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REPORT

Double Inactivation of NF1 in Tibial Pseudarthrosis
David A. Stevenson, Holly Zhou, Shadi Ashrafi, Ludwine M. Messiaen, John C. Carey,
Jacques L. D’Astous, Stephen D. Santora, and David H. Viskochil

Osseous abnormalities, including long-bone dysplasia with pseudarthrosis (PA), are associated with neurofibromatosis
type 1 (NF1). Prospectively acquired tissue from the PA site of two individuals with NF1 was used for immunohistochemical
characterization and genotype analysis of the NF1 locus. Typical immunohistochemical features of neurofibroma were
not observed. Genotype analysis of PA tissue with use of four genetic markers (D17S1863, GXALU, IN38, and 3NF1-1)
spanning the NF1 locus demonstrated loss of heterozygosity. These results are the first to document double inactivation
of NF1 in PA tissue and suggest that the neurofibromin-Ras signal transduction pathway is involved in this bone dysplasia
in NF1.
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Neurofibromatosis type 1 (NF1 [MIM �162200]) is a com-
mon autosomal dominant genetic disorder that affects 1
in 3,500 individuals worldwide. It is a genetic condition
with a high degree of variability of clinical expression,
although it is fully penetrant in adults. The primary skel-
etal abnormalities associated with NF1, reported in 38%
of patients,1 include long-bone dysplasia, sphenoid-wing
dysplasia, and scoliosis. Long-bone dysplasia, seen in 5%
of patients with NF1,2,3 typically involves the tibia and
frequently presents with anterolateral bowing that may
progress to fracture and nonunion. Tibial dysplasia is most
often unilateral, evident in the first year of life, and usually
not associated with a neurofibroma.4

The biologic basis, pathogenesis, and molecular causes
of pseudarthrosis (PA) and tibial dysplasia are not known.
The unilateral nature of tibial dysplasia implicates a ran-
dom molecular event, which then predisposes the abnor-
mal bone to a progressive sequence of bowing, followed
by fracture and subsequent poor healing that may be in-
herent in the bone itself. In neurofibromas, there is bial-
lelic inactivation of NF1; however, studies that examine
alterations in the neurofibromin-Ras signal transduction
pathway in the osseous dysplasias of NF1 have not been
conducted elsewhere.

We evaluated two unrelated individuals with NF1 who
had long-bone dysplasia and PA. Patient 1 is a 42-year-old
man with a significant family history: a father with NF1
and a brother with NF1 and lower-extremity PA (status
postamputation). Clinical findings included 110 café-au-
lait macules, axillary freckling, multiple cutaneous and sub-
cutaneous neurofibromas, tibial PA, and mild lumbar sco-
liosis. Anterolateral bowing of the right lower extremity
presented at birth. He fractured his right tibia at age 1 year
and underwent a tibia-fibula syndesmosis, and union was
achieved. At age 41 years, he fractured his right tibia while

attempting to sit down. Radiographs taken 8 mo later
showed PA between the middle and distal third of the
tibia, with prominent anterior bowing in the setting of
severe osteopenia. Surgical intervention was attempted
with a resection of the right tibial PA, tibial osteotomy
with realignment and internal fixation with plating, and
iliac-crest bone grafting. There was a great deal of scarring
and neovascularity, with several centimeters of very poor
bone. The synostosis of the tibia and fibula was osteotom-
ized together, with removal of a couple of centimeters of
bone. Because of the procurvatum deformity, a realignment
osteotomy was done secondarily, which revealed healthy
bone on either end of the PA tissue. The specimens con-
sisted of multiple coarse, irregular portions of cortical and
cancellous bone, in aggregate, measuring 6.0 # 5.0 # 1.8
cm. At 2 mo and 4 mo after surgery, the PA site was not
completely healed, but partial healing was noted at 6 mo
postsurgery (fig. 1).

Patient 2 is a 2-year-old boy whose tibial and fibular
bowing presented at birth, with subsequent fibular frac-
ture at age 2 wk. Clinical findings consistent with NF1
include more than five café-au-lait macules and tibial PA
(fig. 2). Family history was significant: a mother with NF1.
Radiographs taken at age 4 mo confirmed tibial and fibular
PA, and a brace was applied. Just before surgical interven-
tion, radiographs showed tibial and fibular PA, without
callus formation, with 64� of anterior angulation (fig. 3).
At age 2 years and 3 mo, the boy underwent left tibial and
fibular PA take-down, with open reduction and internal
fixation and autogenous as well as demineralized bone
matrix grafting. The tibial PA was resected en bloc to bleed-
ing bone ends proximally and distally (fig. 4). The fibular
PA was also resected in a similar fashion. Williams rodding
of the left tibia and fibula was performed, with left iliac
crest bone grafting supplemented with demineralized bone
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Figure 1. Lower extremity of patient 1

Figure 2. Lower extremity of patient 2

matrix. Radiographs 3 mo after surgery showed callus for-
mation around the PA site, with overall diminished bone
density.

Informed consent was obtained from the study subjects,
and the study was approved by the Institutional Review
Board at the University of Utah. Tissue from the PA site
was obtained prospectively from patient 2 during surgery
and was obtained retrospectively from paraffin blocks for
patient 1. Both tissues were evaluated for immunohisto-
chemical characterization (fig. 5) and genotype analysis
of the NF1 locus.

Well-defined antibody stains were used for routine im-
munohistochemistry. Samples from both patients demon-
strated lack of S100 staining, a marker of Schwann cells
typically seen in neurofibromas. In both patients, the PA
tissues were composed of cellular soft tissue between bone
ends of the fracture gaps and lacked a bony callus seen in
normal fracture healing. In patient 1, the cellular tissue
was associated with granulation tissue, fibrocartilage, and
hyaline cartilage with minimal endochondral ossification.
Samples from patient 2 showed lamellar and woven bone
with “fibrosis” and osteoclastic giant cells and focal fibro-
cartilage. The periosteum was markedly thickened with
rare foci of reactive bone. No endochondral ossification
was observed. Cellular tissue adjacent to bone did not have
a distinctive appearance, and typical features of neurofi-
broma were not observed.

The histologically distinct, hypercellular portions of
surgically resected PA tissue from patient 1 were identi-
fied using formalin-fixed, paraffin-embedded serial sec-

tions stained with hemotoxylin and eosin. Additional se-
rial, unstained sections were microdissected, and DNA was
isolated for genome amplification5 before specific ampli-
fication of the NF1 locus by PCR. For patient 2, DNA was
extracted from fresh-frozen PA tissue by use of standard
protocols. Constitutional DNA from white blood cells was
used for comparison with tissue DNA, to assess allelic im-
balance of the NF1 locus.

Amplified products were subjected to genotype analysis
with use of four genetic markers (D17S1863, GXALU, IN38,
and 3NF1-1) spanning the NF1 locus, to detect allelic im-
balance and loss of heterozygosity (LOH). D17S1863 and



www.ajhg.org The American Journal of Human Genetics Volume 79 July 2006 145

Figure 3. Radiographs of patient 2 showing tibial and fibular
bowing, with nonunion of fracture.

Figure 4. Intraoperative images of PA site of patient 2. A, PA
site prior to resection. B, Operative site after resection of tibial
PA.

3NF1-1 are extragenic markers flanking the NF1 locus
(UCSC Genome Browser; May 2004 assembly). Marker
3NF1-1 is a dinucleotide-repeat polymorphic marker (∼218
kb 3′ of NF1) with a product size of 245 bp (forward primer:
CTTCCATGGCTGCTAACATC; reverse primer: CCCTGT-
GGTGTAGTTCAACA).6 GXALU is an intragenic STR poly-
morphism (AAAT)n in intron 27b.7 IN38 is an intragenic
STR polymorphism (CA)n in intron 38.8 This methodology
has been used extensively to identify LOH at the NF1 locus
in NF1-related tumor tissue.9,10 After PCR, the PCR product
was run on the Applied Biosystems 3130xl Genetic Ana-
lyzer with Applied Biosystems POP-7 Polymer, 36-cm cap-
illary, and GeneScan500 LIZ size standard. The data were
analyzed and scored using Applied Biosystems GeneMap-
per software (Applied Biosystems). Genotype analysis of
the amplified DNA products from the histologically dis-
tinct, hypercellular portions of surgically resected PA tis-
sue showed clear LOH at D17S1863, GXALU, and 3NF1-1
in patient 1 and showed D17S1863, IN38, and 3NF1-1 in
patient 2 (IN38 was noninformative in patient 1, and
GXALU was noninformative in patient 2). This was con-
firmed on separate analysis. Comparison of allele ratios of
PCR products of the informative genetic loci from both
blood and tissue is shown in figures 6 and 7.

Peripheral blood was collected from both patients for
constitutional mutation analysis with use of protocols pub-
lished elsewhere.11 The constitutional NF1 gene mutation
from peripheral lymphocytes was identified as a nonsense
mutation in exon 16 (c.2446CrT; p.R816X) in patient
1 and as a nonsense mutation in exon 45 (c.7846CrT;
p.R2616X) in patient 2 (fig. 8). The mutant allele was
retained in the PA tissue in patient 2, which documents

double inactivation of NF1. We were unable to identify
which allele was retained in patient 1 because of limited
and poor-quality DNA extracted from the paraffin-em-
bedded sample of the PA tissue.

To our knowledge, this is the first documentation of
double inactivation of NF1 in PA tissue. These results sug-
gest that rare double inactivation of NF1 by somatic mu-
tation of the NF1 gene, in a population of cells that depend
on appropriate neurofibromin-regulated Ras signaling to
maintain normal bone, contributes to the development
or progression of PA in NF1. Still, the role neurofibromin
plays in the growth and development of bone is poorly
understood. Neurofibromin, the NF1 gene product, has
“tumor suppressor” activities through its interactions with
Ras and may converge with other biochemical pathways
that involve bone, such as bone morphogenetic protein-
signal transduction.

Previous histological evaluations of bone and the sur-
rounding tissue have failed to determine the pathogenesis
of PA.12–16 The primary histologic finding was the presence
of abnormal, highly cellular, fibromatosis-like tissue, com-
monly associated with a thickened periosteum surround-
ing the PA site. Most investigators concluded that there
was no evidence of an intraosseous or periosteal neuro-
fibroma, and comparison between those with and without
NF1 did not identify histological differences.

In our immunohistochemical study, the cellular tissues
were negative for S100, a marker for Schwann cells that
is invariably seen in benign neurofibroma tissue, which
supports the general consensus that neurofibromas rarely
occur at the site of PA. The lack of association of neuro-
fibromas with long-bone dysplasia and PA in this and pre-
vious reports suggests that intrinsic bone pathology, caused
by loss of a functional NF1 gene and aberrant Ras signal-
ing, may play a primary role in the skeletal abnormalities
in NF1.
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Figure 5. Area where DNA was extracted for genotyping. A, In
patient 1, hematoxylin and eosin stain of a paraffin-embedded
section from a tibial PA specimen. B, In patient 2, hematoxylin
and eosin stain of a paraffin-embedded section from a tibial PA
specimen.

Figure 6. Allele imbalance genotype analysis of blood DNA and
tissue DNA for patient 1, with use of three genetic markers. A,
D17S1863, which lies centrometric of the NF1 locus. B, GXALU,
intragenic marker (STR in intron 27b). C, 3NF1-1, which lies just
telomeric of the NF1 locus.

Several recent studies of animal models have provided
evidence that NF1 plays an important role in regulating
osteoprogenitors and the composition of the bone ma-
trix during ossification. In heterozygous Nf1�/� mice, Nf1
haploinsufficiency deregulated Ras signaling in bone mar-
row–inducible osteoprogenitors, induced premature os-
teoblast apoptosis, and altered osteoprogenitor cell pro-
liferation and differentiation.17 Phosphorylated p42/p44
MAP kinases (MAPKs) were found to be elevated in hy-
pertrophic chondrocytes of Nf1�/� rodent embryos.18 In a
study of fracture healing of mouse tibia and experimental
PA in rat,19 NF1 gene expression was present in maturing
and hypertrophic cartilage in both models. In the same
study, phosphorylated p44/42 MAPK was detected in a
subpopulation of the hypertrophic chondrocytes. Kuori-
lehto et al.19 concluded that NF1 gene expression and neu-
rofibromin activity are needed for normal fracture heal-
ing, possibly by restraining excessive Ras-MAPK pathway
activation.

In normal fracture healing, bony callus develops with
new bone formation through membranous (periosteal) and
endochondral ossification. The participating osteoblasts
originate from proliferation and differentiation of osteo-
progenitors in multipotential mesenchymal cells of the

periosteum and marrow stroma cells. Loss of NF1 func-
tion with subsequent Ras deregulation in NF1 may lead
to altered osteoblastic/osteoprogenitor differentiation and
proliferation, impaired bony callus formation, and over-
growth of cellular tissue due to preferred fibroblast/myofi-
broblast differentiation of multipotential mesenchymal
cells in stroma and periosteal cells. Further studies on pro-
spectively obtained PA tissue will help confirm these find-
ings and support future treatment protocols that could be
focused on local diminution of aberrant Ras signaling.
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