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We have developed a software program that weights and integrates specific properties on the genes in a pathogen so
that they may be ranked as drug targets. We applied this software to produce three prioritized drug target lists for
Mycobacterium tuberculosis, the causative agent of tuberculosis, a disease for which a new drug is desperately needed.
Each list is based on an individual criterion. The first list prioritizes metabolic drug targets by the uniqueness of their
roles in the M. tuberculosis metabolome (‘‘metabolic chokepoints’’) and their similarity to known ‘‘druggable’’ protein
classes (i.e., classes whose activity has previously been shown to be modulated by binding a small molecule). The
second list prioritizes targets that would specifically impair M. tuberculosis, by weighting heavily those that are closely
conserved within the Actinobacteria class but lack close homology to the host and gut flora. M. tuberculosis can survive
asymptomatically in its host for many years by adapting to a dormant state referred to as ‘‘persistence.’’ The final list
aims to prioritize potential targets involved in maintaining persistence in M. tuberculosis. The rankings of current,
candidate, and proposed drug targets are highlighted with respect to these lists. Some features were found to be more
accurate than others in prioritizing studied targets. It can also be shown that targets can be prioritized by using
evolutionary programming to optimize the weights of each desired property. We demonstrate this approach in
prioritizing persistence targets.
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Introduction

The Need for Tools to Rapidly Identify Drug Targets
The cost of research and development in the pharmaceut-

ical industry has been rising steeply and steadily in the last
decade, but the amount of time required to bring a new
product to market remains around ten to fifteen years [1].
This problem has been labeled an ‘‘innovation gap,’’ and it
necessitates investment in inexpensive technologies that
shorten the length of time spent in drug discovery.

The target identification stage is the first step in the drug
discovery process [2] and as such can provide the foundation
for years of dedicated research in the pharmaceutical
industry. As with all the other steps in drug discovery, this
stage is complicated by the fact that the identified drug target
must satisfy a variety of criteria to permit progression to the
next stage. Important factors in this context include
homology between target and host (to prevent host toxicity
such homology must be low or nonexistent [3]); activity of the
target in the diseased state [4,5]; and the essentiality of the
target to the pathogen’s growth and survival [6–8].

The values of some of these selection criteria can be found
easily by querying publicly available bioinformatics resources,
including metabolic pathway databases such as KEGG (Kyoto
encyclopedia of genes and genomes) [9], protein classification
sets such as COGs (clusters of orthologous groups) [10], and
databases of ‘‘druggable’’ (potentially useful as drug targets)
proteins [5,11,12].

Traditional prioritization approaches such as literature
searches and mental integration of multiple criteria can
quickly become overwhelming for the researcher. A more
effective alternative is computational integration over differ-

ent criteria to create a ranking function. In this article, we
describe such an application—AssessDrugTarget—that ranks
the genes in a genome according to a given set of weighted
criteria.

The Need for New Drugs for Tuberculosis
Tuberculosis (TB) is one of the most serious infectious

diseases worldwide. The World Health Organization predicts
that between 2002 and 2020, 36 million people will have died
from TB [13]. Infection occurs via aerosol, and inhalation of
only a few droplets containing M. tuberculosis bacilli is
sufficient for the pathogen to infect the lungs. Subsequently,
the pathogenesis of M. tuberculosis infection occurs in two
stages. The first stage, latent TB, is an asymptomatic state that
can persist for many years in the host, requiring only a
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weakened immune response to become activated [14]. In the
second stage, active TB, the bacteria begins replicating and
causing cough, chest pain, fatigue, and unexplained weight
loss. If untreated, the disease eventually culminates in the
death of the patient.

The currently available treatment for TB, DOTS (directly
observed treatment, short course), lasts for an exhausting 6
mo. The first 2 mo involve a strictly scheduled and monitored
intake of four drugs: isoniazid (INH), rifampicin (RIF),
pyrazinamide (PZA) and ethambutol (EMB) [15–17]. This
phase is followed by a continuation phase of 4 mo of INH and
RIF.

The problem of persistence. Only RIF and PZA show
activity against ‘‘persisters,’’ organisms that are in the
dormant phase. These drugs have helped to substantially
shorten the length of DOTS therapy from between 12 and 18
mo to between 9 and 6 mo [16]. However, they do not
eliminate all dormant populations, and PZA is likely to affect
only those persisters that reside in acidic pH conditions [18].

Another limitation of current TB treatment is that many of
the currently used drugs are derived from antibiotics (e.g.,
RIF and streptomycin), and are cidal only against growing
bacterial populations [17].

The problem of multidrug resistance. Even after shortening
DOTS to 6 mo, a pertinent practical issue in the treatment is
patient compliance; 6 mo is still a lengthy drug adminis-
tration period and noncompliance most often contributes to
the development of multidrug-resistant strains. Alternative
second-line drugs then come into use, but multidrug-resistant
strains that also exhibit resistance to these second-line drugs
are now on the rise [17].

It has also been suggested that targeting already known M.
tuberculosis targets for drug development may have limited
success because of potential cross-resistance [19]. Thus, new
drugs that inhibit new targets and that are difficult to
overcome by mutation are required.

Aims
Here, we present AssessDrugTarget, a new application that

aims to rapidly prioritize potential drug targets in a genome,
and describe its application to the problem of TB drug
development. The need to quickly identify targets that will be
effective against persisters (persistence targets) and against
growing organisms (new growth targets) has already been
highlighted. We propose that by taking advantage of key
experiments published on the M. tuberculosis genome, com-
parative genomic data, and other structured data, scoring
schemes can be implemented solely for prioritizing new drug
targets in this organism. This approach need not validate all
existing and proposed targets, as the criteria for selecting
targets depend on the goals of the individual researcher.
Since this approach merely prioritizes targets, the subsequent
step would be to validate the prioritized targets, for instance
by constructing a knockout or using chemical validation.
Various ‘‘features’’ are available that can be used to achieve
our aims (described below). We use these to prioritize drug
targets in TB by the three sets of criteria listed below. In each
study, all the available TB features are used but their
respective weights are modified to suit the needs of the list.
Metabolic drug target criterion. The top-prioritized target

genes must be responsible for unique, growth-essential roles
in the TB metabolome (‘‘metabolic chokepoints’’). The
ranking is further prioritized by lack of homology to the
human host and members of the host gut flora, intended to
minimize the chances of undesirable host-drug interactions.
This approach is expected to bias targets whose metabolic
pathways have been mapped.
M. tuberculosis-specific drug target criterion. The prioritized

targets must (1) represent growth-essential genes and (2)
share close homologs within the Actinobacteria class, but (3)
lack a close homolog in the host and host gut flora.
Prioritizing by this approach is more likely to yield M.
tuberculosis-specific targets, which would be less likely to cross-
react with normal bacterial processes in the host. The
presence of close homologs in other Actinobacteria will also
permit studies of the target in the laboratory. The metabolic
pathways of these targets need not be mapped, as in the
metabolic drug target criterion.
Persistence drug target criterion. The prioritized targets

must play a role in the maintenance of the dormancy phase.
This list is not straightforward to produce because persis-
tence is not well understood. We aim to take advantage of the
expression profiles of a few targets that have been implicated
in maintaining persistence, to evolve the feature weights for
this list.

Data Sources Available for Ranking TB
Essential genes. A novel method, transposon site hybrid-

ization, was implemented and applied to determine essential
genes in M. tuberculosis under nutrient-rich conditions [8,20].
Briefly, this procedure involved two steps: (1) random
disruption of genes by transposon mutagenesis to generate
growth mutants, and (2) competitive hybridization between
insertion and gene probes to identify mutants that could not
survive in nutrient-rich media. This method predicted 614
genes essential for growth in vitro, but with a predicted 1%
false discovery rate [8]. Of these predicted essential genes,
however, 78% share a close homolog in the degraded
Mycobacterium leprae genome (40% the size of M. tuberculosis),
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which increases confidence in the results on the premise that
essential genes will be conserved in the M. leprae genome.
Lamichhane et al. [21] used a similar approach to find
nonessential genes under the same in vitro conditions: 770
genes were predicted to be dispensable.

These genes have been shown to be essential for survival
only under nutrient-rich conditions that favor bacterial
growth. The dormancy stage of the macrophage is poorly
understood in M. tuberculosis, but because the environment in
general is harsh, hypoxic, acidic, and nutrient poor, the
bacteria maintain a distinctly subdued metabolic state.
Therefore, targeting any of these essential genes is more
likely to kill or inhibit only growing bacteria unless they are
also essential in persisting bacilli.

Epidemiology. In 100 M. tuberculosis clinical isolates, 219
genes were found to be frequently deleted [22]. These genes
are undesirable as drug targets, because targeting them would
mean patients worldwide would not be treated with the same
drug.

Druggable protein domains. Hopkins et al. [23] compiled a
database of Interpro domains that bind potent compounds
following the Lipinsky rule of 5 (LR5) [11,23]. Briefly, the
Investigational Drugs Database, the Pharmaprojects Data-
base, and the literature were each surveyed for LR5-
compliant compounds with binding affinity below 10 lM.
Only proteins targeted by experimental drugs were retained,
and those with activity not modulated by the bound
compound were eliminated. The drug-binding domain
sequences of these proteins were used to identify the
corresponding Interpro domains; 130 protein families were
found.

In a similar manner, a database of 70 Enzyme Commission
(EC) numbers of known enzyme targets and their respective
marketed drugs was compiled [12].

These lists are not specific to M. tuberculosis or even to
infectious disease generally, but if the same protein domain
has been successfully inhibited in the treatment of another
disease, it may help to identify new classes of compounds that
are effective against the same target domain in M. tuberculosis.

Metabolic chokepoints. Yeh et al. [24] defined a chokepoint
reaction as one that either uniquely consumes a specific
substrate or uniquely produces a specific product in the
metabolic network. Enzymes involved in unique essential
chokepoint reactions would thus make good metabolic drug
targets, because the pathway data suggest that their function
cannot be compensated for by another enzyme. The number
of enzymes having unique EC assignments in the proteome

can also be used to indicate which enzymes might perform
unique reactions [24].
Availability of structural clues. The availability of a target’s

crystal structure would aid in rational drug design and would,
therefore, provide a strong practical advantage in high-
throughput docking and lead optimization studies. Two
databases of M. tuberculosis protein crystal structures are
available for this purpose, the TB Structural Genomics
Consortium [25] and the PDB Database (http://www.rcsb.org/
pdb).
The Small Molecule Interaction Database (SMID) genome

comparison tool [26] allows the comparison of up to five
genomes to identify small molecule–protein domain inter-
actions that are unique to or common among the query
genomes. Genome comparisons can be performed to identify
possible broad-spectrum targets or pathogen-selective tar-
gets. An important point to note here is that the data in the
SMID database is based on the analysis of structures in the
PDB database that share homology to the query sequence.
This means that any results obtained here will be biased by
targets that have a close crystallized homolog.
Other structural features such as desirable ranges of length,

pI, and molecular mass of the target are also important in the
practical tasks of expressing, purifying, and cloning the
target.
Presence/absence of a close homolog. An ideal drug would

have no or minimal interaction with the host and host flora
but high binding specificity for the pathogen. To increase the
chances of this favorable binding pattern, targets can be
penalized for having high sequence similarity to its host and
host flora.
If a broad-spectrum drug or antibiotic is sought, targets

can be weighted heavily for having close homolog conserved
across a range of pathogens. Conversely, a pathogen-specific
target may be sought. A pathogen-specific drug may be
desirable for TB, as the long treatment time will encourage
selection pressure for drug resistance in the natural gut flora.
Gene expression in disease models. Although the metabolic

state of M. tuberculosis in latent in vivo infection is not well
understood, various microarray models of the latent state are
available [27–33]. If a target is expressed in most of these
models, it increases confidence that it is expressed in the
latent in vivo infection, which could mean that it is required
for survival during dormancy.

Results

Growth-Essential Genes
We overlapped the outcome of the two essentiality

publications to obtain their consensus (Figure 1). Consol-
idation of the two lists showed that 570 genes could be
essential under nutrient-rich conditions.

Epidemiology
We found the only two of the 219 deleted genes were in the

consolidated essentiality list in the above section. This is a
positive finding, because a truly essential gene would be
retained in the population.

Druggable Protein Domains
The M. tuberculosis proteome was scanned for LR5-

druggable Interpro domains, and 354 such targets were

Figure 1. Overlap of M. tuberculosis Growth-Essential Genes

DOI: 10.1371/journal.pcbi.0020061.g001
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found. Of these, 50 were members of the combined growth-
essentiality list (Table 1).

The M. tuberculosis proteome was also queried for the
druggable enzyme classes from the Robertson et al. database
[12]. Only six growth-essential proteins were found in this
search (unpublished data).

Metabolic Chokepoints
Upon scanning for chokepoint reactions for M. tuberculosis

in the KEGG database [9], only 19% of the 3,927-member M.
tuberculosis proteome was currently assigned to metabolic
pathways. By using chokepoints as criteria for prioritization,
the top results become biased to a small fraction of the
proteome. This point makes chokepoint analysis quite
restrictive. Of the mapped proteins, 51% produce a unique
product and 47% consume a unique substrate in the
metabolic network. A small fraction (22%) of the TB
proteome had been assigned a EC number; of this propor-
tion, 42% was uniquely assigned.

Availability of Structural Clues
We searched for PDB structures with sequence identity

greater than 80% of M. tuberculosis proteins. This threshold
was chosen because over 70% sequence identity has been

described as useful for drug docking studies [34]. In total, 35
‘‘nutrient-rich’’ essential targets were found.
We used the SMID genome tool [26] to compare M.

tuberculosis, M. leprae, M. avium, H. sapiens, and Mus musculus.
The first three genomes had 102 domains in common that
were absent in the latter two.

Genetic Algorithm-Optimization of Persistence Targets
Using Kruskal-Wallis analysis of variance (p , 0.0001), the

observed mean scores of the optimized weights (Figure 2) had
significant within-group differences. The Tukey’s HSD
(honestly significant difference) test was then applied to all
pairwise differences between the means (95% confidence
level) to find which groups of experiments evolved the
heaviest and lowest weights. This showed that naı̈ve macro-
phages, in oligo arrays, evolved the heaviest weight (l ¼ 89).
This was followed by the grouping of a nonreplicating
persistence model, nrp1, and pH 5.6 (l ¼ 79 and 76
respectively). The lowest evolved weight group included three
macrophage-based experiments [27]—activated M0, activated
M0 using oligo arrays, and naı̈ve M0—along with a model at
pH 4.8 and ‘‘nrp1 versus log growth’’ (l ¼ 10, 7, 5, 10, and 7,
respectively). The medians of 100 possible solutions were used
to produce the final optimized list, yielding the ranks seen in
Table 2. These optimized weights were able to rank 8/10
targets into the top 25%.

Discussion

A Quick and Flexible Decision-Making Tool
Using AssessDrugTarget to prioritize drug targets is very

quick, taking a few seconds to produce a desirable list. The
critical part of using the software is to carefully choose which
features to use and how much to weight them so that the
prioritization demands set out by the researcher are met as
closely as possible. These decisions should be influenced by
the reliability of the respective datasets. Alternatively, if a set
of example targets is available, an optimization technique
such as a genetic algorithm (GA) can be used to determine
weights.
Here, we performed three studies on M. tuberculosis to

produce metabolic, M. tuberculosis-specific, and persistence
target ranks for all members of the genome (Dataset S1). We
do not discuss new targets here because we wish to focus on
the ability to identify new drug targets and not on the
subsequent stage of drug discovery, target validation [2].
Therefore, we assess how current, candidate, and proposedM.
tuberculosis targets (hereafter ‘‘studied targets’’) stand in our
rankings (Table 3) and use the observations to evaluate the
strengths and limitations of software-based target prioritiza-
tion and to explore possible improvements to the approach.
The three classes of studied targets (Table S1) were obtained
from a literature review. In Table 3, we use a crude ‘‘top
13%’’ threshold (representing ranks .500) to draw attention
to genes that were prioritized.

Functional Category Biases of Studied TB Drug Targets
Table 3 (target status: current and candidate) shows that

60% of current and candidate targets are involved in cell wall
biosynthesis. It has been noted, however, that drugs that
target cell wall synthesis are more likely to be active against
growing bacteria than against persisters [35]. Also, both RIF

Table 1. Number of LR5 Compound Binding Domains Predicted
in the M. tuberculosis Growth-Essential Proteome

Interpro Domain Domains among

M. tuberculosis

Growth-Essential Proteins

Aminoacyl-tRNA synthetase, class I 6

Short-chain dehydrogenase/reductase SDR 6

ATP-binding region, ATPase-like 4

FAD-dependent pyridine nucleotide-

disulphide oxidoreductase

4

Peptidase, eukaryotic cysteine

peptidase active site

3

Carboxyl transferase 2

SAM (and some other nucleotide)

binding motif

2

Phosphoribosyltransferase 2

Aldehyde dehydrogenase 2

Cytochrome P450 2

DNA topoisomerase II 2

Zinc-containing alcohol

dehydrogenase superfamily

2

Glycosyl transferase, family 3 1

IMP dehydrogenase/GMP reductase 1

Peptidase S1 and S6, chymotrypsin/Hap 1

Rhodopsin-like GPCR superfamily 1

Aldo/keto reductase 1

Glyceraldehyde 3-phosphate dehydrogenase 1

Peptidase M14, carboxypeptidase A 1

Dihydropteroate synthase, DHPS 1

ABC transporter, transmembrane region 1

S-adenosyl-L-homocysteine hydrolase 1

Orn/DAP/Arg decarboxylase 2 1

Alanine racemase region 1

Carbohydrate kinase, PfkB 1

Ribonucleotide reductase large subunit 1

This listing corresponds to the essential genes in Figure 1.
DOI: 10.1371/journal.pcbi.0020061.t001
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and PZA, which are the only drugs to shorten TB chemo-
therapy (and have thus shown activity against persisters), do
not target cell wall biosynthesis. Therefore, new targets—to
combat persistence—are required, and this explains why 30%
of newly proposed targets belong to this category (Table 3,
target status: proposed). Only two of the proposed targets
(pcaA, glf) are involved in cell wall biosynthesis, although pcaA
is a more interesting target for its role in persistence [36].

Of course, it would be desirable if the target selected is
essential for both growing and dormant bacteria. Such targets
were expected to have high ranks in both the metabolic and
optimized persistence lists. It was seen that AssessDrugTarget
ranked two of the studied targets, cyp51 and devS, in the top
13% of both lists (Table 3). These are discussed later.

Ranking of Studied Targets
Metabolic list. It was firstly observed that most of the

targets, inhibited by current second-line TB drugs, could be
prioritized into the top 13% of the metabolic list (Table 3).
These are involved in cell wall synthesis or transcription. Of
the first-line drug targets, only inhA could be prioritized
within the top 13% (rank ¼ 231). Of the three targets of the
first-line drug EMB, two rank fairly highly: 554 (embC) and 678
(embB). These two targets, and not embA, were shown by
transposon site hybridization mutagenesis to be essential,
leading to their ranks being vastly prioritized over embA (rank
¼ 2,115). Because we were interested in targets that carry out
unique reactions, the embC, A, and B genes generally rank
lower in the metabolic list because all three catalyze the same
reaction. Similarly, four RNA polymerases in M. tuberculosis
(rpoA, B, C, and Z) reduce the rank of the SM polymerase
target rpoB (rank ¼ 1,759).
The top three targets in this list have each been studied for

drug discovery: folP1 (rank¼ 1), lysA (rank¼ 3), and alr (rank¼
6). The def gene, coding for peptide deformylase, is a new
target for the treatment of multidrug-resistant M. tuberculosis;
it also ranks highly in this list (rank ¼ 360).
Other functional classes that were represented in the

prioritized target list include vitamin and amino acid
biosynthesis. Two members of the top list (folP1 and dfrA,
ranked at 1 and 20, respectively) are involved in the
biosynthesis of folate, an essential vitamin in M. tuberculosis,
indicating this to be an important pathway to target for drug
development.
Actinobacteria-specific list. Of the three currently used

drugs that have been shown to specifically inhibit TB (Table
3), INH and ETA both target inhA and EMB targets embC, A,
and B. Only EMB targets could be prioritized as being M.
tuberculosis-specific (Table 3): embC and B rank higher than our
13% criterion, and embA ranks 628. The failure to prioritize

Figure 2. Box and Whisker Plots of GA-Optimized Weights from 100 Evolved Solutions

Each possible solution was able to rank eight of ten target genes within the top 25%.
M0, macrophage; n, number of experiments; nrp, nonreplicating persistence.
DOI: 10.1371/journal.pcbi.0020061.g002

Table 2. Ranking of Persistence-Implied Genes with Only Latent-
State Model Features

Gene Name Persistence Rank

before Optimization

Persistence Rank

after Optimization

Rv0467 aceA 65 94

Rv1131 gltA1 353 249

Rv3132c devS 538 239

Rv1475c acn 532 434

Rv3133c devR 995 630

Rv1915 aceAa 1,152 479

Rv1916 aceAb 1010 793

Rv0896 gltA2 2,421 585

Rv0470c pcaA 2,891 1,993

Rv2583c relA 3,304 3,296

Genes were selected (see Table 1 for weighting schemes used) using uniform and
optimized microarray parameters respectively. The optimized parameters rank the
majority of these genes in the top 25% (designated in green type).
DOI: 10.1371/journal.pcbi.0020061.t002
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inhA (rank ¼ 2,679) suggests that subtle structural features,
rather than sequence homology, can be used to enhance
ranking it as a M. tuberculosis-specific target. These could
involve Pfam scores.

One of the fibronectin-binding proteins, fbpD, also rank
highly in theM. tuberculosis-specific list (rank .13%) (Table 3).
Two persistence targets may also be uniquely targeted in M.
tuberculosis: icl (rank .13%) and devS (rank ¼ 724).

The range of top ranks of the studied targets are not as
high as in the metabolic list; the top rank is 176 (glnE)
compared to three targets ranked above 10 in the metabolic
list. This is somewhat expected because the pathways of many
known targets are mapped and, therefore, are likely to be

represented in the metabolic list. It does suggest, however,
that many new M. tuberculosis-specific targets can be found.

Persistence list. Out of the seven persistence targets shown
in Table 3, icl, devR, and devS were already optimized to rank
in the top 25% (Table 2); pcaA and relA could not be
optimized. he target devS also has a high metabolic rank. As
mentioned earlier, cyp51, one of 20 M. tuberculosis cytochrome
P450s, ranked highly both in this list and in the metabolic list.
It has been shown that niclosamide (antihelminth group) and
2-nitroimidazole (antifungal group), which are substrates of
cytochrome P450s, exhibit activity against stationary phaseM.
tuberculosis [37] so they may inhibit cyp51 in this process. IdeR,
an iron-dependent repressor and activator, was the top-

Table 3. Ranks of Studied Targets in Three Prioritized Lists

Target Status Drug Gene Name Disrupted

Mechanism

Metabolic

Rank

Actinobacteria-

Specific Rank

Optimized

Persistence Rank

References

Current Pyrazinamidea — M/P — — — [48]

Rifampicina rpoB R/P 1,759 2,762 1,604 [49]

Ethambutola,b embC C 554 219 3,626 [50]

embA C 2,115 628 3,893

embB C 678 321 3,908

Streptomycina rpsL T 1103 2,990 997 [51]

INHa,b inhA C 231 2,679 2,915 [52,53]

Quinolonesc gyrA D 424 2,586 3,110 [54]

Quinolonesc gyrB D 65 1,569 1,706

Ethionamideb,c inhA C 1,850 1,029 2,788 [53]

D-cycloserinec alr C 6 282 1,519 [55]

ddlA C 350 550 1,558

Candidate Epiroprim dfrA V 20 3,582 2,009 [56]

Trimethoprim folP1 V 1 596 809 [57]

6-azido-6-deoxytrehalose fbpC C 2,995 1,412 521 [58]

fbpB C 1,850 1,029 2,788

fbpD C 116 220 3,134

fbpA C 1,516 549 2,131

Azole drugs cyp51 C 255 2,397 189 [37]

cyp121 C 3,716 3,844 3,903 [59]

BB-3497 def T 360 521 2,469 [60]

Diarylquinoline: R207910 atpE E 1,910 2,655 3,867 [42]

Proposed icl P 593 481 77 [46]

pcaA C/P 2,622 1,827 1,116 [36]

relA P 2,851 3,077 2,868 [47,61]

devR P 955 880 108 [39,40]

devS P 46 724 173

Alpha-difluoromethyl ornithine

compounds based on similarity

to T. brucei active site

lysA A 3 927 1,835 [62,63]

panD V 3,164 3,081 1,733 [64]

panC V 283 2,006 2,507

glnE A 436 176 2,519 [65]

Methionine sulphoximine (affects

only membrane-bound target)

glnA1 A 742 1,376 1,602 [66]

aroK A 172 1,394 2,863 [67]

glf C 111 367 685 [68]

IdeR V/P 510 391 11 [69]

ompA C/M 2,295 2,668 1,515 [70]

mshC D 599 2,088 2,031 [71]

Targets are ranked out of 4,000: M. tuberculosis genome ; 4,000 genes. Ranks in the top 13% are indicated in blue type.
aFirst-line drug.
bCurrent TB-specific drug.
cSecond-line drug.
A, amino acid biosynthesis; C, cell wall biosynthesis; D, transcription; E, energy molecule biosynthesis; M, membrane integrity/energy production; P, persistence; R, RNA synthesis; T,
translation; V, vitamin/co-factor biosynthesis/acquisition.
DOI: 10.1371/journal.pcbi.0020061.t003
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ranking persistence target from this list (rank¼ 11) and it has
been shown to be involved in oxidative stress response [38].

Observed Values of Individual Features
Individual feature scores not only contribute to the overall

target ranks but also embody the properties of a ranked
target. Some features may be more useful than others in the
context of M. tuberculosis targets. Table 4 lists the properties
observed for the studied targets. The contributions of
individual features to the ranking of these targets is discussed
next.

Druggability. It was mentioned earlier that 50 LR5-
compliant targets are found among the growth-essential M.
tuberculosis genes (Table 1). Among the 35 studied targets, 30%
appear to bind a LR5-compound (Table 4) and only two could
be identified as potential targets from the druggable enzyme
database [12]. However, these two targets overlap the LR5
predictions.

The only potential studied target that did not have an
inhibitor listed in Table 3 but that could possibly bind a LR5-
compliant compound, was the two-component sensor histi-
dine kinase devS [39,40], a potential persistence target. devS
has an ATPase domain that is structurally similar between
histidine kinases and DNA gyrases (for the domain descrip-
t ion , s ee h t tp : / /www . sanger . ac .uk / cg i -b in /P fam /
getacc?PF02518). Coumarins are a class of LR5 drugs that
competitively bind to the ATPase domain of DNA gyrases and
are used in the treatment of human cancer (http://www.
embl-ebi.ac.uk/interpro/DisplayIproEntry?ac¼IPR000565).
This class of compounds could be studied for activity against
devS.

Growth-essentiality and epidemiology. In one study [8], 16
of 34 (47%) studied targets were found to be essential for
growth in vitro. In another study [21], 31 of 34 (91%) studied
targets were not shown to be dispensable under similar
growth conditions (Table 4). Since only half of the studied
active-M. tuberculosis targets were identified in the first study,
it is likely that more growth targets can be found.
Coincidentally, the percentages of studied targets classed as
essential (47% and 91% respectively) are proportional to the
estimated percentages of essential genes in the M. tuberculosis
genome: 15% and 35% in the two respective studies [8,21].
devS, a potential persistence target, appeared in both lists,
suggesting that inhibiting it might affect growing as well as
dormant M. tuberculosis.

The only studied target that was found to be deleted in
clinical isolates was the cytochrome P450 oxidase cyp121 [22].
This would still be a good target for intervention because M.
tuberculosis contains 19 other P450 oxidases that are likely to
be sensitive to treatment by azole drugs. icl2, a second
homologous copy of the persistence target icl1, was also found
to be deleted in the same study. Once again, this is acceptable
given that M. tuberculosis has two copies of this gene and can
presumably tolerate the loss of one of them.

Metabolic chokepoints. In total, 29 (77%) of the studied
targets are mapped to metabolic pathways (Table 4). Of these,
only 15% targets produce a unique product and 7% consume
a unique substrate. The unique product and unique substrate
criteria of identifying chokepoints, therefore, has limited
representation in studied targets. It should perhaps be noted
that the perceived ‘‘uniqueness’’ of many of these predicted
chokepoint reactions may be negated by the presence of

alternative and yet uncharacterized pathways in M. tuber-
culosis. Since only 19% of the M. tuberculosis proteome has
been mapped to metabolic pathways, the unmapped 81%
represents a relatively large unknown fraction that can
delimit the value of chokepoint prediction in M. tuberculosis.
Only further laboratory knockout studies (for example, by
demonstrating that a lethal auxotrophic mutant can be
generated) will show how many of these chokepoint reactions
really are unique in M. tuberculosis.
An alternative application of pathway data for drug target

prioritization might be to characterize the downstream
essential steps, in the same and subsequently linked pathways,
that are disrupted by knocking out an early point in the
pathway.
We also sought the number of enzymes with a unique EC

assignment, assuming that it would indicate the number of
chokepoint targets. This category contains 17 (50%) of the
studied targets (Table 4). Therefore, this indicator may be
more predictive of chokepoint reactions in M. tuberculosis
than the unique product and unique substrate indicators.
Structural clues. Some 85% of the studied targets have

been crystallized, highlighting the important contribution to
TB drug discovery studies by the M. tuberculosis structural
genomics consortium and other structural genomics groups
(Table 4) [25]. Of the studied targets in Table 4,6 (20%) were
predicted to have small molecule interaction domains (SMID)
present in mycobacteria but absent in human and mouse
(Table 4). One of these was inhA, which ranked quite low in
theM. tuberculosis-specific list (Table 3; rank¼1,029). The gene
inhA has 25% sequence identity to a gene encoding a human
protein (pecR) and 31% to a mouse protein (Decr1). Thus,
although inhA ranked quite low when penalized by host
sequence identity, the SMID domain feature scores it
positively as a ‘‘host-safe’’ target. However, SMID predicted
that inhA would interact with triclosan (http://www.
quantexlabs.com/triclosan.htm), a broad-spectrum antibacte-
rial/antimicrobial agent. Therefore, the presence of inhA in
host flora (e.g., 33% identity to E. coli FabI) would still have
rendered this target a low rank in M. tuberculosis-specific
prioritization. This does suggest, however, that prioritization
of inhA can be achieved by selecting a heavy weight for the
SMID domain feature and other subtle structure-based
features. In the future, we plan to use the Pfam scores [41]
when sequence similarity of the target to the host and host
flora is very high.
Expression in latent state models. As mentioned earlier,

genetic programming could optimize the weights of latent-
state microarray models to prioritize 80% of genes known to
be involved in persistence. This programming approach
helped us to create a persistence-optimized list. Scanning
the top ranks of the optimized persistence list thus presents a
chance to find more targets that could be LR5-compliant and
that could help to target persistence (altogether, 354 LR5-
compliant targets were found in M. tuberculosis).

Studied Targets That Were Not Prioritized
We were unable to prioritize 25% of studied targets in any

of our three lists (Table 3). Certain targets, such as ATP
synthase, encoded by atpE (ranks of 1,910, 2,655, and 3,867,
respectively), do not fit any of the criteria we sought. ATPE is
a ubiquitous protein required by all organisms, so it would
not have been a logical choice as a drug target. The actual
discovery of the target was itself quite a surprise [42], so it is
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unlikely that it would be prioritized in our computational
approach. The lesson is that some targets are still best
discovered serendipitously.

Future Development
Researchers may wish to extend the use of our software to

dissect the prioritized list by desirable ranges of peptide
length, pI, and molecular mass if they wish to express, purify,
and clone a desired target. We plan to incorporate the Pfam
scores for selective targeting when the sequence homology to
a host protein is high. Certain structured data that are not yet
possible to predict computationally, but that would boost the
software-based approach, include pathway-specific auxotro-
phic mutant data and putative transporters of essential
molecules.

Conclusion
AssessDrugTarget provides a simple framework for inte-

grating the vast amount of biological data that can be used in

the drug target identification stage. The software can be
extended to include scoring patterns for any kind of
structured biological data. The weights given to each
criterion can be set by an expert user or determined using
a GA if example targets are available. We were able to predict
354 LR5-compliant protein domains in M. tuberculosis. One of
the two growth-essentiality datasets correctly identified 90%
of studied active-TB targets, whereas the other was 55%
accurate in this respect. We found that the unique product
and unique substrate criteria of chokepoint analysis may be
of limited value because of the relatively small proportion of
M. tuberculosis proteins that have been mapped to metabolic
pathways (19%). The chokepoint criterion of unique EC
assignments may be more useful for predicting M. tuberculosis
targets. Predicting distinct SMID domains and using other
structure-based features, such as Pfam scores, may be useful
for prioritizing targets when sequence homology to a host
protein is relatively high. The various microarray models of

Table 4. Individual Features of Studied Targets

Target

Status

Gene

Name

Disrupted

Function

Lipinsky

Druggable

EC

Druggable

In Vitro

Essentiality

[8]

In Vitro

Essentiality

[21]

Isolate

Deletion

UniqueProduct

(Weight ¼ 10.0)

Unique Substrate

(Weight ¼ 10.0)

Unique EC

(Weight ¼ 10.0)

Current rpoB R/P þ þ 0.3 0.2 2.5

embC C þ þ 2.0 2.0 2.5

embA C þ 2.0 2.0 2.5

embB C þ þ 2.0 2.0 2.5

rpsL T þ þ ? ? ?

inhA C þ þ 0.3 0.2 þ
gyrA D þ þ ? ? 5.0

gyrB D þ þ þ ? ? 5.0

alr C þ þ þ þ 1.7 þ
ddlA C þ þ 0.4 0.2 þ

Candidate dfrA V þ þ þ 3.3 2.5 þ
folP1 V þ þ þ þ 5.0 3.3 5.0

fbpC C 0.4 0.9 3.3

fbpB C þ ? ? ?

fbpD C þ þ ? ? ?

fbpA C þ 0.4 0.9 3.3

cyp51 C þ ? ? þ
cyp121 C þ þ � 0.4 0.5 0.5

def T þ þ 3.3 0.2 þ
atpE E þ þ 0.4 0.2 1.3

Proposed icl P þ 0.4 1.7 3.3

pcaA C/P þ 0.6 0.5 1.0

relA P þ 0.8 þ
devR P þ ? ? ?

devS P þ þ þ ? ? 0.8

lysA A þ þ þ þ þ þ
panD V 1.4 0.8 þ
panC V þ þ 5.0 3.3 þ
glnE A þ þ 0.3 0.2 þ
glnA1 A þ þ 1.7 0.7 3.3

aroK A þ þ þ 5.0 þ
glf C þ þ þ þ
IdeR V/P þ ? ? ?

ompA C/M þ ? ? ?

mshC D þ þ 5.0 1.3 5.0

Features whose scores are dynamically computed in AssessDrugTarget, are shown here with respect to a maximum weight of 10. The key for ‘‘Disrupted Function’’ is the same as in Table 3.
þ, maximum score;�, minimum score; ?, unknown; blank cell, score of 0.
M1, Microarray: M0 Activated (n¼3); M2, Microarray: M0 Activated Oligo (n¼1); M3, Microarray: M0 Naive; (n¼3); M4, Microarray: M0 Naive Oligo (n¼1); M5, Microarray: Starvation (n¼6);
M6, Microarray: Starved 6 h (n ¼ 1); M7, Microarray: Betts Starvation (n ¼ 3); M8, Microarray: nrp1 (n ¼ 2); M9, Microarray: nrp1 Aerobic (n ¼ 1); M10, Microarray: nrp1 log (n ¼ 2); M11,
Microarray: Hypoxia (n¼ 1); M12, Microarray: nrp2 (n ¼ 15); M13, Microarray: pH 4.8 (n¼ 7); M14, Microarray: pH 5.2 (n¼ 6); M15, Microarray: pH 5.6 (n ¼ 6).
DOI: 10.1371/journal.pcbi.0020061.t004
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latent TB allow us to prioritize which targets could be
selected for combating TB persistence.

Materials and Methods

Our application, AssessDrugTarget, accepts a parameter file in
XML format. The XML file specifies a number of desired drug target
features, each of which has a user-specified weight, penalty scores,
and at least one associated SQL query. A null score must also be
specified if the feature data are not available for a particular gene.
The software generates a table in which the genes are ranked by their
score totaled across the provided feature weights. Optional informa-
tion, for example the gene’s alternative names, its mapped metabolic
pathways, and references, will also be printed if these are specified
under the ‘‘supplementary’’ tag of the parameter XML file.

Implementation. AssessDrugTarget is written in Perl and has been
designed to be as flexible and extendable as possible. It comes
bundled with a DrugTarget package and requires the following
additional Perl modules, which are all available from the CPAN
repository (http://www.cpan.org): XML::TreeBuilder, DBI, and Statis-
tics::Descriptive.

The parameter XML file initially specifies a database resource that
contains information about the database type and its connection
attributes. The Perl database interface (DBI; http://dbi.perl.org) was
used to implement this feature. DBI allows the XML file to be
modified to connect to different kinds of SQL databases using any
valid Perl DBI driver. The SQL query for each drug target feature is
specified in the main parameter file. We plan to expand this capacity

in the future to receive XML responses from a web service and
process them to generate DrugTarget::Report objects.

The scores and penalties in the parameter XML file can be
modified easily to bias the weights according to the confidence the
researcher has in a particular drug feature type.

To specify new drug features, new objects representing the feature
can be created by (1) extending the DrugTarget::ReportGenerator
object; (2) implementing it to return a DrugTarget::Report object (an
object in which each gene must be scored); and (3) specifying it as a
valid feature in the DrugTarget::ReportParser class data and creating
an entry in the XML parameters.

In our target genome, M. tuberculosis strain H37Rv, each gene has a
unique ‘‘Rv’’ code number assigned that was the synonym used to
index all tables in our database. All the original datasets we used
could be mapped back to this code. Such a numeric indexing system
should always be preferred over using gene names or other
qualitative variables, which often change upon data revision. In
addition, results of BLAST searches [43] were also indexed by this
code. Other ways of indexing genes that could be used toward this
end could involve mapping them back to their respective orthologous
clusters [44].

Weight selection for metabolic and M. tuberculosis-specific target
lists. The weights for the different features used to achieve the first
two ranked lists are summarized in Table 5. The weights were chosen
in consultation with a TB drug development group.

Growth-essentiality and epidemiology. Both growth-essentiality
and epidemiology were weighted heavily in both the metabolic and
M. tuberculosis-specific lists (þ30 if essential and �500 if deleted,
respectively) (Table 5), because it was considered vital in our study

Table 4. Extended

PDB

Structure

Unique SMID

Domain

Phylogeny

(Weight

¼ 10)

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

þ �0.6 � � � þ þ � � � � � � � �
4.3 � � � � þ � � � � � �
4.6 � � � � � � � � � � �
4.1 � � � � � � � � � � � � �

þ �2.4 � � þ þ � þ þ þ � � � �
þ þ 0.5 � � � � � � � � � � � �
þ 0.3 � þ � þ � � � � � � � � �
þ 0.0 � � þ � þ � � þ � � � �
þ 2.3 þ � þ þ � � � � � �
þ 2.4 þ � þ � � þ � � � � �
þ þ �3.1 � � � � þ � � � � �
þ 1.6 þ � � � þ �
þ 3.9 � � � � þ þ � � � þ þ þ
þ 2.8 � � � � � � þ � � � �
þ 4.8 � � � � � � � � � � �
þ 4.4 � � � þ � � þ � � � � �
þ 0.7 þ þ þ þ þ þ � � þ þ þ
þ 1.2 þ þ þ � � � � � � � � � �
þ 2.7 � � � � � � � � � �
þ �0.1 � � � � � � � � � � � �
þ þ 3.0 þ þ þ þ þ þ þ � þ � � þ þ þ
þ 2.4 � � � þ þ � � � � � � �
þ 0.9 � � � � þ � � � � � �
þ þ 2.1 þ þ � � þ � þ � þ þ � � �

1.2 þ þ � � � þ þ þ � þ þ
þ 0.5 � � � þ � þ � � � �
þ þ 1.0 � � � � þ � þ � � � � � �
þ þ �0.4 � � � � � þ � � � � � þ

4.4 � � � � � � � � � �
þ 1.2 � � � � � þ þ þ � � � �
þ 0.6 � � � � � � � � � � �
þ 3.2 � þ � þ � � þ þ þ � � �
þ 2.5 þ þ þ þ þ þ þ þ þ � þ þ þ þ
þ 0.1 � � � � � � � þ þ
þ �0.1 � � þ þ � � þ � � � �
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Table 5. Weighting Schemes of Different Features Used to Prioritize TB Drug Targets

Feature Description Details Weight of

Metabolic Target

Weight of

TB-Specific Target

Essentiality Not experimentally shown to

be dispensable [21]

þ30 þ30

Experimentally predicted to be

essential [8]

þ30 þ30

Predicted to be essential for

slow growth [8]

þ4 þ4

Epidemiology Deleted in clinical isolates [22] �500 �500

Druggable protein domains LS5-druggable [11] þ50 þ5

EC-druggable [12] þ50 þ5

Metabolic chokepoints Unique product þ20 þ10

Common product; n enzymes

produce the common product

þ(20/n) þ(10/n)

Unmapped in metabolic path-

ways

þ2.1 þ6.5

Unique substrate þ20 þ10

Common substrate; n enzymes

catalyze the common substrate

þ(20/n) þ(10/n)

Unmapped in metabolic path-

ways

þ2.1 þ6.5

Unique EC þ20 þ10

Unknown EC þ11.1 þ6.5

Availability of structural clues PDB structure þ7 þ5

SMID domain present in Acti-

nobacteria but absent in hu-

man and mouse

þ5 þ5

Close homologa Present in Actinobacteria: My-

cobacterium avium, M. bovis, M.

leprae, M. smegmatis, Bifidobac-

terium longum, Corynebacterium

efficiens, C. glutamicum, Strepto-

myces avermitilis, S. coelicolor,

Tropheryma whipplei

Xn
i¼1

40
n

3 si
Xn
i¼1

200
n

3 si

Present in host and host gut

flora of Homo sapiens, Mus

musculus, Escherichia coli, Sta-

phylococcus aureus, Enterococ-

cus faecalis, Saccharomyces cer-

evisiae (because this is a

minimal eukaryote)

�
Xn
i¼1

100
n

3 si

� �
�
Xn
i¼1

400
n

3 si

� �

Gene expressed in latent state

modelb
Macrophage model [27] Activated macrophage using

Affymetrix arrays (n ¼ 3)

u ¼ 0.7

l ¼ �0.1

u ¼ 0.7

l ¼ �0.1

Activated macrophage using

Oligo arrays (n ¼ 1)

þ2.0 if tu . tl

�1.0 if tl . tu

þ2.0 if tu . tl

�1.0 if tl . tu

Naive macrophage using Affy-

metrix arrays (n ¼ 3)

Naive macrophage using Oligo

arrays (n ¼ 1)

Starvation models Starvation from 4 to 96 h [30]

(n ¼ 3)

Starvation from 18 to 104 days

[29] (n ¼ 6)

Study of inhibitors of metabo-

lism [33]

Starvation for 6 h (n ¼ 1)

NRP1 versus aerobic conditions

(n ¼ 1)

NRP1 versus log growth (n ¼
2)

pH 4.8 (n ¼ 7)

pH 5.2 (n ¼ 6)

pH 5.6 (n ¼ 6)

Hypoxia model [28] (n ¼ 1)

NRP [31] (n ¼ 1)

Adaptation to NRP1, NRP2, sta-

tionary phase [32] (n ¼ 15)

an, number of organisms; s, % sequence identity.
bl, lower threshold; n, number of experiments; u, upper threshold; tu, number of experiments in which expression level � u, 1 � tu � n; tl¼ number of experiments in which expression
level � l, , u; 1� tl � n.
NRP, nonreplicating persistence.
DOI: 10.1371/journal.pcbi.0020061.t005
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that the prioritized targets play essential roles and be conserved
across clinical strains.

Druggable protein domains. A heavy weight, þ50, was chosen for
the ‘‘druggable’’ domain feature in the metabolic list (Table 5). We
chose this weight because we expected the chances of finding a known
‘‘druggable’’ domain to be much higher in proteins, which could be
mapped to known metabolic pathway(s). In the M. tuberculosis-specific
list, many of the prioritized targets were expected to be classed as
‘‘conserved hypothetical proteins’’ with unknown function, and were
therefore unlikely to possess a known ‘‘druggable’’ domain. Con-
sequently, a low weight, þ5, was assigned to this feature in the M.
tuberculosis-specific list.

Metabolic chokepoints. We wished the metabolic chokepoint
feature to dominate the metabolic list because we wanted to
prioritize targets that carry out unique metabolic roles. Conse-
quently, it was assigned a heavy weight, þ20, in the metabolic list
(Table 5). For the M. tuberculosis-specific list, the same feature was
assigned a lower weighting of þ10, because we wanted the scores of
the ‘‘close homolog’’ feature to dictate the rankings in this case.

Availability of structural clues. The weights for these features were
kept quite low (,7; Table 5) for both lists because these confer mainly
pragmatic advantages, which would not be the primary consideration
in identifying a new drug target. Often in a drug discovery program,
the target is cocrystallized with the lead compound at a latter stage,
regardless of whether a crystal structure was available at the start or
not.

Presence or absence of a close homolog. One of our goals was to
prioritize M. tuberculosis-specific targets. Therefore, positive weights
were assigned to targets with close homologs conserved across the
Actinomycetes group in order to minimize interactions with any
other bacterial group (no other Actinomycetes members are known
to symbiotically reside within human tissue). Negative weights were
assigned if the target was found in the host or in gut flora (Table 5).
Homology to gut flora was penalized because the treatment for TB is
still quite lengthy, and undesirable interactions with symbiotic
bacteria may not be well tolerated by the patient.

We wanted this feature to dominate the M. tuberculosis-specific list
but not the metabolic list. Correspondingly, the weights and penalties
chosen were of much higher magnitude in the M. tuberculosis-specific
study (þ200 and�400, respectively) than in the metabolic list (þ40 and
�100) (Table 5).

Gene expression in disease models. Each microarray experiment
was first normalized to have a mean intensity of 0.0 and a variation of
1.0 in order to remove some of the inherent effects of variation
associated with microarray technology [45]. To be available for a
drug-target interaction, the target needs only to be present: It does
not require expression levels many times higher than its reference
state. For this reason, a relatively low upper expression threshold
(.0.7) was chosen to indicate detectable expression in a microarray
experiment (Table 5). A lower expression threshold of less than�0.1
was chosen to penalize targets whose expression may be difficult to
detect.

This feature was given much lower weighting than any of the other
features (weights and penalties ofþ2.0 and�1.0, respectively) because
of the high level of variability in reproducing microarray results. We
also did not have access to the underlying raw data for a number of
these experiments, so the low weights also play a part in balancing
this irregularity. The actual fold change in expression does not affect
the results significantly, as the weighting takes into account only
expression levels below or above user-specified thresholds.

GA implementation for optimizing persistence targets. The micro-
array expression models of latent state (Table 5) help identify the
genes that might be required for persistence. In order to produce a
prioritized persistence target list, we therefore wanted to produce a
list in which (1) these expression features were weighted heavily with
respect to the remaining features, and (2) the respective set of
weighted expression features prioritized genes currently shown to be
involved in maintaining M. tuberculosis persistence. The relative
importance of each model to persistence was not known, so a GA
was implemented (the GA package used is part of the Biojava toolkit,
available at: http://www.biojava.org) to evolve the weights, which
would satisfy these two requirements.

The GA fitness function was designed to evolve a set of weights that
prioritized genes involved in persistence [36,39,46,47] above a
specified threshold (Table 2). We chose a threshold of 1,000, which
represents the top 25% of the M. tuberculosis genome (lower
thresholds were tried but weights could not be evolved that would
rank all the proposed persistence targets above these thresholds). The
algorithm was given a population of weights ranging from 1 to 100 to
mutate and cross over from, yielding an optimized set of weights
(Figure 2).

In terms of performance, this algorithm is expected to scale
linearly with the number of genes. The complexity of the scoring
system will also affect performance. In our approach, we cached the
scores for a prior set of weights, and these were scaled every time the
algorithm assigned new weights. We had only ten known persistence
targets that we could use for training; ideally, a much larger training
set (.100) would have been preferred.

Supporting Information

Dataset S1. The Ranks of M. tuberculosis Genes
(A) Metabolic, (B) M. tuberculosis-specific, and (C) persistence drug
targets are presented in an Excel spreadsheet.

Found at DOI: 10.1371/journal.pcbi.0020061.sd001 (1.3 MB XLS).

Table S1. Accession and ID Numbers of Possible M. tuberculosis Target
Genes and Proteins

Found at DOI: 10.1371/journal.pcbi.0020061.st001 (31 KB PDF).

Accession Numbers

The GenBank (http://www.ncbi.nlm.nih.gov) accession numbers of the
genes referred to in the text are Decr1 (NP_080448) and pecR
(NP_060911); and for M. tuberculosis strain H37Rv (AL123456).
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