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Abstract
Planning problems that involve learning a policy from a single training set of finite horizon
trajectories arise in both social science and medical fields. We consider Q-learning with function
approximation for this setting and derive an upper bound on the generalization error. This upper
bound is in terms of quantities minimized by a Q-learning algorithm, the complexity of the
approximation space and an approximation term due to the mismatch between Q-learning and the
goal of learning a policy that maximizes the value function.
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1. Introduction
In many areas of the medical and social sciences the following planning problem arises. A
training set or batch of n trajectories of T +1-decision epochs is available for estimating a policy.
A decision epoch at time t, t = 0,1,...,T , is composed of information observed at time t, Ot , an
action taken at time t, At and a reward, Rt . For example there are currently a number of ongoing
large clinical trials for chronic disorders in which, each time an individual relapses, the
individual is re-randomized to one of several further treatments (Schneider et al., 2001; Fava
et al., 2003; Thall et al., 2000). These are finite horizon problems with T generally quite small,
T = 2–4, with known exploration policy. Scientists want to estimate the best “strategies,” i.e.
policies, for managing the disorder. Alternately the training set of n trajectories may be
historical; for example data in which clinicians and their patients are followed with i!
nformation about disease process, treatment burden and treatment decisions recorded through
time. Again the goal is to estimate the best policy for managing the disease. Alternately,
consider either catalog merchandizing or charitable solicitation; information about the client,
and whether or not a solicitation is made and/or the form of the solicitation is recorded through
time (Simester, Peng and Tsitsiklis, 2003). The goal is to estimate the best policy for deciding
which clients should receive a mailing and the form of the mailing. These latter planning
problems can be viewed as infinite horizon problems but only T decision epochs per client are
recorded. If T is large, the rewards are bounded and the dynamics are stationary Markovian
then this finite horizon problem provides an approximation to the discounted infinite horizon
problem (Kearns, Mansour and Ng, 2000).

These planning problems are characterized by unknown system dynamics and thus can also be
viewed as learning problems as well. Note there is no access to a generative model nor an
online simulation model nor the ability to conduct offline simulation. All that is available is
the n trajectories of T + 1 decision epochs. One approach to learning a policy in this setting is
Q-learning (Watkins, 1989) since the actions in the training set are chosen according to a (non-
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optimal) exploration policy; Q-learning is an off-policy method (Sutton and Barto, 1998).
When the observables are vectors of continuous variables or are otherwise of high dimension,
Q-learning must be combined with function approximation.

The contributions of this paper are as follows. First a version of Q-learning with function
approximation, suitable for learning a policy with one training set of finite horizon trajectories
and a large observation space, is introduced; this “batch” version of Q-learning processes the
entire training set of trajectories prior to updating the approximations to the Q-functions. An
incremental implementation of batch Q-learning results in one-step Q-learning with function
approximation. Second performance guarantees for this version of Q-learning are provided.
These performance guarantees do not assume assume that the system dynamics are Markovian.
The performance guarantees are upper bounds on the average difference in value functions or
more specifically the average generalization error. Here the generalization error for batch Q-
learning is defined analogous to the generalization error in supervised learning (Schapire et
al., 1998); it is the average diffe! rence in value when using the optimal policy as compared to
using the greedy policy (from Q-learning) in generating a separate test set. The performance
guarantees are analogous to performance guarantees available in supervised learning (Anthony
and Bartlett, 1999).

The upper bounds on the average generalization error permit an additional contribution. These
upper bounds illuminate the mismatch between Q-learning with function approximation and
the goal of finding a policy maximizing the value function (see the remark following Lemma
2 and the third remark following Theorem 2). This mismatch occurs because the Q-learning
algorithm with function approximation does not directly maximize the value function but rather
this algorithm approximates the optimal Q-function within the constraints of the approximation
space in a least squares sense; this point is discussed as some length in section 3 of Tsitsiklis
and van Roy (1997).

In the process of providing an upper bound on the average generalization error, finite sample
bounds on the difference in average values resulting from different policies are derived. There
are three terms in the upper bounds. The first term is a function of the optimization criterion
used in batch Q-learning, the second term is due to the complexity of the approximation space
and the last term is an approximation error due to the above mentioned mismatch. The third
term which is a function of the complexity of the approximation space is similar in form to
generalization error bounds derived for supervised learning with neural networks as in Anthony
and Bartlett (1999). From the work of Kearns, Mansour, and Ng (1999, 2000) and Peshkin and
Shelton (2002), we expect and find as well here that the number of trajectories needed to
guarantee a specified error level is exponential in the horizon time, T . The upper bound does
not depend on the dimension of the observables Ot ’s. This is in contrast to the results of
Fiechter (1994 Fiechter (1997) in which the upper bound on the average generalization error
depends on the number of possible values for the observables.

A further contribution is that the upper bound on the average generalization error provides a
mechanism for generalizing ideas from supervised learning to reinforcement learning. For
example if the optimal Q-function belongs to the approximation space, then the upper bounds
imply that batch Q-learning is a PAC reinforcement learning algorithm as in Feichter (1994 in
Feichter (1997); see the first remark following Theorem 1. And second the upper bounds
provide a starting point in using structural risk minimization for model selection (see the second
remark after Theorem 1).

In Section 2, we review the definition of the value function and Q-function for a (possibly non-
stationary, non-Markovian) finite horizon decision process. Next we review batch Q-learning
with function approximation when the learning algorithm must use a training set of n
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trajectories. In Section 5 we provide the two main results, both of which provide the number
of trajectories needed to achieve a given error level with a specified level of certainty.

2. Preliminaries
In the following we use upper case letters, such as O and A, to denote random variables and
lower case letters, such as o and a, to denote instantiates or values of the random variables.
Each of the n trajectories is composed of the sequence {O0, A0, O1, . . . , AT , OT +1} where
T is a finite constant. Define Ot = {O0,..., Ot } and similarly for At . Each action At takes values
in finite, discrete action space A and Ot takes values in the observation space O. The observation
space may be multidimensional and continuous. The arguments below will not require the
Markovian assumption with the value of Ot equal to the state at time t. The rewards are Rt =
rt (Ot , At , Ot+1) for rt a reward function and for each 0 ≤ t ≤ T (if the Markov assumption
holds then replace Ot with Ot and At with At ). We assume that the rewards are bounded, taking
values in the interval [0,1].

We assume the trajectories are sampled at random according to a fixed distribution denoted by
P. Thus the trajectories are generated by one fixed distribution. This distribution is composed
of the unknown distribution of each Ot conditional on (Ot−1, At−1) (call these unknown
conditional densities {f0,... fT }) and an exploration policy for generating the actions. Denote
the exploration policy by pT = {p0,..., pT} where the probability that action a is taken given
history {Ot , At−1} is pt (a|Ot , At−1) (if the Markov assumption holds then, as before, replace
Ot with Ot and At−1 with At−1.) We assume that pt (a|ot , at−1) > 0 for each action a ∈ A and
for each possible value (ot , at−1); that is, at each time all actions are possible. Then the
likelihood (under P) of the trajectory, {o0, a0, o1,..., aT , oT +1} is

f 0(o0)p0(a0 | o0) ∏t=1
T

f t(ot | ot−1, at−1)pt(at | ot, at−1) f T+1(oT+1 | oT , aT ). (1)

Denote expectations with respect to the distribution P by an E.

Define a deterministic, but possibly non-stationary and non-Markovian, policy, π, as a sequence
of decision rules, {π1,..., πT }, where the output of the time t decision rule, πt (ot , at−1), is an
action. Let the distribution Pπ denote the distribution of a trajectory whereby the policy π is
used to generate the actions. Then the likelihood (under Pπ) of the trajectory {o0, a0, o1,...,
aT , oT +1} is

f 0(o0)1a0=π0(o0)
∏
j=1

T
f j(o j | o j−1, a j−1)1a j=π j(o j,a j−1)

f T+1(oT+1 | oT , aT ) (2)

where for a predicate W , 1W is 1 if W is true and is 0 otherwise. Denote expectations with
respect to the distribution Pπ by an Eπ.

Note that since (1) and (2) differ only in regard to the policy for generating actions, an
expectation with respect to either P or Pπ that does not involve integration over the policy
results in the same quantity. For example, E [Rt |Ot , At ] = Eπ [Rt |Ot , At ], for any policy π.

Let Π be the collection of all policies. In a finite horizon planning problem (permitting non-
stationary, non-Markovian policies) the goal is to estimate a policy that maximizes
Eπ ∑ j=1

T R j | O0 = o0  over π ∈ Π. If the system dynamics are Markovian and each r j(o j, a j,
o j+1) = γjr(o j, a j, o j+1) for r a bounded reward function and γ ∈ (0,1) a discount factor, then
this finite horizon problem provides an approximation to the discounted infinite horizon
problem (Kearns Mansour and Ng, 2000) for T large.
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Given a policy, π, the value function for an observation, o0, is

Vπ(o0) = Eπ ∑
j=1

T
R j | O0 = o0 .

The t-value function for policy π is the value of the rewards summed from time t on and is

Vπ,t(ot, at−1) = Eπ ∑
j=t

T
R j | Ot = ot, At−1 = at−1 .

If the Markovian assumption holds then (ot , at−1) in the definition of Vπ,t is replaced by ot .
Note that the time 0 value function is simply the value function (Vπ,0 = Vπ). For convenience,
set Vπ,T +1 = 0. Then the value functions satisfy the following relationship:

Vπ,t(ot, at−1) = Eπ Rt + Vπ,t+1(Ot+1, At) | Ot = ot, At−1 = at−1

for t = 0,...,T . The time t Q-function for policy π is

Qπ,t(ot, at) = E Rt + Vπ,t+1(Ot+1, At) | Ot = ot, At = at .

(The subscript, π, can be omitted as this expectation is with respect to the distribution of
Ot+1 given (Ot , At ), ft+1; this conditional distribution does not depend on the policy.) In Section
4 we express the difference in value functions for policy π̃ and policy π in terms of the
advantages (as defined in Baird, 1993). The time t advantage is

μπ,t(ot, at) = Qπ,t(ot, at) − Vπ,t(ot, at−1).

The advantage can be interpreted as the gain in performance obtained by following action at
at time t and thereafter policy π as compared to following policy π from time t on.

The optimal value function V *(o) for an observation o is

V *(o) = max
π∈Π

Vπ(o)

and the optimal t-value function for history (ot , at−1) is

Vt
*(ot, at−1) = max

π∈Π
Vπ,t(ot, at−1).

As is well-known, the optimal value functions satisfy the Bellman equations (Bellman, 1957)

Vt
*(ot, at−1) = max

at∈A
E Rt + Vt+1

* (Ot+1, At) | Ot = ot, At = at .

Optimal, deterministic, time t decision rules must satisfy

πt
*(ot, at−1) ∈ arg max

at∈A
E Rt + Vt+1

* (Ot+1, At) | Ot = ot, At = at .

The optimal time t Q-function is
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Qt
*(ot, at) = E Rt + Vt+1

* (Ot+1, At) | Ot = ot, At = at ,

and thus the optimal time t advantage, which is given by

μt
*(ot, at) = Qt

*(ot, at) − Vt
*(ot, at−1),

is always nonpositive and furthermore it is maximized in at at at = πt
*(ot , at−1).

3. Batch Q-Learning
We consider a version of Q-learning for use in learning a non-stationary, non-Markovian policy
with one training set of finite horizon trajectories. The term “batch” Q-learning is used to
emphasize that learning occurs only after the collection of the training set. The Q-functions
are estimated using an approximator (i.e. neural networks, decision-trees etc.) (Bertsekas and
Tsitsiklis, 1996; Tsitsiklis and van Roy, 1997) and then the estimated decision rules are the
argmax of the estimated Q functions. Let Qt be the approximation space for the tth Q-function,
e.g. Qt = {Qt (ot , at ; θ) : θ ∈θ}; θ is a vector of parameters taking values in a parameter space
θ which is a subset of a Euclidean space. For convenience set QT +1 equal to zero and write
En f for the expectation of an arbitrary function, f , of a trajectory with respect to the probability
obtained by choosing a trajectory uniformly from the training set of n trajectories (for example,
En f (Ot) = 1 /n∑i=1

n f (Oit) for Oit the tth observation in the ith trajectory). In batch Q-
learning using dynamic programming and function approximation solve the following
backwards through time t =!T,T − 1,...,1 to obtain

θt ∈ arg min
θ

En Rt + max
at+1

Qt+1(Ot+1, At, at+1; θt+1) − Qt(Ot, At; θ) 2. (3)

Suppose that Q-functions are approximated by linear combinations of p features (Qt = {θT qt
(ot , at ) : θ ∈ Rp}) then to achieve (3) solve backwards through time, t = T,T −1,...,0,

0 = En (Rt + max
at+1

Qt+1(Ot+1, At, at+1; θt+1) − Qt(Ot, At; θt))qt(Ot, At)
T (4)

for θt

An incremental implementation with updates between trajectories of (3) and (4) results in one-
step Q-learning (Sutton and Barto, 1998, pg. 148, put γ = 1, assume the Markov property and
no need for function approximation). This is not surprising as Q-learning can be viewed as
approximating least squares value iteration (Tsitsiklis and van Roy, 1996). To see the
connection consider the following generic derivation of an incremental update. Denote the ith
example in a training set by Xi. Define θ̂n to be a solution of ∑i=1

n f (X i, θ) = 0 for f a given
p dimensional vector of functions and each integer n. Using a Taylor series, expand
∑i=1

n+1 f (X i, θ̂(n+1)) in θ̂(n+1) about θ̂(n) to obtain a between-example update to θ̂(n) :

θ̂(n+1) ← θ̂(n) + 1
n + 1 (En+1( − ∂ f (X , θ̂n)

∂θ̂n ))−1
f (Xn+1, θ̂n).
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Replace 1
n + 1 (En+1( − ∂ f (X , θ̂n)

∂ θ̂n ))−1
 by a step-size αn (αn → 0 as n → ∞) to obtain a general

formula for the incremental implementation. Now consider an incremental implementation of
(4) for each t = 0,...,T . Then for each t, X = (Ot+1, At ), θ = θt and

f (X , θt) = (Rt + max
at+1

Qt+1(Ot+1, At, at+1; θ̂t+1
(n+1)) − Qt(Ot, At; θt))qt(Ot, At)

T

is a vector of dimension p. The incremental update is

θ̂t
(n+1) ← θ̂t

(n) + αn(Rt + max
at+1

Qt+1(Ot+1, At, at+1; θ̂t+1
(n+1)) − Qt(Ot, At; θ̂t

(n)))qt(Ot, At)
T

for t = 0,...,T . This is the one-step update of Sutton and Barto (1998, pg. 148) with γ = 1 and
generalized to permit function approximation and nonstationary Q-functions and is analogous
to the TD(0) update of Tsitsiklis and van Roy (1997) permitting non-Markovian, nonstationary
value functions.

Denote the estimator of the optimal Q-functions based on the training data by Q̂t for t =
0,...,T (for simplicity, is omitted). The estimated policy, π̂, satisfies
π̂t(ot, at−1) ∈ arg maxat

Q̂t(ot, at) for each t. Note that members of the approximation

space Qt need not be “Q-functions” for any policy. For example the Q-functions corresponding
to the use of a policy π (Qπ,t, t = 0,...,T) must satisfy

E Rt + Vπ,t+1(Ot+1, At) | Ot, At = Qπ,t(Ot, At)

where Vπ,t+1(Ot+1, At ) = Qπ,t+1(Ot+1, At , at+1) with at+1 set equal to πt+1(Ot+1, At ). Q-learning
does not impose this restriction on {Q̂t, t = 0, … , T }; indeed it may be that no member of the
approximation space can satisfy this restriction. None-the-less we refer to the Q̂t’s as estimated
Q-functions. Note also that the approximation for the Q-functions combined with the definition
of the estimated decision rules as the argmax of the estimated Q functions places implicit
restrictions on the set of policies that will be considered. In effect the space of interesting polices
is no longer Π but rather ΠQ = {πθ, θ ∈ θ} where πθ = {π1,θ,..., πT,θ} and where each πt,θ(ot ,
at−1) ∈ arg maxat Qt(ot , at ; θ)for some Qt ∈ Qt.

4. Generalization Error
Define the generalization error of a policy π at an observation o0 as the average difference
between the optimal value function and the value function resulting from the use of policy π
in generating a separate test set. The generalization error of policy π at observation o0 can be
written as

V *(o0) − Vπ(o0) = − Eπ ∑
t=0

T
μt

*(Ot, At) | O0 = o0 (5)

where Eπ denotes the expectation using the likelihood (2). So the generalization error can be
expressed in terms of the optimal advantages evaluated at actions determined by policy π; that
is when each At = πt (Ot , At−1). Thus the closer each optimal advantage, μt *(Ot , At ) for At
= πt (Ot , At−1) is to zero, the smaller the generalization error. Recall that the optimal advantage,
μt *(Ot , At ), is zero when At = πt *(Ot , At−1). The display in (5) follows from Kakade’s (ch.
5, 2003) expression for the difference between the value functions for two policies.
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Lemma 1
Given policies π̃ and π,

Vπ̃(o0) − Vπ(o0) = − Eπ ∑
t=0

T
μπ̃,t(Ot, At) | O0 = o0 .

Set π̃ = π* to obtain (5). An alternate to Kakade’s (2003) proof is as follows.

Proof. First note

Vπ(o0) = Eπ ∑
t=0

T
Rt | O0 = o0 = Eπ Eπ ∑

t=0

T
Rt | OT , AT | O0 = o0 . (6)

And Eπ ∑t=0
T Rt | OT , AT  is the expectation with respect to the distribution of OT + 1 given

the history (OT, AT); this is the density fT + 1 from Section 2 and fT + 1 is independent of the
policy used to choose the actions. Thus we may subscript E by either π or π̃ without changing
the expectation; Eπ ∑t=0

T Rt | OT , AT = Eπ̃ ∑t=0
T Rt | OT , AT = ∑t=0

T−1 Rt + Qπ̃,T (OT , AT ).

The conditional expectation can be written in a telescoping sum as

Eπ ∑
t=0

T
Rt | OT , AT = ∑

t=0

T
Qπ̃,t(Ot, At) − Vπ̃,t(Ot, At−1)

+ ∑
t=1

T
Rt−1 + Vπ̃,t(Ot, At−1) − Qπ̃,t−1(Ot−1, At−1)

+ Vπ̃,0(O0)

The first sum is the sum of the advantages. The second sum is a sum of temporal-difference
errors; integrating the temporal-difference error with respect to the conditional distribution of
Ot given (Ot − 1, At − 1), denoted by ft in Section 2, we obtain zero,

E Rt−1 + Vπ̃,t(Ot, At−1) | Ot−1, At−1 = Qπ̃,t−1(Ot−1, At−1)

(as before E denotes expectation with respect to (1); recall that expectations that do not integrate
over the policy can be written either with an E or an Eπ). Substitute the telescoping sum into
(6) and note that V π̃,0(O0) = V π̃(O0) to obtain the result. ▪

In the following Lemma the difference between value functions corresponding to two policies,
π̃ and π, is expressed in terms of both the L1 and L2 distances between the optimal Q-functions
and any functions {Q0, Q1,..., QT} satisfying πt (ot, at − 1) ∈ arg maxat Qt (ot, at), t = 0,...,T
and any functions {Q̃0, Q̃1, … , Q̃T } satisfying π̃t(ot, at−1) ∈ arg maxat

Q̃t(ot, at), t =

0,...,T. We assume that there exists a positive constant, L for which pt (at|ot, at − 1) ≥ L−1 for
each t and all pairs (ot, at − 1); if the stochastic decision rule, pt, were uniform then L would be
the size of the action space.

Lemma 2
For all functions, Qt satisfying πt(ot, at − 1) ∈ arg maxat Qt(ot, at), t = 0,...,T, and all functions
Q̃t satisfying π̃t(ot, at−1) ∈ arg maxat

Q̃t(ot, at), t = 0,...,T we have,
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| Vπ̃(o0) − Vπ(o0) | ≤ ∑
t=0

T
2L t+1E | Qt(Ot, At) − Q̃t(Ot, At) | O0 = o0

+ ∑
t=0

T
2L t+1E | Q̃t(Ot, At) − Qπ̃,t(Ot, At) | O0 = o

and

| Vπ̃(o0) − Vπ(o0) | ≤ ∑
t=0

T
2L (t+1)/2 E (Qt(Ot, At) − Q̃t(Ot, At))

2 | O0 = o0

+ ∑
t=0

T
2L (t+1)/2 E (Q̃t(Ot, At) − Qπ̃,t

(Ot, At))2 | O0 = o0 ,

where E denotes expectation with respect to the distribution generating the training sample (1).

Remark:

1. Note that in general arg maxat Qπ̃,t
(ot, at) may not be π̃t thus we can not choose

Q̃t = Qπ̃,t. However if π̃ = π * then we can choose Q̃t = Qt
*( = Qπ*,t bydefinition) and the

second term in both upper bounds is equal to zero.

2. This result can be used to emphasize one aspect of the mismatch between estimating the
optimal Q function and the goal of learning a policy that maximizes the value function. Suppose
Q̃t = Qt

*, π̃ = π * . The generalization error is

V *(o0) − Vπ(o0) ≤ ∑
t=0

T
2L (t+1)/2 E (Qt(Ot, At) − Qt

*(Ot, At))
2 | O0 = o0

for Qt any function satisfying πt(ot, at − 1) ∈ arg maxat Qt(ot, at). Absent restrictions on the
Qt s, this inequality cannot be improved in the sense that choosing each Qt = Qt

* and πt = πt
*

yields 0 on both sides of the inequality. However an inequality in the opposite direction is not
possible, since as was seen in Lemma 1, V*(o0) − Vπ(o0) involves the Q functions only through
the advantages (see also (7) below with π̃ = π *). Thus for the difference in value functions to
be small, the average difference between Qt(ot, at) − max at Qt(ot, at) and Q*

t(ot, at) − max at
Qt

*(ot, at) must be small; this does not require that the average difference between Qt(ot, at)
and Qt

*(ot, at) is small. The mismatch is not unexpected. For example, Baxter and Bartlett
(2001) provide an example in which the approximation space for the value function includes
a value function for which the greedy policy is optimal, yet the greedy policy found by temporal
difference learning (TD(1!)) function performs very poorly.

Proof—Define μt(ot, at) = Qt(ot, at) − max at Qt(ot, at) for each t; note that μt(ot, at) evaluated
at at = πt(ot, at − 1) is zero. Start with the result of Lemma 1. Then note the difference between
the value functions can be expressed as

Vπ̃(o0) − Vπ(o0) = ∑
t=0

T
Eπ μt(Ot, At) − μπ̃,t(Ot, At) | O0 = o0 . (7)

since Pπ puts at = πt(ot, at − 1) and μt (ot, at) = 0 for this value of at. When it is clear from the
context μt (μπ̃,t) is used as abbreviation for μt (Ot, At) (μπ̃,t(Ot, At)) in the following. Also
Qπ̃,t(Ot, At − 1, at) with at replaced by π̃t (Ot, At − 1) is written as Qπ̃,t(Ot, At−1, π̃t). Consider
the absolute value of the tth integrand in (7):
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| μt − μπ̃,t |
= | Qt(Ot, At) − max

at

Qt(Ot, At−1, at) − Qπ̃,t(Ot, At) + Qπ̃,t(Ot, At−1, π̃t) |
≤ | Qt(Ot, At) − Qπ̃,t(Ot, At) | + | max

at

Qt(Ot, At−1, at) − Qπ̃,t(Ot, At−1, π̃t) | .
Since maxat Q̃t(Ot, At−1, at) − Q̃t(Ot, At−1, π̃t)and for any functions, h and h′, |max at h
(at) − maxat h′(at)|≤ maxat |h(at) − h′ (at)|,

| max
at

Qt(Ot, At−1, at) − Qπ̃,t(Ot, At−1, π̃t) |
≤ max

at
| Qt(Ot, At−1, at) − Q̃t(Ot, At−1, at) |

+ | Q̃t(Ot, At−1, π̃t) − Qπ̃,t(Ot, At−1, π̃t) | .

We obtain | μt − μπ̃,t |
≤ 2max

at
| Qt(Ot, At−1, at) − Q̃t(Ot, At−1, at) | + 2max

at
| Q̃t(Ot, At−1, at) − Q̃π̃,t(Ot, At−1, at) |

≤ 2L ∑
at

| Qt(Ot, At−1, at) − Q̃t(Ot, At−1, at) | pt(at | Ot, At−1)

+2L ∑
at

| Q̃t(Ot, At−1, at) − Qπ̃,t(Ot, At−1, at) | pt(at | Ot, At−1).

(8)

Insert the above into (7) and use Lemma A1 to obtain | V π̃(o0) − Vπ(o0) |

≤ 2L ∑
t=0

T
Eπ ∑

at
| Q̃t(Ot, At−1, at) − Q̃t(Ot, At−1, at) | pt(at | Ot, At−1) | O0 = o0

+Eπ ∑
at

| Q̃t(Ot, At−1, at) − Qπ̃,t
(Ot, At−1, at) | pt(at | Ot, At−1) | O0 = o0

= 2L ∑
t=0

T
E ( ∏ℓ=0t−1 1Aℓ=πℓ

pℓ(Aℓ | Oℓ, Aℓ−1) ) | Qt − Q̃t | | O0 = o0

+E ( ∏ℓ=0t−1 1Aℓ=πℓ
pℓ(Aℓ | Oℓ, Aℓ−1) ) | Q̃t − Qπ̃,t | | O0 = o0

≤ 2 ∑
t=0

T
L t+1E | Qt − Q̃t | | O0 = o0 + 2 ∑

t=0

T
L t+1E | Q̃t − Qπ̃,t | | O0 = o0

(Qt, Qπ̃,t is used as abbreviation for Qt (Ot, At), respectively Qπ̃,t(Ot, At)). This completes
the proof of the first result.

Start from (8) and use Hölder’s inequality to obtain, | V π̃(o0) − Vπ(o0) |
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≤ 2 ∑
t=0

T
Eπ max

at
| Qt(Ot, At−1, at) − Q̃t(Ot, At−1, at) | | O0 = o0

+Eπ max
at

| Q̃t(Ot, At−1, at) − Qπ̃,t(Ot, At−1, at) | | O0 = o0

≤ 2 ∑
t=0

T
Eπ max

at
| Qt(Ot, At−1, at) − Q̃t(Ot, At−1, at) | 2 | O0 = o0

+ Eπ max
at

| Q̃t(Ot, At−1, at) − Qπ̃,t(Ot, At−1, at) | 2 | O0 = o0

≤ 2 ∑
t=0

T
L Eπ ∑

at
| Qt(Ot, At−1, at) − Q̃t(Ot, At−1, at) | 2Pt(at | Ot, At−1) | O0 = o0

+2 ∑
t=0

T
L Eπ ∑

at
| Q̃t(Ot, At−1, at) − Qπ̃,t

(Ot, At−1, at) | 2Pt(at | Ot, At−1) | O0 = o0 .

Now use Lemma A1 and the lower bound on the pt’s to obtain the result,

| Vπ̃(o0) − Vπ(o0) | ≤ 2 ∑
t=0

T
LE ∏

ℓ=0

t−1 1Aℓ=πℓ
pℓ(Aℓ | Oℓ, Aℓ−1)

(Qt − Q̃t)
2 | O0 = o0

+ LE ∏
ℓ=0

t−1 1Aℓ=πℓ
pℓ(Aℓ | Oℓ, Aℓ−1)

(Q̃t − Qπ̃,t)
2 | O0 = o0

≤ 2L (t+1)/2 ∑
t=0

T
E (Qt − Q̃t)

2 | O0 = o0

+ E (Q̃t − Qπ̃,t)
2 | O0 = o0 .

▪

5. Finite Sample Upper Bounds on the Average Generalization Error
Traditionally the performance of a policy π is evaluated in terms of maximum generalization
error: maxo [V*(o) − Vπ(o)] (Bertsekas and Tsitsiklis, 1996). However here we consider an
average generalization error as in Kakade (2003) (see also Fiechter, 1997; Kearns, Mansour
and Ng, 2000; Peshkin and Shelton, 2002); that is ∫o[V*(o) − Vπ(o)] dF(o) for a specified
distribution F on the observation space. The choice of F with density f = f0 (f0 is the density
of O0 in likelihoods (1) and (2)) is particularly appealing in the development of a policy in
many medical and social science applications. In these cases, f0 represents the distribution of
initial observations corresponding to a particular population of subjects. The goal is to produce
a good policy for this population of subjects. In general as in Kakade (2003) F may be chosen
to incorporate domain knowledge concerning the steady state dis! tribution of a good policy.
If only a training set of trajectories is available for learning and we are unwilling to assume
that the system dynamics are Markovian, then the choice of F is constrained by the following
consideration. If the distribution of O0 in the training set (f0) assigns mass zero to an observation
o′, then the training data will not be able to tell us anything about Vπ (o′). Similarly if f0 assigns
a very small positive mass to o′ then only an exceptionally large training set will permit an
accurate estimate of Vπ(o′). Of course this will not be a problem for the average generalization
error, as long as F also assigns very low mass to o′. Consequently in our construction of the
finite sample error bounds for the average generalization error, we will only consider
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distributions F for which the density of F, say f, satisfies supo | f (o)
f 0(o)

| ≤ M for some finite

constant M. In this case the average generalization error is bounded above by

∫V *(o) − Vπ(o) dF (o) ≤ ME V *(O0) − Vπ(O0)

= − MEπ ∑
t=0

T
μt

*(Ot, At) .

The second line is a consequence of (5) and the fact that the distribution of O0 is the same
under likelihoods (1) and (2).

In the following theorem a non-asymptotic upper bound on the average generalization error is
provided; this upper bound depends on the number of trajectories in the training set (n), the
performance of the approximation on the training set, the complexity of the approximation
space and of course on the confidence (δ) and accuracy (ɛ) demanded. The batch Q-learning
algorithm minimizes quadratic forms (see (3)); thus we represent the performance of functions
{Q0, Q1,..., QT} on the training set by these quadratic forms,

Errn,Qt+1
(Qt) = En Rt + max

at+1

Qt+1(Ot+1, At, at+1) − Qt(Ot, At) 2

for each j (recall QT +1 is set to zero and En represents the expectation with respect to the
probability obtained by choosing a trajectory uniformly from the training set).

The complexity of each Qt space can be represented by it’s covering number (Anthony and
Bartlett, 1999, pg 148). Suppose F is a class of functions from a space, X, to ℝ. For a sequence
x = (x1,..., xn) ∈ Xn, define F|x to be a subset of ℝn given by F|x = {(f(x1),..., f (xn)): f ∈ F}.
Define the metric dp on ℝn by dp(z, y) = (1 /n∑i=1

n | zi − yi | p)1/p for p a positive integer

(for p=∞, define d∞(z, y) = maxi=1
n | zi − yi | ). Then N (ɛ,F|x, dp) is defined as the minimum

cardinality of an ɛ-covering of F|x with respect to the metric dp. Next given ɛ>0, positive integer
n, metric dp and function class, F, the covering number for F is defined as

Np(ɛ, F , n) = max {N (ɛ, F|x, dp) : x ∈ X n}.

In the following theorem, F = {max at+1 Qt+1 (ot+1, at ) - Qt (ot , at ) : Qt ∈ Qt , t = 0,...,T } and
(x)+ is x if x > 0 and zero otherwise.

Theorem 1
Assume that the functions in Qt , t ∈ 0,...,T are uniformly bounded. Suppose that there exists
a positive constant, say L, for which pt (at |ot, at) ≥ L−1 for all (ot, at ) pairs, 0 ≥ t ≥ T . Then
for ɛ > 0 and with probability at least 1–δ, over the random choice of the training set, every
choice of functions, Q j ∈ Qj,j = 0,...,T with associated policy π defined by πj(oj, a j–1) = arg
maxaj Qj(oj,aj–1) and every choice of functions, Q̃ j ∈ Q j, j = 0, … , T  with associated policy
π̃ defined by π̃ j(o j, a j−1) = arg maxa j

Q̃ j(o j, a j) the following bound is satisfied,
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∫ | Vπ̃(o) − Vπ(o) | dF (o)

≤ 6M L 1/2 ∑
t=0

T
∑
i=t

T
(16)i−tL i(Errn,Qi+1

(Qi) − Errn,Qi+1
(Q̃i))+

1/2

+12M L 1/2ɛ

+6ML1/2 ∑
t=0

T
∑
i=t

T
(16)(i−t)/2L i/2 E Q̃i(Oi, Ai) − Qπ̃,i(Oi, Ai)

2.

for n satisfying

4(T + 1)N1( ɛ 2

32M ′(16L )(T +2) , F , 2n) exp { ɛ 4n

32(M ′)
2
(16L )2(T +2) } ≤ δ (9)

and where M′ is a uniform upper bound on the absolute value of f ∈ F and E represents the
expectation with respect to the distribution (1) generating the training set.

Remarks:

1. Suppose that Q*
t ∈ Qt for each select t. Select Q̃t = Qt

* and
Q̂t = arg minQt∈Qt

Errn,Q̂t+1
(Qt), t = T, T−1,..., 0 (recall QT+1, Q̂T +1 are identically zero).

Then with probability greater than 1 − δ, we obtain,

∫V *(o) − Vπ̂(o)dF (o) ≤ 12M L 1/2ɛ (10)

for all n satisfying (9). Thus, as long as the covering numbers for each Qt and thus for F do not
grow too fast, estimating each Qt by minimizing Errn,Q̂t+1

(Qt) yields a policy that consistently

achieves the optimal value. Suppose the approximation spaces Qt , t = 0,...,T are feed-forward
neural networks as in remark 4 below. In this case the training set size n sufficient for (10) to
hold need only be polynomial in (1/δ, 1/ɛ) and batch Q-learning is a probably approximate
correct (PAC) reinforcement learning algorithm as defined by Fiechter (1997). As shown by
Fiechter (1997) this algorithm can be converted to an efficient on-line reinforcement learning
algorithm (here the word on-line implies updating the policy between trajectories).

2. Even when Qt* does not belong to Qt we can add the optimal Q function at each time, t, to
the approximation space, Qt with a cost of no more than an increase of 1 to the covering number

N1( ɛ 2

32M ′(16L )(T +2) , F , 2n). If we do this the result continues to hold when we set π̃ to an

optimal policy π * and set Q̃t = Qt
* for each t; the generalization error is

∫V *(o) − Vπ(o)dF (o) ≤ 6M L 1/2 ∑
t=0

T
∑
i=t

T
(16)i−tL iErrn,Qi+1

(Qi)
1/2

+12M L 1/2ɛ

for all n satisfying (9). This upper bound is consistent with the practice of using a policy π̂ for
which π̂t(ot, at−1) ∈ arg maxat

Q̂t(ot, at) and Q̂t ∈ arg minQt∈Qt
Errn,Q̂t+1

(Qt). Given

that the covering numbers for the approximation space can be expressed in a sufficiently simple
form (as in remark 4 below), this upper bound can be used to carry out model selection using
structural risk minimization (Vapnik, 1982). That is, one might consider a variety of
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approximation spaces and use structural risk minimization to use the training data to choose
which approximation space is best. The resulting upper bound on the average generalization
error can be found by using the above result and Lemma 15.5 of Anthony and Bartlett
(1999).

3. The restriction on n in (9) is due to the complexity associated with the approximation space
(e.g. the Qt ’s). The restriction is crude; to see this, note that if there were only a finite number
of functions in F then n need only satisfy

2(T + 1) | F | exp { 2ɛ 4n

(3M ′)
2
(16L )2(T +2) } = δ

(use Hoeffding’s inequality; see Anthony and Bartlett, pg 361, 1999) and thus for a given (ε,
&δ) we may set the number of trajectories in the training set n equal to
(3M ′)

2
(16L )2(T +2)

2ɛ 4 ln ( 2(T + 1) | F |
δ ).This complexity term appears similar to that achieved

by learning algorithms (e.g. see Anthony and Bartlett, 1999, pg. 21) or in reinforcement
learning (e.g. Peshkin and Shelton, 2002) however note that n is of the order ɛ−4 rather than
the usual ɛ−2. The ɛ−4 term (instead of ɛ−2) is attributable to the fact that ErrQt+1(Qt) is not
only a function of Qt but also of Qt+1. However further assumptions on the approximation
space permit an improved result. See Theorem 2 below for one possible refinement. Note the
needed training set size n depends exponentially on the horizon time T but not on the dimension
of the observation space. Thi! s is not unexpected as the upper bounds on the generalization
error of both Kearns, Mansour and Ng (2000) and Peshkin and Shelton’s (2002) policy search
methods (the latter using a training set and importance sampling weights) also depend
exponentially on the horizon time.

4. When F is infinite, we use covering numbers for the approximation space Qt and then appeal
to Lemma A2 in the appendix to derive a covering number for F; this results in

N1(ɛ, F , n) ≤ (T + 1) max
t=0,…,T

N1( ɛ
2 | A | , Qt, | A | n)2.

One possible approximation space is based on feed-forward neural networks. From Anthony
and Bartlett (1999) we have that if each Qj is the class of functions computed by a feed-forward
network with W weights and k computation units arranged in L layers and each computation
unit has a fixed piecewise-polynomial activation function with q pieces and degree no more

than ℓ, then N1(ɛ, Qt, n) ≤ e(d + 1)( 2eM ′

ɛ )d  where d = 2(W + 1)(L + 1) log2(4(W + 1)(L + 1)
q(k + 1)/ln 2) + 2(W + 1)(L + 1)2 log2(ℓ + 1) + 2(L + 1). To see this combine Anthony and
Bartlett’s Theorems 8.8, 14.1 and 18.4. They provide covering numbers for functions computed
by other types of neural networks as well. A particularly simple neural network is an affine
combination of a given set of p input features; i.e. f (x) = ω0 + ∑i=1

p−1ωixi for (1, x) a vector of
p real valued features and each ωi ∈ ℝ. Suppose each Qt is a class of functions computed by
this network. Then Theorems 11.6 and 18.4 of Anthony and Bartlett imply that

N1(ɛ, Qt, n) ≤ e(p + 1)( 2eM ′

ɛ )p. In this case

n ≥ 32(M ′)
4
(16L )2(T +2)

ɛ 4 log ( 4(T + 1)2 e 2(p + 1)2(128e | A | (M ′)
2
(16L )(T +2))

2p

δɛ4p ).
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This number will be large for any reasonable accuracy, ɛ and confidence, δ.

Proof of Theorem 1—An upper bound on the average difference in value functions can be
obtained from Lemma 2 by using Jensen’s inequality and the assumption that the the density
of F ( f ) satisfies supo | f (o)

f 0(o)
| ≤ M  for some finite constant M:

∫ | Vπ̃(o) − Vπ(o) | dF (o) ≤ M ∑
t=0

T
2L (t+1)/2 E Qt(Oi, Ai) − Q̃t(Oi, Ai)

2

+M ∑
t=0

T
2L (t+1)/2 E Q̃t − Qπ̃,t

2

(11)

where Q̃t − Qπ̃,t is used as abbreviation for Q̃t(Ot, At), respectively Qπ̃,t(Ot, At). In the
following an upper bound on each E Qt − Q̃t

2 is constructed.

The performance of the approximation on an infinite training set can be represented by

ErrQt+1
(Qt) = E Rt + max

at+1

Qt+1(Ot+1, At, at+1) − Qt 2

for each t (recall QT+1 = 0, also we abbreviate Qt (Ot, At ) by Qt whenever no confusion may
arise). The errors, Err’s, can be used to provide an upper bound on the L2 norms on the Q-
functions by the following argument. Consider ErrQt+1

(Qt) − ErrQt+1
(Q̃t) for each t. Within

each of these quadratic forms add and subtract

Qπ̃,t+1(Ot+1, At, π̃t+1) − Qπ̃,t − E max
at+1

Qt+1(Ot+1, At, at+1) − Qπ̃,t+1(Ot+1, At, π̃t+1) | Ot, At .

In the above Qπ̃,t+1(Ot+1, At, π̃t+1) is defined as Qπ̃,t+1(Ot+1, At, at+1) with at+1 replaced
by π̃t+1(Ot+1, At). Expand each quadratic form and use the fact that
E Rt + Qπ̃,t+1(Ot+1, At, π̃t+1) | Ot, At = Qπ̃,t. Cancelling common terms yields

E Qπ̃,t − Qt + E max
at+1

Qt+1(Ot+1, At, at+1) − Qπ̃,t+1(Ot+1, At, π̃t+1) | Ot, At 2

− E Qπ̃,t − Q̃t + E max
at+1

Qt+1(Ot+1, At, at+1) − Qπ̃,t+1(Ot+1, At, π̃t+1) | Ot, At 2.

Add and subtract Q̃t in the first quadratic form and expand. This yields

ErrQt+1
(Qt) − ErrQt+1

(Q̃t) =

E Q̃t − Qt
2 + 2E Q̃t − Qt Q̃t − Qπ̃,t

+2E (Q̃t − Qt)(max
at+1

Qt+1(Ot+1, At, at+1) − max
at+1

Q̃t+1(Ot+1, At, at+1))
+2E (Q̃t − Qt)(max

at+1

Q̃t+1(Ot+1, At, at+1) − Qπ̃,t+1(Ot+1, At, π̃t+1)) .

(12)

Using the arguments similar to those used around Equation (8) and using the fact that (x +
y)2 ≤ 2x2 + 2y2 we obtain,
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ErrQt+1
(Qt) − ErrQt+1

(Q̃t) ≥ E Qt − Q̃t
2

− 4(E Qt − Q̃t
2(E Q̃t − Qπ̃,t

2 + LE Qt+1 − Q̃t+1
2 + LE Q̃t+1 − Qπ̃,t+1

2))1/2.

Using this inequality we can now derive an upper bound on each E Qt − Q̃t
2 in terms of the

Err’s and the E Q̃t+1 − Qπ̃,t+1 ’s. Define

mt = L −(T−t)E Q̃t − Qπ̃,t
2 andbt = L −(T−t)E Qt − Q̃t

2

and

et = L −(T−t)(ErrQt+1
(Qt) − ErrQt+1

(Q̃t))
for t ≤ T and bT +1 = mT +1 = eT +1 = 0. We obtain

et ≥ bt − 4 bt(mt + bt+1 + mt+1).

Completing the square, reordering terms, squaring once again and using the inequality (x +
y)2 ≤ 2x2 + 2y2 yields bt ≤ 16(bt+1 + mt + mt+1) + 2et for t ≤ T. We obtain

bT−t ≤ 2 ∑
i=0

t
(16)ieT−t+i + ∑

i=1

t
(16)i(16 + 1)mT−t+i + 16mT−t.

Inserting the definitions of bT−t, eT−t+i and reordering, yields

E Qt − Q̃t
2 ≤ 2 ∑

i=t

T
(16L )i−t(ErrQi+1

(Qi) − ErrQi+1
(Q̃i))

+ ∑
i=t+1

T
(16)i−t(16 + 1)L T−tmi + L T−tmt.

(13)

As an aside we can start from (12) and derive the upper bound,

ErrQt+1
(Qt) − ErrQt+1

(Q̃t) ≤ E Qt − Q̃t
2

+4L (T−t) L −(T−t)E Qt − Q̃t
2(mt + L −(T−t−1)E Qt+1 − Q̃t+1

2 + mt+1).

This combined with (13) implies that minimizing each ErrQt+1
(Qt) − ErrQt+1

(Q̃t) in Qt is

equivalent to minimizing each E Qt − Q̃t
2 in Qt modulo the approximation terms mt for t =

0,..., T.

Returning to the proof next note that

ErrQt+1
(Qt) − ErrQt+1

(Q̃t) ≤ | ErrQt+1
(Qt) − Errn,Qt+1

(Qt) |
+ | ErrQt+1

(Q̃t) − Errn,Qt+1
(Q̃t) |

+(Errn,Qt+1
(Qt) − Errn,Qt+1

(Q̃t))+
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where (x)+ is equal to x if x ≥ 0 and is equal to 0 otherwise. Note that if each Qt minimizes
Errn,Qt+1 as in (3) then the third term is zero. Substituting into (13), we obtain

E Qt − Q̃t
2 ≤ 2 ∑

i=t

T
(16L )i−t( | ErrQi+1

(Qi) − Errn,Qi+1
(Q̃i) |

+ | ErrQi+1
(Q̃i) − Errn,Qi+1

(Q̃i) |
+(Errn,Qi+1

(Qi) − Errn,Qi+1
(Q̃i))+)

+ ∑
i=t+1

T
(16)i−t(16 + 1)L i−tE Q̃i − Qπ̃,i

2 + E Q̃t − Qπ̃,t
2.

Combine this inequality with (11); simplify the sums and use the fact that for x, y both
nonnegative x + y ≤ x + y to obtain ∫ | V π̃(o) − Vπ(o) | dF (o)

≤ 6M L 1/2 ∑
t=0

T
∑
i=t

T
(16)i−tL i(Errn,Qi+1

(Qi) − Errn,Qi+1
(Q̃i))+ 1/2

+12M L 1/2(16L )(T +2)/2 max
t

sup
Qt,Qt+1

| ErrQt+1
(Qt) − Errn,Qt+1

(Qt) |
+6M L 1/2 ∑

t=0

T
∑
i=t

T
(16)(i−t)/2L i/2 E Q̃i − Qπ̃,i

2.

All that remains is to provide an upper bound on

P ∪
i=0

T {for someQt∈Qt,t=0,…,T | ErrQt+1
(Qi) − Errn,Qi+1

(Qi)) | > ɛ ′} .

This probability is in turn bounded above by

∑
i=0

T
P for someQt∈Qt,t=0,…,T | ErrQi+1

(Qi) − Errn,Qi+1
(Qi) | > ɛ ′ .

Anthony and Bartlett (1999, pg. 241) use Hoeffding’s inequality along with the classical
techniques of symmetrization and permutation to provide the upper bound (see also van der
Vaart and Wellner, 1996),

P for someQt∈Qt,t=0,…,T | ErrQi+1
(Qi) − Errn,Qi+1

(Qi) | > ɛ ′

≤ 4N1( ɛ ′

32M ′ , F , 2n) exp { − (ɛ ′)
2
n

32(M ′)
2 }.

Put ɛ = (16L )(T +2)/2 ɛ ′ to obtain the results of the theorem.

Suppose the Q functions are approximated by linear combinations of p features; for each t =
0,...,T, denote the feature vector by qt (ot, at ). The approximation space is then,

Qt = {Qt(ot, at) = θTqt(ot, at) : θ ∈ Θ}
where Θ is a subset of Rp. In this case, the batch Q-learning algorithm may be based on (4);
we represent the performance of the functions {Q0,..., Qt } on the training set by
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Err̃n,Qt+1
(Qt) = En (Rt + max

at+1

Qt+1(Ot+1, At, at+1) − Qt(Ot, At))qt(Ot, At)

for t = 0,...,T (recall En represents the expectation with respect to the probability obtained by
choosing a trajectory uniformly from the training set). In this theorem

F ′ = ∪
i=1

p
∪

t=1

T {(rt + max
at+1

Qt+1(ot+1, at+1; θt+1) − Qt(ot, at; θt))qti(ot, at) : θt, θt+1 ∈ Θ}.
Define the functions {Q̄0, … , Q̄T }, and the policy, π̄, as follows. First define Q̄T (OT , AT ) to
be the projection of E [RT |OT, AT ] on the space spanned by qT. Then set
π̄T (oT , aT−1) ∈ arg maxaT

Q̄T (oT , aT ). Next for t = T − 1,...,0, set Q̄t(Ot, At)as the

projection of E Rt + Q̄t+1(Ot+1, At, π̄t+1) | Ot, At on the space spanned by qt (recall
Q̄t+1(Ot+1, At, π̄t+1) is defined as Q̄t+1(Ot+1, At, at+1) with at+1 replaced by
π̄t+1(Ot+1, At)). And set π̄t(ot, at−1) ∈ arg maxat

Q̄t(ot, at). These projections are with

respect to P, the distribution which generated the trajectories in the training set (the likelihood
is in (1)).

Theorem 2
Suppose that there exists a positive constant, say L, for which pt (at |ot, at−1) ≥ L−1 for all (ot,
at−1), 0 ≤ t ≤ T. Suppose that for each t, x ∈ Rp, xT Eqt qt

T x > η ||x||2 where η > 0 (|| · || is the
Euclidean norm). Also assume that Θ is a closed subset of {x ∈ Rp : ||x|| ≤ MΘ} and for all (t,
i), the ith component in the vector qt is pointwise bounded; |qti| ≤MQ for MQ a constant. Then
for ɛ > 0, with probability at least 1 – δ, over the random choice of the training set, every choice
of functions, Qt ∈ Qt and functions Q̃t, t = 0, … , T  with associated policies defined by π with
πt (ot , at–1 ∈ arg maxat Qt(ot , at) and π̃ with π̄t(ot, at−1) ∈ arg maxat

Q̃t(ot, at)

respectively, the following bounds are satisfied

∑
t=0

T
L (t+1)E | Q̄t(Ot, At) − Qt(Ot, At) | ≤ pMQ /η ∑

t=0

T
L (t+1) ∑

j=t

T
(LpMQ

2 /η) j−t Err̃n,Q j+1
(Q j)

+4ɛ.

for t = 0,...,T , where E represents the expectation with respect to the distribution (1) generating
the training set and

∫ | Vπ̃(o) − Vπ(o) | dF (o) ≤ 2M pMQ /η ∑
t=0

T
L (t+1) ∑

j=t

T
(LpMQ

2 /η) j−t Err̃n,Q j+1
(Q j)

+8Mɛ

+ 2M ∑
t=0

T
L (t+1)E | Q̄t(Ot, At) − Q̃t(Ot, At) |

+ 2M ∑
t=0

T
L (t+1)E | Q̃t(Ot, At) − Qπ̃,t(Ot, At) |

for n larger than

( Cɛ )2 log ( Bδ ) (14)
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where C = 4 2M ′pT +1/2MQ
2T +1η−(T +1)L T +1, M ′ is a uniform upper bound on the absolute

value on all f ∈ F′ and

B = ɛ−2p46p+3p 2T p+p+3(T + 1)2e 2p+2(M ′)
4p | A | pMQ

(2T +1)2pη−2p(T +1)L 2p(T +1)

Remarks:

1.Define Q̂t as a zero of Err̃n,Q̂t+1
(Qt), t = T , T − 1, … , 0 (recall that Q̂T +1 is identically

zero). Suppose that Qt* ∈Qt for each t; in this case Q̄t = Qt
* for all t (we ignore sets of measure

zero in this discussion). Then with probability greater than 1 – δ and π̃ = π *, Q̃t = Qt
* we

obtain

∫V *(o) − Vπ̂(o)dF (o) ≤ 8Mɛ

for all n satisfying (14). Thus estimating each Qt by solving
Err̃n,Qt+1

(Qt) = 0, t = T , … , 0,  yields a policy that consistently achieves the optimal value.

2. Again define Q̂t as a zero of Err̃n,Q̂t+1
(Qt), t = T , T − 1, … , 0.Given two T + 1 vectors

of functions Q′ = {Q′0,…, Q′T} and Q = {Q0,…, QT} define
ℓ(Q ′, Q) = ∑t=0

T L t+1E | Q ′
t(Ot, At) − Qt(Ot, At) | . Then the first result of Theorem 2

implies that ℓ(Q̄, Q̂) converges in probability to zero. From Lemma 2 we have that
∫ | V π̃(o) − Vπ(o) | dF (o) ≤ 2M ℓ(Q, Q̃) + 2M ℓ(Qπ̃, Q̃) and thus ∫ | V π̃(o) − V π̂(o) | dF (o)is
with high probability bounded above by 2M ℓ(Q̄, Q̃) + 2M ℓ(Qπ̃, Q̃). Consequently the presence
of the third and fourth terms in Theorem 2 is not surprising. It is unclear whether the “go-
between” Q̃t is necessary.

3. Recall the space of policies implied by the approximation spaces for the Q-functions is given
by ΠQ = {πθ, θ ∈ Θ} where πθ = {π1,θ,…,πT,θ} and where each πt,θ (ot, at–1) ∈ arg max at Qt

(ot , at;θ) for some Qt ∈ Qt. Suppose that max π ∈ ΠQ ∫Vπ(o)dF(o) is achieved by some member
of ΠQ and π̃ ∈ arg maxπ∈ΠQ

∫Vπ(o)dF (o). Ideally Q-learning would provide a policy that

achieves the highest value as compared to other policies in ΠQ (as is the case with π̃). This is
not necessarily the case. As discussed in the above remark batch Q-learning yields estimated
Q-functions for which ℓ(Q̄, Q̂) converges to zero. The policy π̄ may not produce a maximal
value; that is ∫V π̃(o) − V π̄(o)dF (o)need not be zero (see also the remark following Lemma 2).
Recall from Lemma 2 that 2M ℓ(Q̄, Q̃) + 2M ℓ(Q̃, Qπ̃) is an upper bound on this difference. It is
not hard to see that ℓ(Q̃, Qπ̃) is zero if and only if π̃ is the optimal policy; indeed the optimal
Q-function would belong to the approximation space. The Q-learning algorithm does not
directly maximize the value function. As remarked in Tsitsiklis and van Roy (1997) the goal
of the Q-learning algorithm is to construct an approximation to the optimal Q-function within
the constraints imposed by the app! roximation space; this approximation is a projection when
the approximation space is linear. Approximating the Q-function yields an optimal policy if
the approximating class is sufficiently rich. Ormoneit and Sen (2002) consider a sequence of
approximation spaces (kernel based spaces indexed by a bandwidth) and make assumptions
on the optimal value function which guarantee that this sequence of approximations spaces is
sufficient rich (as the bandwidth decreases with increasing training set size) so as to
approximate the optimal value function to any desired degree.
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4. Again define Q̂t as a zero of Err̃n,Q̂t+1
(Qt), t = T , T − 1, … , 0. Since ℓ(Q̄, Q̂) converges

in probability to zero, one might think that ∫ | V π̄(o) − V π̂(o) | dF (o) should be small as well.
Referring to Lemma 1, we have that the difference in value functions
∫ | V π̄(o) − V π̂(o) | dF (o) can be expressed as the sum over t of the expectation of
Qπ̃,t(Ot, At−1, π̂t) − Qπ̄,t(Ot, At−1, π̄t).However ℓ(Q̄, Q̂) small does not imply that π̂ and
π̄ will be close nor does it imply that Qπ̄,t(Ot, At−1, π̂t) − Qπ̄,t(Ot, At−1, π̄t) will be small.
To see the former consider an action space with 10 actions, 1,...,10 and Q̂t(ot, at) = 1 for a =
1,...,9, Q̂t(ot, 10) = 1 + 1 / 2ɛ and Q̄t(ot, at) = 1 − 1/2ɛ for a = 2, … , 10, Q̄t(ot, 1) = 1.So
Q̄t and Q̂t are uniformly less than ɛ apart yet the argument of their maxima are 1 and 10.

Proof of Theorem 2—Fix Qt = θt
T qt, θ∈ θ for t = 0,...,T . Define an infinite training sample

version of Err̃n as

Err̃Qt+1
(Qt) = E (Rt + max

at+1

Qt+1(Ot+1, At, at+1) − Qt)qt
= E (Q̄t + max

at+1

Qt+1(Ot+1, At, at+1) − Q̄t+1(Ot+1, At, π̄t+1) − Qt)qt
where Qt is an abbreviation for Qt (Ot, At). To derive the last equality recall that Q̄t(Ot, At)

is the projection of E Rt + Q̄t+1(Ot+1, At, π̄t+1) | Ot, At  on the space spanned by qt . Since

Q̄t is a projection we can write Qt = θt
T qt for some θπ̄,t ∈ Θ. Also we can write Qt = θT

t qt

for some θt ∈ θ. The Err̃’s provide a pointwise upper bound on the differences, | Q̄t − Qt | ,
as follows. Rearrange the terms in Err̃Qt+1

using the fact that Eqt qt
T is invertible to obtain

(θπ̄,t − θt) = (Eqtqt
T )−1 Err̃Qt+1

(Qt)

− (Eqtqt
T )−1E (max

at+1

Qt+1(Ot+1, At, at+1) − Q̄t+1(Ot+1, At, π̄t+1))qt .

Denote the Euclidean norm of a p dimensional vector x by ||x||. Then

| (θπ̄,t − θt)
T qt | ≤ (1 /η) Err̃Qt+1

(Qt) qt +

(1 /η)E | max
at+1

Qt+1(Ot+1, At, at+1) − Q̄t+1(Ot+1, At, π̄t+1) | qt qt

≤ (1 /η) Err̃Qt+1
(Qt) qt + (1 /η)LE | Qt+1 − Q̄t+1 | qt qt

≤ (1 /η) pMQ Err̃Qt+1
(Qt) + (1 /η)LpMQ

2E | Qt+1 − Q̄t+1 |

for t ≤ T . To summarize

E | Q̄t − Qt | ≤ (1 /η) pMQ Err̃Qt+1
(Qt) + (1 /η)LpMQ

2E | Qt+1 − Q̄t+1 |

where Qt, Q̄t is an abbreviation for Qt (Ot, At), respectively Q̄t(Ot, At), for each t.

As in the proof of Theorem 1, these inequalities can be solved for each E | Q̄t − Qt |  to yield
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E | Q̄t − Qt | ≤ ( pMQ /η) ∑
j=t

T
(LpMQ

2 /η) j−t Err̃Q j+1
(Q j)

≤ ( pMQ /η) ∑
j=t

T
(LpMQ

2 /η) j−t Err̃n,Q j+1
(Q j) − Err̃Q j+1

(Q j)

+( pMQ /η) ∑
j=t

T
(LpMQ

2 /η) j−t Err̃n,Q j+1
(Q j) .

Simplifying terms we obtain

∑
t=0

T
L (t+1)E | Q̄t − Qt | ≤ pMQ /η ∑

t=0

T
L (t+1) ∑

j=t

T
(LpMQ

2 /η) j−t Err̃n,Q j+1
(Q j)

+4pT+1/2MQ
2T+1η−(T+1)L T+1max

t
Err̃n,Qt+1

(Qt) − Err̃Qt+1
(Qt) .

(15)

Consider each component of each of the T +1, p dimensional vectors,
Err̃n,Qi+1

(Qi)) − Err̃Qi+1
(Qi) for an ɛ′> 0:

P ∪
i=0

T
∪
j=1

p {for someθi,θi+1∈Θ,qi∈Qi,qi+1∈Qi+1 | Err̃n,Qi+1
(Qi) j

− Err̃Qi+1
(Qi)) j | > ɛ ′ } .

This probability is in turn bounded above by

∑
i=0

T
∑
j=1

p
P for someθi,θi+1∈Θ,qi∈Qi,qi+1∈Qi+1 | Err̃n,Qi+1

(Qi) j
− Err̃Qi+1

(Qi)) j | > ɛ ′ .

In Lemmas 17.2, 17.3, 17.5, Anthony and Bartlett (1999) provide an upper bound on the
probability

P for some f ∈ F has | En(ℓ f ) − E(ℓ f ) | ≥ ɛ ′

where ℓf (x, y) = (y − f (x))2. These same lemmas (based on the classical arguments of
symmetrization, permutation and reduction to a finite set) can be used for f ∈ F′ since the
functions in F′ are uniformly bounded. Hence for each j = 1,..., p and t = 0,...,T

P for someθt, θt+1 ∈ Θ, qt ∈ Qt, qt+1 ∈ Qt+1has | Err̃n,Qt+1
(Qt) j

− Err̃Qt+1
(Qt) j | > ɛ ′

≤ 4N1( ɛ ′

16M ′ , F ′, 2n) exp { − (ɛ ′)
2
n

32(M ′)
2 }.

Set ɛ = pT+1/2M2T+1
Qη−(T+1)LT+1ɛ′. Thus for n satisfying

4p(T + 1)N1( ɛ

16M ′pT+1/2MQ
2T+1η−(T+1)L T+1 , F ′, 2n)

exp { − ɛ 2n

32(M ′)2(pT+1/2MQ
2T+1η−(T+1)L T+1)2 } ≤ δ,

(16)

the first result of the theorem holds.

Murphy Page 20

J Mach Learn Res. Author manuscript; available in PMC 2006 June 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



To simplify the constraint on n, we derive a covering number for F′ from covering numbers
for the Qt’s. Apply Lemma A2 part 1, to obtain

N1(ɛ, Vt+1,n) ≤ N1( ɛ
| A | , Qt+1, | A | n)

for Vt+1 = {maxat+1Qt+1(ot+1, at+1) : Qt+1 ∈ Qt+1}. Next apply Lemma A2, parts 2 and 3, to
obtain

N1(ɛ, F ′, n) ≤ ∑
t=0

T−1
N1( ɛ

2 | A | M ′ , Qt+1, | A | n)N1( ɛ

2M ′ , Qt, n)
+N1( ɛ

M ′ , QT , n).
Theorems 11.6 and 18.4 of Anthony and Bartlett imply that N1(ɛ, Qt, n) ≤ e(p + 1)( 2eɛ )p for
each t. Combining this upper bound with (16) and simplifying the algebra yields (14).

Next Lemma 2 implies:

∫ | Vπ̃(o) − Vπ(o) | dF (o) ≤ M ∑
t=0

T
2L (t+1)E | Qt − Q̄t |

+M ∑
t=0

T
2L (t+1)E | Q̄t − Q̃t | + M ∑

t=0

T
2L (t+1)E | Q̃t − Qπ̃,t | .

This combined with the first result of the theorem implies the second result.

6. Discussion
Planning problems involving a single training set of trajectories are not unusual and can be
expected to increase due to the widespread use of policies in the social and behavioral/medical
sciences (see, for example, Rush et al., 2003; Altfeld and Walker, 2001; Brooner, and Kidorf,
2002); at this time these policies are formulated using expert opinion, clinical experience and/
or theoretical models. However there is growing interest in formulating these policies using
empirical studies (training sets). These training sets are collected under fixed exploration
policies and thus while they allow exploration they do not allow exploitation, that is, online
choice of the actions. If subjects are recruited into the study at a much slower rate than the
calendar duration of the horizon, then it is possible to permit some exploitation; some of this
occurs in the field of cancer research (Thall, Sung and Estey, 2002).

This paper considers the use of Q-learning with dynamic programming and function
approximation for this planning purpose. However the mismatch between Q-learning and the
goal of learning a policy that maximizes the value function has serious consequences and
emphasizes the need to use all available science in choosing the approximation space. Often
the available behaviorial or psychosocial theories provide qualitative information concerning
the importance of different observations. In addition these theories are often represented
graphically via directed acyclic graphs. However information at the level of the form of the
conditional distributions connecting the nodes in the graphs is mostly unavailable. Also due
to the complexity of the problems there are often unknown missing common causes of different
nodes in the graphs. See http://neuromancer.eecs.umich.edu/dtr for more information and
references. Methods that can use this qualitative information to minimize t! he mismatch are
needed.
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Appendix A
Recall that the distributions, P and Pπ differ only with regards to the policy (see (1) and (2)).
Thus the following result is unsurprising. Let f (OT+1, AT) be a (measurable) nonnegative
function; then Eπf can be expressed in terms of an expectation with respect to the distribution
P if we assume that pt (at|ot, at−1) > 0 for each (ot, at ) pair and each t. The presence of the
p js in denominator below represent the price we pay because we only have access to training
trajectories with distribution P; we do not have access to trajectories from distribution Pπ.

Lemma A1 Assume that Pπ[p0(A0|S0) > 0] = 1 and Pπ[pt (At|Ot, At−1) > 0] = 1 for t = 1,...,T.
For any (measurable) nonnegative function of g(Ot, At ), the P-probability that

Eπ g(Ot, At) | S0 = E (∏ℓ=0t 1Aℓ=πℓ
pℓ(Aℓ | Oℓ, Aℓ−1) )g(Ot, At) | S0

is one for t = 0,...,T.

Proof: We need only prove that

E h (S0)Eπ g(Ot, At) | S0 = E h (S0)E (∏ℓ=0t 1Aℓ=πℓ
pℓ(Aℓ | Oℓ, Aℓ−1) )g(Ot, At) | S0

for any (measurable) nonnegative function, h. Consider the two likelihoods ((1) and (2)) for a
trajectory up to time t. Denote the dominating measure for the two likelihoods for the trajectory
up to time t as λt. By assumption,

∫h (s0)g(ot, at)(∏ℓ=0T 1Aℓ=πℓ
pℓ(aℓ | oℓ, aℓ−1) ) f 0(s0)p0(a0 | s0)

∏
j=1

t
f j(s j | o j−1, a j−1)p j(a j | o j, a j−1)dλt(ot, at)

= ∫h (s0)g(ot, at) f 0(s0)1a0=π0(s0)
∏
j=1

t
f j(s j | o j−1, a j−1)1a j=π j(o j,a j−1)

dλt(ot, at).

By definition the left hand side is E h (S0)g(Ot, At)(∏ℓ=0
j

1Aℓ=πℓ
pℓ(Aℓ | Oℓ, Aℓ−1) )  and the right hand

side is Eπ[h(S0)g(Ot, At)]. Expressing both sides as the expectation of a conditional expectation,
we obtain,
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Eπ h (S0)Eπ g(Ot, At) | S0 = E h (S0)E g(Ot, At)(∏ℓ=0t 1Aℓ=πℓ
pℓ(Aℓ | Oℓ, Aℓ−1) ) | S0 .

Note that the distribution of S0 is the same regardless of how the actions are chosen, that is the
distribution of S0 is the same under both P and Pπ. Thus

E h (S0)Eπ g(Ot, At) | S0 = E h (S0)E g(Ot, At)(∏ℓ=0t 1Aℓ=πℓ
pℓ(Aℓ | Aℓ, Aℓ−1) ) | S0 .

Lemma A2 For p, q, r, s, N positive integers and MF, MG, MΘ positive reals, define the
following classes of real valued functions,

H ⊆ {h (x, a) : x ∈ ℝp, a ∈ {1, … , N }}
F ⊆ { f (x) : x ∈ ℝq, sup

x
| f (x) | ≤ MF}

G ⊆ {g(x, y) : x ∈ ℝq, y ∈ ℝrsup
x,y

| g(x, y) | ≤ MG}
and

Θ ⊆ {θ ∈ ℝs : max
i=1,…,s

| θi | ≤ MΘ}.
The following hold.

1. If V = {maxa h(x, a) : h ∈ H}then N1 (ɛ, V n) ≤ N1 (ɛ/N, H Nn).

2. For |a| ≤ 1, |b| ≤ 1, if V = {a f (x) + bg(x, y) : f ∈ F, g ∈ G} then N1(ɛ, V, n) ≤ N1(ɛ/2, F, n)
N1(ɛ/2, G, n).

3. If V = F ∪ G then N1(ɛ,V, n) ≤ N1(ɛ,F, n) + N1(ɛ, G, n).

4. If V = {θ1 f1(x) + ... + θs fs(x) : fi ∈ F, (θ1,..., θs) ∈ Θ} then

N1(ɛ, V , n) ≤ e(s + 1) ( 4esMΘMF
ɛ )s N∞( ɛ

4sMΘ
, F , n)s.

Proof. We prove 1. and 4.; the proofs of 2. and 3. are straightforward and are omitted. Consider
1. Given (x1,..., xn), the ɛ-covering number for the class of points in ℝNn, {(h(xi, a) : i =
1,...,n, a = 1,...N); h ∈ H} is bounded above by N1 (ɛ, H, Nn). Note that for (zia, i = 1,...,n, a =
1,...,N),

1/n ∑
i=1

n | max
a=1,…,N

h (xi, a) − max
a=1,…,N

zia | ≤ 1 /n ∑
i=1

n
max

a=1,…,N
| h (xi, a) − zia |

≤ 1 /n ∑
i=1

n
∑
a=1

N
| h (xi, a) − zia | .

Thus the ɛ-covering number for the class of points in ℝn,
ℝn, {(maxa=1

N h (xi, a) : i = 1, … , n) ; h ∈ H } is bounded above by N1 (ɛ, H, Nn). Using the
definition of covering numbers for classes of functions we obtain
N1(ɛ, V , n) ≤ N1( ɛ

N , H , Nn).
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Next consider 4. Put x = (x1,..., xn) (each xi ∈ ℝq) and f (xi) = ( f1(xi),..., fs(xi))T. Then there
exists {z1,..., zN}, (N = N∞ (ɛ/(4sMΘ), F, n); zj ∞ ℝn) that form the centers of an ɛ/(4sMΘ)-
cover for F. To each zj we can associate an f ∈ F, say f *j so that {f *1,...,f *N} form the centers
of an ɛ/(2sMΘ)-cover for F. Then given {f1,..., fs} ∈ F there exists j* ∈ {1,...,N } for j =
1,...,s, so that max1≤j≤s max1≤i≤n | fj(xi) − f*j*(xi)| ≤ ɛ /( 2sMΘ). Then

(1 /n) ∑
i=1

n | ∑
j=1

s
θ j f j(xi) − θ j f j*

* (xi) | ≤ ɛ / 2.

Define F ′ = {∑ j=1
s θ j f j*

* : θ j ∈ Θ}. Theorems 11.6 and 18.4 of Anthony and Bartlett (1996)

imply that N1(ɛ / 2, F ′, n) ≤ e(s + 1) ( 4esMΘMF
ɛ )s These two combine to yield the result.
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