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Abstract

Background: Studies of model-based linkage analysis show that trait or marker model
misspecification leads to decreasing power or increasing Type | error rate. An increase in Type |
error rate is seen when marker related parameters (e.g., allele frequencies) are misspecified and
ascertainment is through the trait, but lod-score methods are expected to be robust when
ascertainment is random (as is often the case in linkage studies of quantitative traits). In previous
studies, the power of lod-score linkage analysis using the "correct" generating model for the trait
was found to increase when the marker allele frequencies were misspecified and parental data were
missing. An investigation of Type | error rates, conducted in the absence of parental genotype data
and with misspecification of marker allele frequencies, showed that an inflation in Type | error rate
was the cause of at least part of this apparent increased power. To investigate whether the
observed inflation in Type | error rate in model-based LOD score linkage was due to sampling
variation, the trait model was estimated from each sample using REGCHUNT, an automated
segregation analysis program used to fit models by maximum likelihood using many different sets
of initial parameter estimates.

Results: The Type | error rates observed using the trait models generated by REGCHUNT were
usually closer to the nominal levels than those obtained when assuming the generating trait model.

Conclusion: This suggests that the observed inflation of Type | error upon misspecification of
marker allele frequencies is at least partially due to sampling variation. Thus, with missing parental
genotype data, lod-score linkage is not as robust to misspecification of marker allele frequencies as
has been commonly thought.

Background causative mechanisms of both the trait and marker phe-
In model-based linkage analysis, one assumes that the = notypes are known without error, including the number
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of loci involved, the mode of inheritance and allele fre-
quencies. With the advancement of genetic research in
complex traits, we are dealing more with uncertain mode
of inheritance and unknown parameters (allele frequency
and degree of dominance) which ought to be known to
apply model-dependent linkage analysis appropriately.
Several studies have been reported in the literature about
the implications of misspecifying the underlying genetic
model of the trait in linkage analysis. Clerget-Darpoux et
al. [1] quantified the effects of using wrong allele frequen-
cies, penetrance and degree of dominance on the linkage
test and on the recombination fraction estimate under the
assu mption of a single locus model in lod-score linkage
analysis. Goldin and Weeks [2] reported that a biased esti-
mate of the recombination fraction is introduced in lod-
score analysis by reducing the power to detect an existing
linkage when underlying disease model parameters are
incorrectly specified in the case of a common dichoto-
mous trait. It is important to mention that the accurate
estimation of marker allele frequencies is essential in the
linkage analysis when reconstruction of the genotypes of
key family members is needed due to the unavailability of
biological samples (e.g., in the case of diseases with late
age of onset, such as lung cancer, when parental data often
are not available). So far, a few studies have been pre-
sented in the literature about the effect of using incorrect
allele frequencies in linkage analysis. Ott [3] and Freimer
et al. [4] reported an increase of the false positive rate in
linkage when incorrect marker allele frequencies are
assumed in the analyses and selection takes place through
trait phenotypes. Misspecification of the assumed marker
model also leads to an elevated Type I error rate when
linkage analysis is performed on pedigrees ascertained
with respect to the trait phenotypes [5]. Asymptotically,
bias is NOT introduced in the linkage analysis if there is a
misspecification of the trait related parameters and the
ascertainment is through the trait phenotypes or if there is
a misspecification of the marker related parameters and
the ascertainment is through the marker phenotypes [6].

In previous studies, [7,8] the power of lod-score linkage
analysis using the correct model for the trait appeared to
increase when either some or all of the parental marker
information was missing and the marker allele frequen-
cies were misspecified in the analysis. An investigation of
Type 1 error rates was then conducted in the absence of
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parental data and with misspecification of marker allele
frequencies. This showed that an inflation in Type I error
rate was the cause of at least part of this apparent
increased power [8,9]. The objective of the current study is
to investigate, using a different analytic strategy, whether
the observed inflation in Type I error rate in model-based
lod-score linkage is due to sampling variation.

Methods

Simulation of data

Computer simulations generating a quantitative trait and
marker data in nuclear families were performed using
G.A.S.P. V3.3 [10]. The trait simulated was due to an addi-
tive major locus with two equifrequent alleles. The herita-
bility of the trait due to the single trait locus was 90%,
with the remaining phenotypic variation (10%) due to a
residual environmental component. Data were simulated
for highly polymorphic five-allele marker loci linked to
the trait locus with recombination fractions of 0.0 and
0.01, as well as an unlinked marker, and with varying
combinations of allele frequencies. The simulated marker
allele frequencies were 0.5, 0.3, 0.2, 0.1, 0.05, 0.01 and
0.001 for the "first" allele, with the other four alleles being
equally frequent. For each marker model, 10,000 samples
of 300 nuclear families with sibship size of two (300 inde-
pendent sibpairs) were simulated. Marker data for all par-
ents were suppressed (missing), in order to provide the
situation in which marker allele frequencies are used in
lod-score linkage analysis. These samples were then ana-
lyzed in two different ways, as described below.

Analyses

LOD-score linkage analysis assuming the "true" generating model for
the trait

Lod-score tests of linkage between the trait and both
linked and unlinked marker loci were performed using
LODLINK [11] on each of 10,000 samples for each marker
model. LODLINK is a model-based linkage analysis pro-
gram, where it is assumed that one can fully describe the
mode of inheritance of the disease gene, i.e., its allele fre-
quency and the penetrances for each disease locus geno-
type are known. The parameter values used in the
simulation to generate the data were used as the assumed
trait model in these linkage analyses. Analyses were
repeated for different assumptions about marker allele fre-
quencies. A range of values between 0.001 and 0.6 were

Table I: Allele frequencies (first, rest) in a five-allele marker used in the study. The frequency of the most common marker allele is
underlined. All combinations of true and assumed allele frequencies were tested.

True allele  0.001, 0.01,0.2475 0.05,0.2375 0.1,0.225 0.2,0.2 0.3,0.175 0.5, 0.125
frequencies  0.24975
Assumed 0.001, 0.01,0.2475 0.05,0.2375 0.1,0.225 0.2,0.2 0.3,0.175 04,0.15 0.5,0.125 0.6, 0.1
allele 0.24975
frequencies
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Figure |

Power of model-based lod-score linkage analysis (for the
0.0001 significance level), assuming the generating model, for
a marker at recombination fraction 0.01. Simulated ("true")
marker allele frequencies of the "first" allele are indicated by
different symbols as presented in the legend.

used for the "first" allele, and the remaining alleles were
assumed equally frequent (Table 1).

LOD-score linkage analysis assuming a trait model estimated from
the data

The same simulated data were reanalyzed using LODLINK
as described above except that instead of assuming the
"true" simulation model, parameters estimated by segre-
gation analysis of the trait data were assumed for the trait
model. The segregation analysis was performed on each
replicate sample using REGCHUNT [12], an automated
quantitative trait segregation analysis program that fits
models using the method of maximum likelihood using
many different sets of initial estimates. REGCHUNT
incorporates the functionality of REGC [11] running mul-
tiple times. This program generates the initial values ran-
domly from a uniform distribution. It discards invalid
initial estimates and aborts maximizations in which an
allele frequency goes to a bound. For this study, 100 sets
of initial estimates in a Mendelian three-distribution
model were used for model fitting; and the best fitting
model obtained from each sample was used in the subse-
quent linkage analysis of that sample.

Power and Type I error rates

For both methods of analysis, power was determined as
the proportion of 10,000 samples in which analysis of a
marker linked to the trait produced maximum LOD scores
equal to or exceeding thresholds corresponding to nomi-
nal significance levels of 0.01, 0.001 and 0.0001. Type I
error rate was determined in a similar manner based on
analysis of the unlinked marker, using nominal signifi-
cance levels of 0.01 and 0.001, since 10,000 replications
are not adequate to accurately estimate Type I error at the
0.0001 level. Note that commonly used lod-score thresh-
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olds of 1.0, 2.0 and 3.0 correspond to p-values of approx-
imately 0.0159, 0.0012, and 0.0001, respectively [13,14].

Results

Observed power to detect linkage using the generating
trait model

The power of lod-score linkage analysis of a linked marker
(recombination fraction 0.01), using the "correct" gener-
ating model for the trait, is presented in Figure 1 for the
0.0001 significance level. The power was found to either
increase or decrease in some situations when the marker
allele frequencies were misspecified in the analysis. For a
significance level of 0.0001, the power increased from
39% to 56% when the "true" marker allele frequencies of
0.001, 0.24975, 0.24975, 0.24975, and 0.24975 were
misspecified as 0.1, 0.225, 0.225, 0.225, and 0.225,
respectively. A similar trend was observed in the other sit-
uations when the frequency of the most common marker
allele(s) was underestimated for the analysis (hence, the
less common allele(s) overestimated). The power
decreased when the frequency of the most common
allele(s) was moderately overestimated (e.g., power went
down from 55% to 50% at a significance level of 0.0001
when the most common allele frequency of 0.225 was
overestimated as 0.24975). The same pattern held true for
other significance levels and for the more tightly linked
marker, and, as expected, the power was generally greater
at the more tightly linked marker (data not shown).

Observed power to detect linkage using the estimated trait
model from REGCHUNT

Where the power using the generating trait model showed
an extreme inflation (or deflation) due to the misspecifi-
cation of marker allele frequencies in the analysis, inflated
(or deflated) power to detect linkage in the same situation
was also observed using the estimated trait model from
REGCHUNT. However, the extent of inflation (or defla-
tion) was less than when using the generating trait model,
except in some cases when inflation was limited by the
upper bound of 100%. For significance levels 0.01 and
0.001, the power was always lower, compared to analyses
assuming the true (generating) trait model (data not
shown). However, the reverse was frequently true for sig-
nificance level 0.0001. For example, when "true" marker
allele frequencies of 0.001, 0.24975, 0.24975, 0.24975,
and 0.24975 were misspecified as 0.1, 0.225, 0.225,
0.225, and 0.225, respectively, the power increased from
53% to 62%. Results are presented in Figure 2 for the
0.0001 significance level, using the marker at a recombi-
nation fraction of 0.01. Similar trends were observed for
the tightly linked marker (data not shown).
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Figure 2

Power of model-based lod-score linkage analysis (for the
0.0001 significance level), using the sample-specific estimated
trait model, for a marker at recombination fraction 0.01.
Simulated ("true") marker allele frequencies of the "first"
allele are indicated by different symbols as presented in the
legend.

Observed false-positive error rates using the generating
trait model

As the power of lod-score linkage analysis using the "cor-
rect" generating model for the trait was found often to
increase substantially when the marker allele frequencies
were misspecified, nominal type I error rates were investi-
gated. Observed Type I error rates based on linkage tests at
the unlinked marker are presented in Figure 3 for the 0.01
significance level. A consistent increase in Type I error was
detected when underestimates of the most common
marker allele(s) and overestimates of the less common
allele(s) were used in the analysis. For example, at a nom-
inal significance level of 0.01, the observed Type I error
rate was 0.0087 when the true allele frequencies of 0.01,
0.2475, 0.2475, 0.2475, and 0.2475 were used in the
analysis but was inflated to 31% when the allele frequen-
cies in the analysis were severely misspecified as 0.6, 0.1,
0.1, 0.1, and 0.1.

When the most common allele(s) were misspecified as
even more common in the analysis, the observed Type I
error rate tended to decrease slightly, unless the misspeci-
fication was relatively large.

Observed false-positive error rates using the estimated
trait model from REGCHUNT

As shown in Figure 4 for the 0.01 significance level, an
increase in Type I error was usually observed when the fre-
quency of the most common allele(s) was decreased (mis-
specified downward from the true value) and that of the
less common allele(s) increased in analysis using a sam-
ple-specific estimated trait model. This is the same general
pattern as that observed when the "true" generating trait
model was used in the analyses. However, the observed
Type I error rates were usually closer to the nominal levels
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when the assumed trait models were generated by REG-
CHUNT than when the generating model was assumed.
This was particularly noticeable in cases of extreme mis-
specification.

Discussion

When performing lod-score linkage analysis of a ran-
domly sampled quantitative trait with missing parental
marker information, the power of lod-score linkage anal-
ysis often appears to increase as the marker allele frequen-
cies are misspecified even when the "correct” generating
model for the trait is used in the analysis. The effect of
misspecification on power is more pronounced when the
nominal significance level is more significant. The appar-
ent increase in power appears to be due at least in part to
an increase in Type I error rates. A severe increase in the
Type I error rate was observed for lod-score linkage analy-
sis in a sample size of 300 independent sibpairs without
parental data when marker allele frequencies were mis-
specified in the analysis by underestimating the most
common marker allele. The inflation may be caused by
sampling variation resulting in some extreme samples for
which the "true" generating model is not a good fit. It is
also possible that this inflation in Type I error rate is
observed because these sample sizes were not large
enough to display asymptotic properties. Different pro-
portions of available parental information have a signifi-
cant effect on the power of lod-score linkage analysis
depending upon the sample sizes [7]. Omission of all
parental marker data has a substantial deleterious effect
on the power observed in lod-score linkage analysis for
small or moderate sample sizes (100 or 300 independent
sib pairs). In the case of larger sample sizes (500 inde-
pendent sib pairs) this effect is observed only at nominal
significance levels more extreme than 0.0001. Use of
marker information for at least one parent in the analysis
reduces the observed Type I error rate to the nominal level
or close to the nominal level in many situations. In addi-
tion, use of multiple sibpairs from the same sibship has a
similar effect by allowing parental genotypes to be
imputed and used in the analysis [8].

In an attempt to investigate the effect of misspecification
of marker allele frequencies on trait heritability, similar
analysis was done on a simulated trait with 50% heritabil-
ity due to an additive major locus with two equifrequent
alleles and the other one due completely to a random
environmental effect. LODLINK was used to test for link-
age in each of 10,000 replicates of 300 families with sib-
ship size two. When the trait was completely
environmentally determined, the Type I error rate of the
lod-score linkage analysis was found to be robust to mis-
specification of marker allele frequencies, even if the allele
frequencies were severely misspecified (+ 0.8 of true fre-
quencies). However, for the trait with heritability of 50%,
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Figure 3

Type | error of model-based lod-score linkage analysis (for
the 0.01 significance level), assuming the generating model,
for a marker at recombination fraction 0.5. Simulated
("true") allele frequencies for the "first” allele are indicated by
different symbols as presented in the legend.

the Type I error rate was sometimes as much as 21 times
the nominal significance level of 0.001 when the allele
frequency of a common allele in a five-allele polymorphic
marker was misspecified in the analysis as rare (data not
shown). In general, the Type I error rates for the trait with
a heritability of 90% were the highest among the three
traits studied. Thus, when the parental genotype data are
missing, the model-based lod-score test of linkage is
robust with respect to Type 1 error for environmentally
determined traits but not for the traits which are largely
genetically determined. The results for the trait with herit-
ability of 50% were similar to that of the trait heritability
of 90% but less dramatic [9].

In an attempt to resolve the problem of inflated Type I
error rates, the model was estimated from each sample
using REGCHUNT followed by linkage analysis with
LODLINK. The data obtained show that the observed
power and Type I error rates of model-based LOD score
linkage are often inflated when marker allele frequencies
are misspecified, even when using this analytic strategy.
However, the Type I error rates observed in this case are
usually closer to the nominal levels than those obtained
when assuming the generating trait model. This suggests
that the observed inflation of Type I error upon misspeci-
fication of marker allele frequencies is at least partially
due to sampling variation. However, sampling variation is
inadequate to completely explain the pattern of inflation
of Type I error rates due to marker allele misspecification.
The observed Type I error rates are possibly due to not
having asymptotic sample sizes. The effect of sibship size
is expected to be small relative to the effect of locus heter-
ozygosity on the ability to infer missing parental geno-
types from sibship data. If there are two alleles in a
marker, no sibship size can determine with certainty the
parental mating type. On the other hand, parental mating

http://www.biomedcentral.com/1471-2156/7/21

type can often be determined with certainty (the higher
the locus heterozygosity, the more frequently this is possi-
ble) in a sibship of size two if there are four or more alle-
les. From our findings, we have observed that, for two-
allele markers, sib-pair sample sizes of 100 and 300 with
sibships of size five (i.e., number of families is 10 and 30,
respectively) always produce a better power than sib-pair
sizes of 100 and 300 with sibships of size two (i.e.,
number of families is 100 and 300, respectively) when
"correct" allele frequencies are used in the analysis. How-
ever, as we increased the number of marker alleles to five,
the power using 300 sib-pairs with sibships of size five
(i.e., the number of families is 30) is not always better
than the power achieved using 300 sib-pairs with a sib-
ship size of two (i.e.,, number of families is 300). How-
ever, when only 100 sibpairs are available for study,
sibships of size five (i.e., number of families is 10) yield
better power than sibships of size two (i.e., number of
families is 100) even with a five-allele marker, since power
is not optimal for a sample size of only 100 sib-pairs, so
the extra power that is obtained by being able to use the
multiple sibs in a large sibship to impute the missing
parental genotype is important. In general, an increase in
the marker heterozygosity leads to more complete infer-
ence of parental genotypes [7]. The power with 300 sib-
pairs is found to be quite high even when we do not have
much information to impute the parental genotypes.
However, in the case of a disease for which genetic heter-
ogeneity exists, the sample sizes of 300 pairs with 30 fam-
ilies might be more powerful than 300 pairs in 300
families, since power will also not be optimal in this situ-
ation. This issue should be explored in future studies.

It is a common practice in simulation studies to use the
generating model as the "best" model. The data from the
present study suggest that the estimated model generally
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Figure 4

Type | error of model-based lod-score linkage analysis (for
the 0.01 significance level), using the sample-specific esti-
mated trait model, for a marker at recombination fraction
0.5. Simulated ("true") allele frequencies for the "first" allele
are indicated by different symbols as presented in the legend.
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performs better, with respect to Type I error, than the gen-
erating model. Therefore, we need to use caution in inter-
preting simulation study results obtained using the
generating model. These results also suggest that in order
to avoid spurious inferences of linkage when performing
linkage analysis of randomly ascertained quantitative
traits with missing parental data, a very large sample size
is needed. Moreover, both the trait model parameters and
marker allele frequencies should be estimated from the
sample data for randomly ascertained quantitative traits
to attempt to reduce the false positive rates.

A thorough investigation was previously conducted on
power and Type I error using the model-free Haseman-
Elston (H-E) sibpair linkage method [15,16]. Power
results were reported on three types of traits with varying
portion of random environmental effect (10%, 30% and
50%). The H-E sib-pair linkage method was found to be
robust in situations considered with misspecifications of
allele frequencies, except for a slight decrease in power
when sample size was small and when the marker was not
very polymorphic.

Conclusion

The estimates of marker allele frequencies are irrelevant to
linkage analysis when marker genotypes are known for all
family members. However, if parental genotypes are not
available, accurate estimates of allele frequencies for
highly polymorphic DNA marker loci with high heterozy-
gosities are often not available in the underlying study
population. If the genotypes at a marker locus are not
known and cannot be imputed for a family member, then
inaccurate estimates of marker allele frequencies may lead
to false positive evidence for linkage if model-based link-
age analysis is used. However, if a quantitative trait is well
characterized and marker allele frequencies are accurately
estimated the type I error rate for the model-based linkage
method is not substantially greater than the nominal rate.

In conclusion, the model-based lod-score method of link-
age analysis is not robust to misspecification of marker
allele frequencies when the families are randomly ascer-
tained and parental marker data are missing, especially
when the true trait model is assumed, rather than one esti-
mated from the data. There is some indication, however,
that a slight overestimate of the most common marker
allele would be safer to use than an underestimate.
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