
J Physiol 567.2 (2005) pp 401–413 401

Neuropeptide and calcium-binding protein gene
expression profiles predict neuronal anatomical
type in the juvenile rat
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Neocortical neurones can be classified according to several independent criteria: morphological,
physiological, and molecular expression (neuropeptides (NPs) and/or calcium-binding proteins
(CaBPs)). While it has been suggested that particular NPs and CaBPs characterize certain
anatomical subtypes of neurones, there is also considerable overlap in their expression, and
little is known about simultaneous expression of multiple NPs and CaBPs in morphologically
characterized neocortical neurones. Here we determined the gene expression profiles of calbindin
(CB), parvalbumin (PV), calretinin (CR), neuropeptide Y (NPY), vasoactive intestinal peptide
(VIP), somatostatin (SOM) and cholecystokinin (CCK) in 268 morphologically identified
neurones located in layers 2–6 in the juvenile rat somatosensory neocortex. We used patch-clamp
electrodes to label neurones with biocytin and harvest the cytoplasm to perform single-cell
RT-multiplex PCR. Quality threshold clustering, an unsupervised algorithm that clustered
neurones according to their entire profile of expressed genes, revealed seven distinct clusters.
Surprisingly, each cluster preferentially contained one anatomical class. Artificial neural
networks using softmax regression predicted anatomical types at nearly optimal statistical
levels. Classification tree-splitting (CART), a simple binary neuropeptide decision tree algorithm,
revealed the manner in which expression of the multiple mRNAs relates to different anatomical
classes. Pruning the CART tree revealed the key predictors of anatomical class (in order of
importance: SOM, PV, VIP, and NPY). We reveal here, for the first time, a strong relationship
between specific combinations of NP and CaBP gene expressions and the anatomical class of
neocortical neurones.
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The neocortex is a highly complex structure composed of
a vast number of neurones displaying a variety of different
electrical, morphological and biochemical properties.
Classification according to these different properties is
essential to understand the specific contribution of each
cell type in neocortical computation. Morphology is
particularly important in defining function because the
shape of the dendritic arbor determines from which
parts of the microcircuit (layers and columns) the
neurone receives information, and the shape of the
axonal arbor determines the sphere of influence of
the neurone. Neocortical neurones are classified into two
broad morphological categories: pyramidal cells (PCs)
(∼80% of the neurones in the neocortex) and inter-
neurones (INs) (whose axonal arborization is typically
restricted to the neocortex and does not usually project

into the white matter (Peters, 1984; White, 1989;
Somogyi et al. 1998)). While PCs are relatively homo-
geneous in their morphology, INs differ markedly in
their morphologies (Peters, 1984). Most types of inter-
neurones may display various soma shapes and dendritic
morphologies, but each type characteristically displays
unique features in its axonal structure. Details of the
axonal arborization (White, 1989), as well as the pre-
ferential placement of synapses onto different target-cell
domains (Somogyi, 1989; Somogyi et al. 1998), have
therefore provided the foundation for classifying inter-
neurones into: interneurones that preferentially target
somata and proximal dendrites (large basket cells
(LBCs), small basket cells (SBCs), nest basket cells
(NBCs)); interneurones that preferentially target dendrites
(double bouquet cells (DBCs), bipolar cells (BPCs),
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neurogliaform cells (NGFCs), bitufted cells (BTCs)); inter-
neurones that preferentially target dendrites and dendritic
tufts (Martinotti cells (MCs) and Cajal–Retzius cells
(CRCs)) and interneurones that preferentially target axons
(chandelier cells (ChCs)) (Marin-Padilla, 1969; Somogyi,
1977; Fairen & Valverde, 1980; for review see Fairen et al.
1984; DeFelipe, 1997; Somogyi et al. 1998; DeFelipe, 2002;
Toledo-Rodriguez et al. 2002; Markram et al. 2004).

Biochemical markers can expose different types of inter-
neurones and may also indicate the potential function
of different INs in the microcircuit. For example,
calcium-binding proteins (CaBPs) may differ in their
Ca2+-buffering properties and therefore also in their
influence on intracellular Ca2+ dynamics. Neuropeptides
(NPs) are cotransmitters that modulate the active state of
the surrounding neurones, and their mode of action is
much slower and more widely spread than the classical
neurotransmitters such as GABA and glutamate. One may
therefore expect some relationship between the expression
of NPs and CaBP and the different anatomical classes of
interneurones.

The most commonly studied CaBPs are calbindin (CB),
parvalbumin (PV), and calretinin (CR), and the most
commonly studied NPs are neuropeptide Y (NPY), vaso-
active intestinal peptide (VIP), somatostatin (SOM), and
cholecystokinin (CCK) (Cauli et al. 1997; DeFelipe, 1997;
Kawaguchi & Kubota, 1997; Wang et al. 2002). The
expression of these proteins has been studied at the mRNA
level using in situ hybridization and single-cell RT-PCR,
and at the protein level using immunohistochemistry.
While these proteins can be detected throughout the
neocortex (Hendry et al. 1984; Baimbridge et al. 1992;
DeFelipe, 1993), single neurones specifically (co)express
only subsets of CaBPs and NPs (Demeulemeester et al.
1991; DeFelipe, 1997; Gonchar & Burkhalter, 1997;
Kawaguchi & Kubota, 1997; Hof et al. 1999; Markram
et al. 2004). Numerous attempts have been made to
classify neurones according to their expression of CaBP and
NP, and its correlation with neuronal anatomical types.
Nevertheless, the considerable overlap in expression in
different anatomical types of neurones has resulted in only
very rough separation of neuronal types, and in many cases
has introduced considerable confusion and serious errors
in analysis. For example, even the commonly accepted rule
that PV expression typifies basket cells (or ‘fast-spiking’
cells) turns out to be correct only about half the time (Wang
et al. 2002).

One possible solution to this apparently intractable
problem is to study the simultaneous coexpression
patterns of multiple CaBPs and NPs in a large number
of morphologically characterized single neurones, using
statistical tools. A few studies attempted to characterize
the expression of two or more CaBPs or NPs in
morphologically characterized neurones (Kawaguchi &
Kubota, 1998; Porter et al. 1998) using immuno-

histochemistry, but this remains a low-throughput
technique that permits simultaneous study of at most four
proteins (meaningful correlation analyses would require
tremendous numbers of morphologically identified
cells).

To address this problem, we performed single-cell
multiplex RT-PCR on 268 neurones, which were intra-
cellularly stained to reveal their anatomical class, and
from which we determined the expression profile of
seven key genes (those encoding CB, PV, CR, NPY, VIP
SOM, and CCK) and the house-keeping gene, GAPDH
(encoding glyceraldehyde-3-phosphate dehydrogenase).
Using a combination of classical correlation analysis,
clustering, regression, and decision tree analyses, we found
that while the expression of no single gene can isolate
any one anatomical class, profiles of expression can
predict anatomical type with a high degree of accuracy.
These results suggest a strong link between the expression
of specific combinations of NPs and CaBPs and the
anatomical class of neurones.

Methods

All experimental procedures were carried out according
to the Swiss federation guidelines for animal experiments.
Wistar rats (13–16 days old) were rapidly decapitated and
neocortical slices (sagittal; 300 mm thick) were sectioned
on a vibratome (DSK, Microslicer, Japan) filled with iced
extracellular solution (mm): 125 NaCl, 2.5 KCl, 25 glucose,
25 NaHCO3, 1.25 NaH2PO4, 2 CaCl2, and 1 MgCl2.
Neurones were identified using IR-DIC microscopy as
previously described (Stuart et al. 1993). Somatic
whole-cell recordings (pipette resistance-3 m�) were
employed for labelling the neurones and harvesting their
cytoplasmic contents. Pipettes were filled with RNAse-free
intracellular solution, containing (mm) 100 potassium
gluconate, 20 KCl, 4 ATP-Mg, 10 phosphocreatine, 0.3
GTP, 10 Hepes (pH 7.3, 310 mosmol l−1, adjusted with
sucrose) and 0.5% biocytin (Sigma). The intracellular
solution was prepared under RNAase free conditions:
water was autoclaved; glassware and pH meter were
cleaned with NaOH (10 N) and chemicals were opened
from the first time using gloves and RNAase-free tools.
After preparation, the intracellular solution was tested
for RNAase contamination. Neurones were filled with
biocytin by diffusion during 30–90 min recordings.

Histology and reconstruction

After recording, slices were fixed 0.1 m phosphate
buffer (PB, pH 7.4) containing 2% paraformaldehyde,
1% glutaraldehyde and 0.3% saturated picric acid.
Endogenous peroxidases were blocked with 3%
H2O2-PB. Thereafter slices were incubated in biotinylated
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horseradish peroxidase conjugated to avidin according
to the manufacturer’s protocol (ABC-Elite, Vector
Laboratories, Petersborough, UK) 2% A, 2% B and
1% Triton X100, developed with diaminobenzidine
(DAB, 0.14%) under visual control, until all processes
of the cells appeared clearly visible, and mounted in
aqueous mounting medium (IMMCO Diagnostics, Inc).
3D neurone models were reconstructed from selected
neurones using the Neurolucida system (MicroBrightField
Inc., USA) and a bright-field light microscope (Olympus,
Duesseldorf, Germany). After the staining procedure,
there was ∼25% shrinkage of the slice thickness and
∼10% anisotropic shrinkage along the x and y axes. Only
shrinkage of thickness was corrected.

Subjective criteria for anatomical type classification

Stained neurones were classified according to the following
criteria for subjective anatomical type classification (for
review see Fairen et al. 1984; DeFelipe, 1997, 2002;
Somogyi et al. 1998; Toledo-Rodriguez et al. 2002;
Markram et al. 2004). PC: pyramidal shaped somata;
apical dendrite (vertically orientated dendrite emerging
from the apex of somata, usually reaching layer 1 and
forming a terminal tuft); several horizontally radiating
basal dendrites; spiny dendrites; axon emerging from the
bottom of the somata, descending towards the white
matter. Basket cells: preferentially target the somata and
proximal dendrites of pyramidal neurones and inter-
neurones. There are three subclasses of basket cells: LBC
(the classic basket cells), NBC and SBC. LBC: multipolar
or bitufted dendrites, sparse cluster of axonal collateral;
long-range horizontal axonal collaterals; small side axonal
branches; some vertically long axonal collaterals; low
bouton density. NBC: multipolar, simple dendritic arbor
with few short and infrequently branching dendrites;
sparse to dense local axonal cluster; infrequent, long axonal
branches; low bouton density. SBC: multipolar or bitufted
dendrites; dense local axonal cluster; frequent, short, and
curvy axonal branches; high bouton density; occasional a
few far-reaching axonal collaterals. BPC: small ovoid or
spindle somata; bipolar dendrites, narrow long dendritic
tree; sometimes dendritic tuft in layer 1; axon emerges
from a primary dendrite; simple, narrow axonal plexus;
low bouton density. DBC: preferentially located in supra-
granular layers; ovoid or spindle shaped somata; bitufted
or multipolar dendrites; narrow columnar axonal bundle-
‘horsetail like’(mainly descending); high bouton density.
BTC: bitufted dendrites; long, vertically orientated axonal
collaterals, mostly intracolumnar; axon mainly branch
in a bifurcating manner; low bouton density. MC: long
horizontal axonal collaterals or fan-like ramification in
layer 1; spiny-like axons; bitufted or multipolar dendrites;
sparsely to medium spiny dendrites.

Single-cell RT-multiplex-PCR

At the end of the recording, cell cytoplasm was aspirated
into the recording pipette under visual control, by applying
gentle negative pressure. Only cells in which the seal was
intact throughout the recording, and whose nucleus was
not harvested, were further processed. The electrode was
then withdrawn from the cell to form an outside-out
patch that prevented contamination as the pipette was
removed. The tip of the pipette was broken and the
contents of the pipette expelled into a test tube by applying
positive pressure. mRNA was reverse transcribed using an
oligo-dT primer (25 ng µl−1) and 100 U MMLV reverse
transcriptase (Gibco, BRL) in a final volume of 20 µl.
After 50 min incubation at 42◦C, the cDNA was frozen
and stored at −20◦C before further processing.

Multiplex PCR was carried out as described in Cauli
et al. (1997) and Wang et al. (2002). Briefly the first
amplification round consisted of 10 min hot start at 95◦C
followed by 25 cycles (94◦C for 40 s, 56◦C for 40 s and
72◦C for 1 min). The first PCR mix contained RT product,
100 nm of each of the primers, 200 µm of each dNTP
(Promega), 1 m Betaine (Sigma) and 5 U HotStarTaq
DNA Polymerase (Qiagen, Hilden, Germany) in a final
volume of 100 µl. A second round of PCR consisted of 40
cycles (94◦C for 40 s, 56◦C for 40 s and 72◦C for 1 min)
was performed. In this case, each gene was individually
amplified in a separate test tube containing: 1 µm of its
specific primers, 2 µl of the first PCR product (template),
200 µm of each dNTP, 1 m Betaine and 1 U of TaqZol DNA
Polymerase (Tal-Ron Ltd, Israel), in a final volume of 20 µl.
The products of the second PCR were analysed in 1.5%
agarose gels using ethidium bromide. Primers for CB, PV,
CR, NPY, VIP, SOM and CCK amplification are described
in Cauli et al. (1997) and for GADPH in Aranda-Abreu
et al. (1999). For each PCR amplification, controls for
contaminating artifacts were performed using sterile water
instead of cDNA. A control for non-specific harvesting of
surrounding tissue components was randomly employed
by advancing pipettes into the slice and retrieving without
seal formation and suction. Both types of controls gave
negative results throughout the study. Amplification of
genomic DNA was avoided by the intron-overspanning
location of many of the primers, and by never harvesting
the cell nucleus. For 31 neurones where CB expression was
found in a negative control, we designated its expression
as ‘missing’; we then imputed these values according
to a random-number generator with the same overall
probability of expression as found in the non-missing
subset of cells. Although this introduced increased variance
into CB-specific correlations, its mean correlations were
unaffected; importantly, we were then able to retain
predictive power attributable to the other CaBPs and NPs
accurately measured in these 31 cells.
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Statistical analysis

Exploratory correlations. We performed Pearson
correlation among pairs of genes coexpressed across all
cells, and among pairs of cells based on their expression
profiles of the seven genes. For each cell, the detected
expression of a gene was coded as ONE (there was a band
at the right molecular weight in the agarose gel) and the
absence as ZERO (there was no band in the agarose gel).
For correlations among pairs of genes, we performed the
28 pairwise correlations without respect to cell identity
or anatomical type, and tested these correlations for
statistical significance using the Bonferroni adjustment
for multiple comparisons. For correlations among pairs
of cells, we computed only the correlations, but did not
attempt to evaluate for statistical significance because
of the large number of correlations (over 30 000).
For the latter, nearest-neighbour pairwise clustering
(using Pearson correlation as the distance measure) was
performed using the method of Ward (1963).

Bayes-optimal classification. Among the 286 cells
studied, there were replicate gene profiles with conflicting
anatomical class assignments. Assuming the sample is
representative of future data to be collected, the most
fair way to assign a ‘true’ class is to label it by the
most prevalent cell population among the replicates.
Bayes-optimal accuracy less than 100% thereby reflects
potential limitations in the discriminating information,
not necessarily the classifier. For example, addition
of genes to the analysed set could potentially allow
the classification techniques to demonstrate higher
absolute accuracies. Thus, to fairly compare the statistical
performance of different classifiers, it is the percentage of
Bayes-optimal that provides a ‘level playing field’. This is
also very important from the neuroscience perspective,
because further research using gene-profile methods (e.g.
developing rapid gene-testing tools for bench usage),
and application of the given classifier, is more likely to
be pursued if there is the potential for high accuracy
(e.g. as reported below, of 85% Bayes-optimal rather
than 57% raw accuracy using the classification tree
approach).

Unsupervised classification. The quality threshold
clustering (QTC) coexpression algorithm (as proposed by
Heyer et al. (1999) and distributed in The Institute for
Genomics Research Multi-experiment Viewer (Saeed et al.
2003)) was developed specifically for aggregating gene
expression patterns; unlike most clustering algorithms,
QTC does not require the user to specify in advance
the number of clusters to be considered. In brief, the
QTC algorithm attempts to grow clusters starting from
a randomly selected first cell, iteratively adding the next
most correlated cell (based on its gene profile). When

the QTC score of similarity (the ‘diameter parameter’)
is exceeded, a new cluster is created; the process is
repeated until the largest remaining candidate cluster has
fewer than the user-specified number of cells (grouped
as ‘unclassified’). Every cell is considered as a starting
candidate for the QTC procedure to determine the final
number of clusters and cell assignment to each cluster.
We tested the stability of QTC by varying the diameter
setting. Diameters of 0.7 or greater led to three or fewer
clusters which could therefore not be used to discriminate
among cell types, and values from 0.2 to 0.4 led to a large
numbers (> 15) of clusters as the algorithm attempted to
make pure single- and pairwise-gene groups. A diameter
of 0.5 (7 clusters and a shorter ‘unassigned’ list) provided
robust results. Next we labelled each cluster using the
following rule: name a given cluster according to the
predominant anatomical type contained within each
cluster, then apply a winner-take-all rule for evaluating
the accuracy of the unsupervised classification.

Supervised classification. We used artificial neural
network (ANN) regression (which optimizes the weights
multiplying binary indicators of the presence or absence
of neuropeptide expression) and the CART classification
tree algorithm (which recursively splits data according to
the values of the gene expression profiles).

ANN regression. For the ANN regression approach, we
used the NevProp artificial neural network (Goodman &
Harrell, 1998) with softmax logistic output units (Hastie
et al. 2001) (which forces probabilities to add up to
one using maximum likelihood optimization). The ANN
modelling procedure is described in detail in Burke
et al. (1996). In brief, the ANN consisted of three main
layers. The first layer, an input layer, corresponded to the
independent variables (gene expression profiles). The third
layer, the output layer, corresponded to the dependent
variable probabilities (anatomical class). An intermediate,
‘hidden’, layer was connected in all possible combinations
to the input and output layers, to allow for the combined
influence of multiple gene coexpression on the output class
(analogous to testing all possible interactions in a linear
regression model, but without introducing many extra
degrees of freedom). Connections among all layers were
initialized randomly. The log-likelihood statistic was used
in a backpropagation algorithm to adjust the strengths
of the connections among the network nodes, so as to
minimize the discrepancy between actual and predicted
class membership. To prevent overfitting, the training
data were cycled through the algorithm until the residual
log-likelihood error reached that expected by preliminary
cross-validation (regularization). In order to estimate
out-of-sample performance and variance, we compared
an ANN model without non-linear interactive hidden
units (i.e. a multiple dependent-variable logistic regression
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model) to a model with 10 hidden units, using 10-fold
cross-validation of the entire model-building procedure.

Decision trees. For the decision trees, we used the CART
(Breiman et al. 1993) software package provided in
Matlab (Natick, MA, USA). CART considers all possible
neuropeptides as candidates to initially split the dataset,
selecting splits that maximize its accuracy rules. After
each split, further splits among subgroup branches are
then considered. CART forms terminal subgroups (nodes)
when further splitting does not improve performance.
Each node is labelled according to the predominant
anatomical class and the accuracy computed, assuming all
cells assigned to that node belonged to the labelled class.

CART decision tree pruning and validation. Because fully
branched trees could overfit the data and be less inter-
pretable upon direct inspection, we also enabled the
internal CART tree-pruning subalgorithm, which uses
an internal 10-fold cross-validation rule. We found no
substantial differences among the final pruned tree
structures in the course of generating and testing 300 such
pruned trees. However, because even pruned trees could
overfit the data, we estimated optimistic generalization
bias using 200 bootstrapped samples, and repeating
the entire modelling process for each sample (Efron &
Tibshirani, 1991). Furthermore, in order to assess the
sensitivity of our CART findings to a lower prevalence
of Matinotti cells (as suggested elsewhere (Markram et al.
2004)), we generated synthetic datasets wherein half MCs
were randomly removed, and repeated the modelling and
cross-validation described above.

Results

The objective of this study was to explore the relationship
between gene expression profiles (CaBPs and NPs) and
anatomical class. For this purpose, we patched 268
layer 2–6 neocortical neurones (P13–16) and loaded
the neurones with biocytin for subsequent staining
and morphological identification. We then extracted the
cytoplasm and performed single-cell RT-PCR to measure
the coexpression of three CaBPs (CB, PV and CR) the four
NPs (NPY, VIP, SOM and CCK) and the house-keeping
gene encoding for GAPDH (used as a positive control for
the harvesting procedure). Neurones were anatomically
verified according to their axonal morphology (see
Methods; Fig. 1A): pyramidal (PC; n = 41), large basket
(LBC; n = 65), nest basket (NBC; n = 37), small basket
(SBC; n = 13), Martinotti (MC; n = 67), bitufted (BTC;
n = 23), bipolar (BPC; n = 11), and double-bouquet
cells (DBC; n = 11). We performed the following
sequence of analyses on the data: (1) exploratory
correlation analysis (2) unsupervised clustering, and (3)
supervised discriminative modelling using regression and

decision-tree methods. The reliability of the supervised
methods was assessed by cross-validation and bootstrap
re-sampling.

Gene expression in different anatomical types

Each of the tree CaBPs and four NPs investigated was
expressed with a different frequency by each of the studied
anatomical types (Fig. 1B). From the CaBPs, PV was
found expressed in the basket cell family, with a higher
prevalence in LBCs and NBCs. CR, although found in all
the anatomical types, had a higher prevalence in BTCs and
BPCs. CB was found expressed in all the anatomical types
except BPC, with a higher prevalence in BTCs. For the NPs,
NPY was never expressed in SBCs, DBCs or BPCs, while its
highest prevalence was in LBCs and NBCs. VIP was mainly
expressed in BPCs, DBCs and SBCs, and never found
expressed in NBCs, LBCs, or MCs. SOM was expressed
in all the anatomical types with a significantly higher
prevalence in MCs. CCK was expressed in all the
anatomical types, with highest prevalence in PCs and
lowest in MCs.

Remarkably, there were two cases where a single gene
was expressed in 100% of the cells from a specific
anatomical class; SOM was expressed in all 67 MCs, and
VIP was expressed in all 13 SBCs. While expression of
SOM and VIP is obligatory for these neuronal types,
respectively, they can also be expressed in other neurones.
Since the frequency of expression of any one of these genes
is therefore not correlated with the expression of any one
anatomical class, we examined whether different types
of neurones displayed different profiles of frequency of
expression. While each anatomical class displays a different
pattern in the expression frequency for the eight genes, this
was not sufficiently different to separate unambiguously
the anatomical type. Indeed, the expression frequency
patterns of several anatomical types were similar: LBCs and
NBCs, BPCs and DBCs, SBCs and DBCs, BTCs and PCs.
Since expression frequency is a measure that is strongly
influenced by detection errors, we applied more advanced
statistical methods to explore the correlations between
gene expression and anatomical classification.

Exploratory correlations

Pearson correlation analysis of gene coexpression (without
regard to cell identity or anatomical class) revealed only
weak pair-wise mRNA coexpression (−0.29 to 0.11),
with most values near zero (Table 1), indicating that the
coexpression of CaBPs and NPs is highly promiscuous
and that many combinations of genes can be expressed
(39 of the 127 possible combinations were expressed).
This promiscuity demonstrates that there are no perfect
inclusion principles for the expression any of these
genes (i.e. relative independence), and explains the
considerable difficulty encountered by researchers when
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Figure 1. Gene expression and anatomical classification: prevalance, QTC clustering and supervised ANN
classification
A, representative examples of 3D histological reconstruction of neurone classes reported in this study. Soma and
dendrites, red; axons, blue. Interneurones were classified according to their axonal arborizations (see Methods
and for review see Fairen et al. 1984; DeFelipe, 1997, 2002; Somogyi et al. 1998; Toledo-Rodriguez et al. 2002;
Markram et al. 2004). Scale varies by cell class in order to represent detail; respective scale bars are all 100 µm. B,
number of neurones expressing the three CaBPs (CB, PV, CR) and the four NPs (NPY, VIP, SOM, and CCK) by the
eight studied anatomical types (BPC, BTC, DBC, LBC, MC, NBC, PC, and SBC). C, quality threshold clustering (QTC)
algorithm, developed for expression analysis by Heyer et al. (1999) aggregates cells with similar expression patterns
into non-overlapping, iteratively determined number of clusters, with a jacknifed quality score criterion defined
by the cluster diameter (0.5) and the minimum number of cells per cluster (10). Cells not assignable to any QT
clusters are grouped as ‘unclassified’. For each cluster the genes that are not expressed for all the cells in the same
cluster have been framed, showing specific expression patterns for different cell types. D, anatomical type-specific
profiles of regression weights derived from the linear artificial neural network. A positive weight (blue) indicates
that expression of the corresponding neuropetide favours a given morphological classification; a negative weight
(red) indicates a lower likelihood.
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Table 1. Pearson correlation matrix 28 pairwise correlation coefficients among seven coexpressed genes
(the information about cell anatomical class was not used)

CB PV CR NPY VIP SOM CCK

CB 1.00000 — — — — — —
PV 0.04464 1.00000 — — — — —
CR 0.01367 −0.16301 1.00000 — — — —
NPY −0.03462 −0.01485 −0.08311 1.00000 — — —
VIP −0.09678 −0.16327 0.08601 −0.17635 1.00000 — —
SOM 0.05910 −0.29338 −0.04221 0.02029 −0.15921 1.00000 —
CCK −0.07993 −0.16696 0.02085 −0.26024 0.11122 −0.28386 1.00000

trying to differentiate specific anatomical classes according
to the expression of only one CaBP or NP. We did
however, find three anticorrelations that were statistically
significant after Bonferroni correction (SOM and PV,
−0.29, P < 0.00001; SOM and CCK, −0.28, P = 0.0001;
and NPY and CCK, −0.26, P = 0.0033), indicating that
indeed there is some tendency, albeit not very high, for
exclusion in the coexpression of some of these genes.

These findings further demonstrate that neocortical
neurones cannot be separated based on only one gene.
We next performed correlations of gene profiles across
cells, again without respect to anatomical type, in
order to discern any natural multivariate clustering. The
lack of such clustering mitigates against a meaningful
association of multigene expression with any property
(e.g. anatomical type). The presence of clustering,
however, supports further multivariate, parametric
modelling to test the predictive relationships for
specific properties. Indeed, Pearson correlation of gene
profiles across cells, followed by nearest-neighbour Ward
clustering (see Supplemental Fig. 1) revealed at least
four prominent cell clusters. These clusters were still
overlapping to some extent, but they did show a
correspondence with anatomical classes (as indicated by
bar codes on the figure), revealing, for the first time, a hint
of the complex relationship between expression patterns
of NPs and CaBPs and anatomical type of neocortical
neurones.

Unsupervised clustering and discrimination

We next wanted to know whether the structure among
the patterns of expression of NPs and CaBPs described
above would provide a basis for classification of anatomical
classes. For this purpose, we clustered the neurones
according to their coexpression patterns using QTC. QTC
grouped the neurones into seven distinct coexpression
clusters (Fig. 1C). Each cluster was made up of a
population of neurones with a distinct pattern of
expression, where the expression for at least three of the
seven genes was identical for all the cells in a cluster (see
rectangles in Fig. 1C).

Examining each cluster independently, a dominant
anatomical type plurality was observed (with the exception
of the smallest cluster; see Table 2 and legend). There
were two pairs of redundant cluster–class associations
(MC, LBC) when labelled according to the winner-take-all
anatomical type rule; thus the seven QTC-determined
clusters reduce to five effective predictive categories,
with an overall empirical QTC classification accuracy of
53.0% (79.8% of Bayes-optimal, a classification algorithm
that gives the maximal possible accuracy by considering
all possible combinations of class assignment given the
distribution of the anatomical classes in the dataset) (Duda
et al. 2000). For most of the anatomical classes, this
accuracy was statistically significant and much better than
blindly assigning all cells to a class: MCs (85.1% correct
versus 25.0% expected), SBCs (84.6% correct versus 4.9%
expected), PCs (70.7% correct versus 15.3% expected),
LBCs (63.1% correct versus 24.2% expected) and BTCs
(17.4% correct versus 8.6% expected). Three anatomical
classes did not constitute the majority of neurones in
any cluster. This was probably due to: (a) low sample
number (BPCs and DBCs), or (b), as in the case of NBCs,
coclustering with another member of the basket cell family
(LBC).

Regression-based prediction

In order to gain further insight into the possible
mechanisms and significance of these correlations we
performed regression-based prediction. Non-linear ANNs
with 10 hidden units easily overfit the data with an accuracy
of 65.3% (Supplemental Table S1, Fig. 2A), which is very
close to the Bayes-optimal rate of 66.4% (see Methods
and Supplemental Table S2). This indicates that the model
had sufficient flexibility to find non-linear interactions
if they were present. However, 10-fold cross-validation
of the non-linear network model showed a drop in
the accuracy to 54.5%. This did not differ substantially
from the cross-validated accuracy (55.2%) for the linear
logistic regression model (i.e. no hidden units; Table 3,
Supplemental Table S3, Fig. 2B). This is consistent with
the high degree of apparent promiscuity found in the
coexpression of pairs of genes.
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Table 2. Empirical cluster assignment to dominant anatomical type

Cluster A Cluster B Cluster C Cluster D Cluster E Cluster F Cluster G Unassigned
n cells 69 66 39 26 24 14 10 20

BPC 0.029 0.045 0 0 0.167 0 0.100 0.050
BTC 0.029 0.106 0 0.038 0.125 0.286 0.400 0.100
DBC 0.014 0.015 0 0 0.208 0 0 0.200
LBC 0.043 0.197 0.641 0.615 0 0 0.100 0.350
MC 0.725 0.121 0 0 0 0.500 0 0.100
NBC 0.101 0.061 0.359 0.308 0 0.071 0 0.150
PC 0.058 0.439 0 0.038 0.042 0.143 0.400 0
SBC 0 0.015 0 0 0.458 0 0 0.050

Seven distinct clusters suggested by QTC clusters A to G are represented in the supplementary Fig. 1. Bold indicates predominant cell
anatomical type for each cluster. Cluster G has two values 0.400, but since chance expected accuracy for BTCs is much smaller than
for PCs this cell type got priority for the assignment.

Table 3. Non-linear 10-hidden unit and linear (in parenthesis) logistic regression
softmax artificial neural network

Cell Classification accuracy Accuracy by 10-fold Standard
type for the full data set cross-validation deviation

BPC 0.18 (0) 0.1 (0.19) 0.17 (0.24)
BTC 0.48 (0.39) 0.21 (0.27) 0.14 (0.14)
DBC 0.36 (0.18) 0.16 (0.16) 0.2 (0.23)
LBC 0.69 (0.68) 0.63 (0.66) 0.16 (0.1)
MC 1 (0.97) 0.9 (0.91) 0.1 (0.09)
NBC 0.22 (0.22) 0.18 (0.16) 0.13 (0.07)
PC 0.61 (0.68) 0.58 (0.61) 0.22 (0.18)
SBC 1 (0.69) 0.47 (0.25) 0.32 (0.32)
Total 0.653 (0.616) 0.545 (0.552)

Accuracies of non-linear (and linear) artificial neural network for full data set
(very close to the optimal) and for test data set after 10-fold cross-validation (less
than optimal but close to the linear model) show that linear regression is well
suited for modelling of anatomical categories.

Comparing the results of linear and non-linear
regression modelling for each anatomical class, the only
apparent change was a decrease in SBC accuracy and
an increase in BPC accuracy in the linear model. These
differences, however, fall within single standard deviations
of their means (Table 3). Both regression models
predicted better than chance for all anatomical categories,
although this improvement was only significant at the
P < 0.05 level (i.e. out-of-sample mean prediction greater
than 1.96 times chance expected value) for LBCs (66%
correct versus 24% expected), MCs (91% correct versus
25% expected) and PCs (61% correct versus 15%
expected). The fact that the linear and non-linear ANN
models performed similarly, indicated that simpler linear
models are sufficient to derive predictive weights for the
expression of each gene.

The weight vectors for the linear model are shown in
profile in Fig. 1D. Each weight reflects the relative influence
that each gene has (in the context of the rest of the
genes and anatomical types studied) upon the probability
of that profile belonging to a certain anatomical class. In

general, the majority of weights were negative (if the gene
is expressed, there are fewer probabilities that the cell will
belong to that anatomical type) and a few were positive.
For instance, the expression of PV will highly favour
the likelihood of LBC or NBC class (normalized weights
>50% maximal among classes), and strongly decrease the
likelihood of MC or DBC class (normalized weights <50%
maximal among classes). Likewise the expression of SOM
will highly support the classification as MC, and the
expression of VIP will highly increase the likelihood of
SBC, DBC or BPC class and decrease the likelihood of MC
class.

CART decision trees

The regression models used above give a simultaneous
weighting of the predictors but do not provide a
hierarchical structure in the coexpression patterns (which
genes have a higher predictive power). For this purpose,
we generated a CART decision tree for anatomical class
prediction from gene expression patterns. The full CART
decision tree shows the distribution profiles for the
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Table 4. CART classification accuracy using full and pruned (in parenthesis) trees by cross-validation, with bootstrapped adjustment
for optimistic bias

Cell type Tree Chance expected Bootstrapped trees (n = 300) Complete data through bootstrapped treesAdjusted tree

Accuracy Accuracy Accuracy Standard error Accuracy Optimistic bias Accuracy

BPC 0.545 (0) 0.041 (0.041) 0.365 (0.224) 0.028 (0.024) 0.259 (0.155) 0.106 (0.069) 0.439 (0)
BTC 0.261 (0) 0.086 (0.086) 0.365 (0.217) 0.028 (0.024) 0.273 (0.159) 0.092 (0.058) 0.169 (0)
DBC 0.091 (0) 0.041 (0.041) 0.349 (0.181) 0.028 (0.022) 0.224 (0.111) 0.125 (0.07) 0 (0)
LBC 0.708 (0.708) 0.242 (0.242) 0.689 (0.695) 0.027 (0.027) 0.664 (0.681) 0.025 (0.014) 0.683 (0.694)
MC 0.985 (1) 0.25 (0.25) 0.98 (0.994) 0.008 (0.004) 0.956 (0.986) 0.024 (0.008) 0.961 (0.992)
NBC 0.162 (0) 0.138 (0.138) 0.259 (0.154) 0.025 (0.021) 0.2 (0.11) 0.059 (0.044) 0.103 (0)
PC 0.707 (0.756) 0.153 (0.153) 0.731 (0.725) 0.026 (0.026) 0.684 (0.694) 0.047 (0.031) 0.66 (0.725)
SBC 0.538 (0.846) 0.049 (0.049) 0.734 (0.744) 0.026 (0.025) 0.646 (0.692) 0.088 (0.052) 0.45 (0.794)
All types 0.623 (0.578) 1 (1) 0.663 (0.629) 0.027 (0.028) 0.607 (0.591) 0.056 (0.038) 0.567 (0.54)

Classification accuracy based on distribution of the different anatomical types in terminal nodes of the tree. Note that after pruning
some of the numerous branches of the full tree, the pruned tree shows zero accuracy for certain anatomical types but keeps good
overall accuracy.

winning and losing neurones in each terminal node,
based on the expression or lack of expression of a given
gene at a time (see Fig. 2A). The accuracy of the fully
bifurcated tree was 56.7% (85.4% of Bayes-optimal) when
adjusted for optimistic bias using 300 bootstrap models
(bias estimate was stable at 0.001 beyond 200 bootstraps;
Table 4). However, the tree has many asymmetric branches
making it difficult to understand which bifurcations are
critical for the classification. We therefore pruned the
full tree using rules that leave only branches supported
by cross-validation of the data (Breiman et al. 1993).
The pruned tree had a more interpretable structure
(Fig. 2B) with only a modest reduction in bootstrap
bias-adjusted accuracy to 54.0% (81.3% of Bayes-optimal;
Table 4, parenthesis). This pruned tree shows the following
decision sequence: declare cells positive for SOM as ‘MC’,
then those positive for PV as ‘LBCs’, then those positive
for VIP as ‘SBCs’, and finally those positive for NPY again
as ‘LBCs’; the default negative for all four neuropeptides
indicates a ‘PC’ classification (Fig. 2B). By comparing this
pruned skeleton with the distal branching of the full tree
(Fig. 2A and B), some insight into the potential importance
of CB, CCK, and CR in decision making can be found.

Our dataset contained a percentage of MCs that is twice
the real prevalence in somatosensory cortex (due to an
overlapping study in which we specifically selected MCs
for recording). To test if the model was sensitive to the
‘artificial’ high number of MCs, we created 10 datasets,
each with only a random half of the original 67 Martinotti
cells (mimicking the real prevalence, Supplemental
Fig. 2). For all 10 models, the pruned trees were identical,
and the only discrepancy with the complete-data pruned
model of Fig. 2B was that the sequence of the initial two
bifurcations was reversed (PV then SOM), reflecting the
new relatively higher prevalence of the PV-expressing LBC
subpopulation. All distal bifurcations were unaffected, and
the overall model accuracy was not significantly changed.

This result demonstrates a slight independence of the
model from the relative prevalence of the different cell
types.

ANN versus CART. Comparing accuracies among
anatomical classes for the linear ANN (Table 3, first
column, parenthetic values) and pruned CART (Table 4,
first column) suggests that the two algorithms predict
similarly for high-prevalence anatomical types (e.g. LBC,
MC, PC), but were discrepant for the other categories. The
two methods agreed about class assignment for 83% of all
cells (Cohen’s kappa of agreement, 0.778, P = 0.028).

Discussion

We describe here a multidisciplinary study that explores
the relationship between profiles of NP and CaBP
gene expression and anatomical class. In this study we
found extreme promiscuity of coexpression of genes
encoding NPs and CaBPs, indicating that the expression
mechanism in neocortical neurones allows for many
combinations of these particular genes. We further found
that the expression of combinations of expressed genes
is highly correlated to anatomical type, revealing a
tight global control on the expression of sets of NPs
and CaBPs in different neurones. Overall, the statistical
analysis indicated that the expression profile of just these
seven mRNAs provides over 85% of the Bayes-optimal
classification accuracy, and the number of gene expression
profiles for each anatomical class is limited. Nevertheless,
perfect mapping onto anatomical types is not possible
because there is still some variability in the expression
patterns, although this promiscuity is considerably lower
than for single genes. This apparent promiscuity of sets
of genes expressed could be due to: methodological
limitations, the low number of studied genes, or
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because the specific combinations of expressed genes
correspond to physiological variants inside the anatomical
classes.

Promiscuous coexpression

In this study, gene coexpression analysis revealed the
lack of strong correlations between the expression of any
pair of these key NPs and CaBPs. While this finding
is bound to be influenced by false negatives to some
extent, the contribution is likely to be minor since:
(a) neurones included in the study expressed at least one
NP or CaBP (b) the copy number of these NPs’ and CaBPs’
mRNAs in the cell is relatively high, and (c) for some
anatomical types one NP was ubiquitously expressed in
all cells. For example, SOM was detected in 100% of 67
MC, and VIP was detected in 100% of 13 SBCs. The
promiscuity in coexpression was also indicated by the lack

Figure 2. CART decision tree classification
A, fully grown CART decision tree. Interpretation of the
tree: at each bifurcation the gene expression of specific
marker is considered: + branch is taken if the gene is
expressed and – otherwise; terminal nodes are
designated with corresponding anatomical types and
root is the starting point. Evaluation of the observed cell,
example: if SOM is expressed take the left branch, next
if the PV is expressed take the left branch again and the
observed cell would be classified as NBC. B, CART binary
decision tree for laboratory application, pruned by 300
cross-validated data-splits. At each bifurcation the
number of cells going into next splitting/terminal node is
shown. Class probability for each cell type in each
terminal node is represented on the graph placed by
adequate terminal node (scale is given in percentages).

of improvement in prediction of anatomical class when
using regression methods that can exploit non-linear inter-
actions between genes. These results therefore provide
direct evidence that neocortical neurones can express
many combinations of these key genes, and that no single
NP or CaBP can be used to unambiguously identify an
anatomical type.

Coexpression exclusions

While all the studied NPs and CaBPs are expressed in
neocortical neurones, we found a significant tendency for
exclusion in the coexpression of: SOM with PV; SOM with
CCK; and NPY with CCK. These restrictions at the mRNA
level are consistent with the exclusions found at the protein
level. For example, Kawaguchi, Kubota and colleagues
reported that PV, SOM and CCK immunohistochemical
staining distinguished three non-overlapping groups of
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neurones (Kawaguchi & Kubota, 1997). Demeulemeester
and colleagues showed that SOM, CCK and NPY do not
coexpress, while coexpression of SOM with PV is rare but
possible (Demeulemeester et al. 1991). Coexpression of
the genes encoding SOM and PV was also shown at the
mRNA level (Cauli et al. 1997; Wang et al. 2002).

Combinations and clusters of gene expression profiles

Previous studies have shown that specific anatomical types
express certain NPs and CaBPs. For example, some of
the neurones expressing SOM are MCs or NBCs (Wahle,
1993; Kawaguchi & Shindou, 1998; Wang et al. 2002),
some of the neurones expressing PV are LBCs or NBCs
(Kawaguchi & Kubota, 1998; Wang et al. 2002), some of the
neurones expressing VIP are SBCs, BPCs or DBCs (Cauli
et al. 1997; Kawaguchi & Kubota, 1998; Wang et al. 2002),
and some of the neurones expressing CCK are LBCs or MCs
(Kawaguchi & Kubota, 1998; Kawaguchi & Shindou, 1998;
for review see Kawaguchi & Kubota, 1997; Markram et al.
2004). This promiscuity of expression shows that no NP
or CaBP can perfectly separate any one of the anatomical
classes.

While this finding may seem to suggest that the
expression of each gene is independently controlled, QTC
analysis revealed that neocortical neurones expressed
only 39 of the 127 possible combinations (gathered in
seven clusters). Therefore almost 70% of the possible
combinations are not found in neocortical neurones.
Moreover, the cells in a cluster were identical for the
expression of three to six of the seven genes. It is
not likely that further sampling would reveal additional
combinations or clusters since the dataset was already
large and the mRNA detection highly reliable (see above).
Moreover, QTC does not assume a priori how many
clusters to form or how many cells each cluster should
contain, and validates the clusters by bootstrap.

In six of the seven coexpression clusters, a single
anatomical subtype dominated significantly over the other
eight. Such a result was unexpected since the QTC is
an unsupervised clustering method that does not use
any morphological information to assign the neurones to
each cluster. QTC assigns neurones into non-overlapping
clusters according to the similarity of their gene
expression profiles. The fact that clustering by gene
expression separates anatomical classes, demonstrates the
tight correlation between patterns of coexpression and
anatomical class. This correlation is however not perfect;
this may be due to methodological limitations, low sample
number or the need to study the coexpression of additional
genes. Additionally, specific coexpression patterns could
be related to physiological variants inside each anatomical
class.

Frequency of expression versus predictive weights

The predominance of a specific anatomical class in each of
the coexpression clusters revealed a correlation between
expression profiles and anatomical type. Based on this
correlation, it is now possible to derive the weights for
each gene in the prediction of anatomical class. Each
weight describes the relative influence of that gene (in
the context of the rest of the genes and anatomical classes
studied) on the probability that the specific profile belongs
to a certain anatomical class. It is important to point
out that these weights differ from prevalence (frequency
of expression) in that prevalence is independent of the
other genes or anatomical types. Indeed, when comparing
prevalence with weights, a high prevalence does not imply
a high weight. Indeed, the fewer anatomical classes that
express a particular gene, the higher its prediction power.
For example, the prevalence of CCK is relatively high in
most of the anatomical types, but its predictive weight is
low. In SBCs CCK has a high prevalence but a low weight
because CCK expression will also ‘drive’ the prediction
to the rest of the cell types expressing CCK. Conversely,
VIP is the major predictor for SBCs, as it is expressed less
promiscuously.

In the case of PCs, CCK has a high prevalence and
high weight. This is due to the fact that the frequency of
expression for the other genes in PCs is very low (while
the rest of the anatomical classes express other genes in
addition to CCK). Nevertheless, while PCs express CCK
mRNA, CCK protein has not been found in PCs. This
could be due to low levels of the CCK protein or to
the fact that the translation of CCK mRNA to protein is
constitutively blocked and only permitted under specific
circumstances. In this case, as the mRNA is already present,
there would be a minimal delay for PCs to produce and
release CCK.

The interneurone diversification tree

The regression models described above provide the relative
influence of each gene in the context of the rest of
the genes and anatomical types, but do not provide a
hierarchical structure in the coexpression patterns or
select a parsimonious subset of genes. Such a deduced
hierarchy may provide insight into potential mechanisms
of neuronal diversification. Indeed, a CART decision tree,
for anatomical class prediction from gene expression
patterns, reveals the genes involved at key bifurcations
of morphological diversification. The non-pruned CART
tree (not bootstrapped) predicted all anatomical classes
using all seven genes. The pruned CART tree (after
cross-validation using bootstrap) revealed four genes
that lie at key bifurcations of neocortical neuronal
diversification (SOM, PV, VIP and NPY). Reduction in
the number of MCs to half only resulted in a priority shift
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of the two first bifurcations (PV versus SOM), and did not
affect more distal branches. This finding therefore reveals
the robust association between bifurcations in expression
with morphological segregation.

Although ANN and CART demonstrated similar
overall accuracies, we found that for the lower-prevalence
anatomical classes (especially BPC, DBC, and SBC), the
methods frequently assigned cells differentially. This is
not unexpected, because the mathematics of optimization
reflect the intended inference to be gained from each
model. The ANN uses a maximum likelihood algorithm
to return a single set of weights (i.e. it operates in
weight-space), reflecting a trade-off in overall likelihood
of misclassification. As described above, this provided
a continuous, comparative measure of the influence
of each predictor gene controlling for the influence
of the others. On the other hand, CART applies a
trial-and-error approach to iteratively split predictor data
in a binary fashion (i.e. operating in ‘data-space’), in such
a way as to maximize classification accuracy at terminal
(anatomical type) nodes; this is advantageous when, as
we found, a hierarchical decision process can promote
understanding of the influence and relationships of
predictors, or when resources are constrained, so that
a limited sequence of measurements may be desired in
practice.

Functional significance

Here we demonstrate the statistical significance of the
relationship of three independent aspects of neocortical
neurones: anatomical class (dependent on extracellular
signalling molecules, membrane receptors and
cytoplasmic cytoskeletal proteins); intracellular calcium
buffering (via CaBPs); and modulation of neighbouring
cells (via NP expression). Clustering by gene expression
separates anatomical classes and therefore demonstrates
the tight correlation between patterns of coexpression
and anatomical type. This clearly suggests a coordination
between the neurone’s morphological spread (which part
of the neocortex it innervates and which subdomains
of the targeted neurones are innervated) and the nature
of the neurotransmission (NP expression) as well as its
internal biochemical activity and Ca2+ dynamics (CaBP
expression). Moreover, as NPs may also be released
from all parts of the neurone (Zhu et al. 1986; see also
Thureson-Klein & Klein, 1990) the release of particular
NPs on specific locations of the microcircuit (determined
by the neurone’s arborization) could fine-tune the unique
influence of that particular neurone.
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