99

.9 .72 .89 1.00
1 .80 .94 1.00

a Power for a case-control study
with one unmatched case per con-
trol, disease-allele frequency 0.3,
OR 1.5, a level 10�6, and a log ad-
ditive (multiplicative) model.

creased by 100%, the largest increases in power occurred
for variants with maximum r2 values in the range of 0.4–
0.7. In either case, the increase in power for variants
with maximum was considerably less than for2r ! 0.3
variants with maximum .2r � 0.3

In addition to the use of the cumulative distribution,
a gold standard measure of coverage for a large SNP set
must be determined by comparing that set with one or
more SNP sets that are ascertained by full resequencing
of genomic regions, such as the SeattleSNPs3 and EN-
CODE7 SNPs. Although both of these projects examined
48 subjects, they used different sampling methods, which
could lead to different estimates of coverage. SNP sets
that are used to test coverage must examine a sufficient
number of chromosomes to fully ascertain SNPs of a
given frequency.8 Examining coverage within a SNP set
rather than against a comprehensive register of SNPs
can overstate coverage because of the structure of LD—
in particular, the presence of LD holes—in the human
genome.9,10

Finally, any gold standard measure of coverage should
also be determined using a population similar to the
one used in the genomewide association study. The fre-
quency of copy-number polymorphisms can vary by
population,11 as can undetected variation in primer se-
quences, leading to unforeseen genotyping errors and a
further reduction in power. In addition, variation in LD
patterns between populations can lead to inaccurate as-

sumptions about coverage. For example, with the use of
the Hinds et al.1 SNP set, a study with a sample size
large enough to provide an adjusted power of 80% for
the European American sample would provide an ad-
justed power of only 65% for the African American
sample (fig. 2). Ignoring the appropriate metric can lead
to overestimates of power and a larger number of false-
negative results than expected.
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Web Resources
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