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ABSTRACT

Hepatitis B virus (HBV) X protein (HBx) is con-
sidered to play a role in the development of hepato-
cellular carcinoma (HCC) during HBV infection. HCC
was shown to be more prevalent in men than in
women. Estrogen, which exerts its biological func-
tion through estrogen receptor (ER), can inhibit HBV
replication. ERA5, an ERa variant lacking exon 5,
was found to be preferentially expressed in patients
with HCC compared with patients with normal livers.
Here, we report the biological role of ERA5 and
a novel link between HBx and ERa signaling in
hepatoma cells. ERA5 interacts with ERa in vitro
and in vivo and functions as a dominant negative
receptor. Both ERa and ERA5 associate with HBx.
HBx decreases ERa-dependent transcriptional
activity, and HBx and ERA5 have additive effect
onh suppression of ERa transactivation. The HBx
deletion mutant that lacks the ERa-binding site
abolishes the HBx repression of ERa. HBx, ER«a
and histone deacetylase 1 (HDAC1) form a ternary
complex. Trichostatin A, a specific inhibitor of
HDAC enzyme, can restore the transcriptional activ-
ity of ERa inhibited by HBx. Our data suggest that
HBx and ERA5 may play a negative role in ERa
signaling and that ERa agonists may be developed
for HCC therapy.

INTRODUCTION

Prolonged infection with Hepatitis B virus (HBV) has been
clearly recognized as a major etiological factor for hepato-
cellular carcinoma (HCC) (1). HBx, a virally encoded protein
of 154 amino acids, has been shown to have multifunctional
activities relevant to HBV-mediated oncogenesis (2). HBx is
involved in neoplastic transformation in cultured cells and

can induce liver cancer in transgenic mice. Although HBx
does not bind to double-stranded DNA, it regulates trans-
cription of a variety of cellular and viral genes by interacting
with cellular proteins and/or components of signal trans-
duction pathways. HBx has been shown to interact with tran-
scriptional factors such as RPB5 of RNA polymerase (3),
TATA-binding protein (4), basic region/leucine zipper (bZIP)
proteins (5) and the tumor suppressor p53 (6). Besides, it can
also associate with serine protease TL2 (7) and cellular DNA
repair protein (8). The interaction of HBx with these proteins
leads to activation of signal transduction pathways including
the Ras/Raf/mitogen-activated protein kinase, protein kinase
C, Jakl-STAT and nuclear factor xB pathways (9-12).
However, the intracellular signaling pathways in which Hbx
is involved are not fully elucidated.

Estrogen was shown to suppress HBV replication in male
athymic mice transplanted with HBV-transfected HepG2
cells (13). The fact that HCC is more prevalent in men than
in women suggests that estrogen may play an important role
in the development of HCC (14-17). Estrogen exerts its func-
tion through its two nuclear receptors, estrogen receptor o
and B (ERo and ERP) (18-21). ERo. and ERJ share structural
similarity characterized by several functional domains. Two
distinct activation function (AF) domains, AF-1 and AF-2,
located at the N-terminus and the C-terminus, respectively,
contribute to the transcriptional activity of the two receptors.
The DNA-binding domain (DBD) of the two receptors is
well conserved and centrally located. Activation of ERs is
responsible for many biological processes, including cell
growth, differentiation and apoptosis.

ERa has been well characterized in human liver (22). ERa
is expressed in the liver of both healthy individuals and
patients with HCC, with no differences in the pattern of
expression (23,24). In contrast, the mutant form with the
entire exon 5 deleted (ERAS) is preferentially expressed
in patients with HCC compared with patients with normal
livers (25). The presence of the liver ERAS transcript in the
tumor was the strongest negative predictor of survival in
operable HCC (26-28). Its presence also correlates with a
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higher clinical aggressiveness of the tumor in comparison
with tumors characterized by wild-type ERo (wt ERo)
transcript. High rates of ERAS expression have been shown
to present in men at high-risk for HCC development. ERAS
encodes the hormone-independent AF-1 domain, as well as
the DBD. Although ERA5 was demonstrated to be coex-
pressed with wt ERo in HCC, the role of ERAS in ERa sig-
naling remains to be investigated.

On the basis of in vivo and in vitro functional relevance
of the estrogen/ERo axis and HBx in the development of
HCC, we hypothesized that HBx may play a role in ERa
signaling. Here, we show that ERAS has a dominant negative
activity in hepatoma cells when expressed together with wt
ERo. HBx decreases ERa transcriptional activity, and HBx
and ERAS5 have additive effect on inhibition of ERa trans-
activation. We further present in vitro and in vivo evidence
that both HBx and ERAS interact with ERa.. HBx inhibits
ERa signaling possibly through recruitment of histone deace-
tylase 1 (HDAC1).

MATERIALS AND METHODS
Plasmids

The reporter constructs ERE-Luc (29), C3-LUC (30,31),
pS2-LUC (32) and pS2AERE-LUC (33), and expression
vector for ERo have been described previously. For the gen-
eration of FLAG-tagged full-length HBx, human HBx DNA
was amplified by PCR using pHBV3091 as a template (34).
The amplified HBx DNA was cloned into pcDNA3 vector
harboring FLAG epitope sequence (pcDNA3-FLAG). The
deletion mutant of HBx (A73-120) was constructed by insert-
ing the recombinant PCR-generated fragment from the HBx
DNA into the pcDNA3-FLAG vector. The expression vectors
for the full-length ERo (1-595), ERo. AF1 (1-185), ERo
DBD (180-282), ERoc AF2 (282-595), ERow AF2 (302-595)
and ERAS (370 amino acids with a novel five-amino acid
residue COOH terminus) were made by introducing the cor-
responding cDNAs into pcDNA3 (Invitrogen). Enhanced
green fluorescent protein (EGFP)-tagged HBx construct was
generated by inserting HBx DNA into pEGFP-C1 (Clontech),
and red fluorescent protein (RFP)-tagged ERa construct by
inserting ERo. cDNA into pDsRed-N1 (Clontech). A cDNA
fragment encoding entire coding region of HDACI was
obtained by RT-PCR using as a template total RNA from
the human hepatoma cell line HepG2, and the cDNA frag-
ment was inserted in frame into a pcDNA3 vector linked
with HA tag at the amino terminus. Plasmids encoding
GST-fusion proteins were prepared by amplification of each
sequence by standard PCR methods, and the resulting frag-
ments were cloned in frame into pGEX-KG (Amersham
Pharmacia Biotech) using appropriate restriction sites. All
of the constructs were confirmed by sequencing. Details of
cloning are available upon request.

Transfection and luciferase assay

HepG2 and SMMC-7721 cells were routinely grown in
DMEM (Invitrogen) supplemented with 10% fetal bovine
serum (FBS). For transfection, cells were seeded in 12-well
plates containing phenol red-free DMEM medium supple-
mented with 10% charcoal-stripped FBS (Hyclone). The

cells were transfected using Lipofectamine 2000 (Invitrogen)
with 0.2 ug of ERE-LUC, C3-LUC, pS2-LUC or pS2AERE-
LUC reporter plasmid, 50 ng of ERa expression plasmid,
250 ng to 2 pg of the expression vector for HBx and
0.1 ug of P-galactosidase reporter as an internal control.
The empty vector pcDNA3 was used to adjust the total
amount of DNA. After treatment with 10 nM of 17f-estradiol
(E;) and 100 nM 4-hydroxytamoxifen (4-OHT) for 24 h,
or 100 nM trichostatin A (TSA) for 12 h, the cells were
harvested, and luciferase and [(3-galactosidase activities were
determined as described previously (35). All experiments
were repeated at least five times.

GST pull-down assay

GST and GST-fusion proteins were expressed in E.coli
DH5aq, with the induction of protein expression performed
at 20°C overnight (36). After large-scale preparation,
purification of the recombinant proteins were performed
according to the manufacturer’s instruction (Pharmacia)
using glutathione—Sepharose beads. The expression plasmid
for the ERo, ERo deletion mutants, HBx or HDAC1 was
used for in vitro transcription and translation in the TNT
System (Promega). The 33S-labeled in vitro translated pro-
ducts were incubated with ~10 ug of GST derivatives
bound to glutathione—Sepharose beads in 500 ul binding buf-
fer (50 mM Tris—HCI, pH 7.5, 150 mM NaCl, 1 mM EDTA,
0.3 mM DTT, 0.1% NP-40 and protease inhibitor tablets
from Roche) at 4°C. The beads were precipitated, washed
four times with binding buffer, eluted in SDS—-PAGE sample
buffer, and analyzed by SDS-PAGE. After electrophoresis,
the gel was dried and exposed to X-ray films.

Coimmunoprecipitation

HepG2 cells were transfected with the indicated plasmids
using Lipofectamine 2000 (Invitrogen), washed with
phosphate-buffered saline (PBS), lysed in 0.5 ml lysis buffer
(50 mM Tris, pH 8.0, 250 mM NacCl, 0.25% NP-40, 1 mM
DTT and protease inhibitor tablets from Roche), and
immunoprecipitated with anti-FLAG-agarose beads (Sigma)
for 3 h at 4°C. The beads were centrifuged, washed four
times with the lysis buffer, and eluted in 30 ul of SDS-
PAGE sample buffer. The eluted proteins were separated by
SDS-PAGE, followed by immunoblotting with anti-ERo
(Santa Cruz Biotech), anti-HA (Sigma) or anti-FLAG
(Sigma) according to the standard procedures.

For reimmunoprecipitation, the immune complexes pre-
cipitated with anti-FLAG were eluted under native condition
by a competition with 3x FLAG peptide according to the
manufacturer’s instructions (Sigma). The eluate was pre-
cleared with 20 pl of 50% protein A agarose beads (Santa
Cruz Biotech) for 30 min. Proteins were reprecipitated with
anti-ERa or control serum (Santa Cruz Biotech) plus 20 pl
of protein A agarose beads. Reprecipitates were washed
four times with lysis buffer, eluted by boiling in SDS-
PAGE sample buffer, and resolved by SDS-PAGE, followed
by immunoblotting.

For detecting interaction of endogenous HBx with ERa,
liver tissue from an HBV positive patient (General Hospital
of PLA, Beijing) was lysed in 1.0 ml RIPA buffer (PBS,
1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS and



protease inhibitor tablets from Roche), and immunoprecipit-
ated with anti-ERa or control serum (Santa Cruz). After
extensive washing with RIPA buffer, the immunoprecipitates
were resolved by SDS-PAGE, followed by western blot
analysis using anti-HBx (Chemicon).

Confocal microscopy

HepG2 cells were seeded in 6-well dishes with glass cover-
slips containing phenol red-free DMEM medium (Invitrogen)
supplemented with 10% charcoal-stripped FBS (Hyclone).
Cells were transiently transfected with the indicated plasmids
using lipofectamine 2000. Six hours after transfection, cells
were treated with 10 nM of 17B-estradiol (E,) for various
times. Nuclear DNA was visualized with 4’,6’-diamidino-
2-phenylindole (DAPI). The subcellular localization of
EGFP-HBx and RFP-ERo was analyzed with a Radiance
2100 confocal microscope (Bio-Rad). Fluorescence was
detected with appropriate filter sets (the green signal, excita-
tion 488 nm, dichroic mirror 560 DCLPXR, emission HQ
515/30; the red signal, excitation 543 nm, dichroic mirror
650 DCLPXR, emission HQ590/70).

RESULTS
Repression of ERa transcriptional activity by ERAS

To examine the effects of wt ER and the ER variant ERAS
on E,-responsive gene transcription, ERo.—negative human
liver carcinoma HepG?2 cells (37) were transiently transfected
with wt ERo and/or ERAS, along with the synthetic estrogen-
responsive reporter plasmid ERE-LUC, or the natural
estrogen-responsive reporters pS2-Luc and Complement
3-Luc (C3-Luc). As shown in Figure 1, in the presence of
E,, ERo stimulated the transcription of these reporter
genes, whereas ERAS had little effect. Importantly, when
wt ER and ERAS were co-transfected into the HepG2 cells
in equal amounts, ERA5 was able to reduce the transcrip-
tional activity of wt ER. These data suggest that ERAS is
able to interfere with the transcriptional activity of wt ER
and to act as a dominant negative receptor.

Interaction of ERa with ERAS in vitro and in vivo

The dominant negative property of the ER variant ERAS
could involve the formation of a heterodimer between
ERAS and wt ERa through protein—protein interactions. To
test this possibility, GST pull-down experiments were per-
formed in which in vitro translated >°S-methionine-labeled
ERAS was incubated with full-length GST-ERa or GST. As
shown in Figure 1B, in both the absence and presence of
E,, ERAS bound to GST-ERo, but not to GST, suggesting
that ERa physically interacts with ERAS in vitro.

To determine whether ERAS interacted with ERo in vivo,
HepG2 cells were transfected with ERa and FLAG-tagged
ERAS, and grown both in the absence and presence of
10 nM E,. The cells were then subjected to immunoprecipi-
tation (IP) with FLAG antibody-conjugated agarose beads,
followed by immunoblot (IB) with ERo antibody, which
recognizes both ERo and ERAS5 proteins. As shown in
Figure 1C, ERa could be co-immunoprecipitated in a ligand-
independent manner in the presence, but not in the absence,
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Figure 1. ERAS represses ERa transcriptional activity through interaction
with ERa.. (A) ERAS represses transcription of the ERE-Luc, pS2-Luc and
C3-Luc reporters. HepG2 cells were co-transfected with 0.5 pg of the
expression vector for ERAS, 0.5 ug of the expression plasmid for ERo and
0.2 ng of various luciferase reporter plasmids in the absence or presence of
10 nM of 17B-estradiol (E,). The luciferase activity obtained on transfection
of the respective luciferase reporter and ERo without exogenous ERAS in
the absence of E, was set as 1. (B) In vitro interaction of ERA5 with ERo..
Glutathione-Sepharose beads bound with GST-ERo or with GST were
incubated with **S-labeled ERAS5 in the absence or presence of 100 nM E,.
After washing the beads, the bound proteins were eluted and subjected to
SDS-PAGE and autoradiography. (C) In vivo interaction of ERAS with ERo.
ERo and FLAG-tagged ERAS were co-transfected into HepG2 cells in the
presence or absence of 10 nM E,. Cell lysates were immunoprecipitated (IP)
by anti-FLAG M2 monoclonal antibody (Sigma), and the precipitates were
then immunoblotted (IB) with anti-ERo polyclonal antibody (Santa Cruz
Biotech).

of FLAG- ERAS. These results suggest that ERAS interacts
with ERa in hepatoma cells.

Repression of ERa transcriptional activity by HBx

To gain insight into the functional role of HBx in HCC,
the effect of HBx protein on ERo transactivation function
was investigated. HepG2 cells were co-transfected with
the synthetic estrogen response element (ERE)-containing
reporter ERE-LUC, ERo., and increasing amounts of HBx.
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As shown in Figure 2A, as little as 250 ng of HBx was
sufficient to exert a potent repression of ERo transactiva-
tion function and the extent of repression increased with
increasing amount of HBx expression, suggesting that HBx
decreased ERa transcriptional activity in a dose-dependent
manner. Similar repression was observed in other liver cancer
cells such as SMMC-7721 (data not shown). It should
be noted that the decreased transcriptional activity was not
a result of reduced ERa protein production (Figure 2B).

To test the effect of HBx on natural estrogen-responsive
promoter activity, HepG2 cells were co-transfected with the
natural ERE-containing reporter C3-Luc or pS2-Luc, together
with expression vectors for ERa and HBx. As shown in
Figure 2C and D, activation of the C3 promoter by ER«x
was not affected by HBx, whereas activation of the pS2 pro-
moter by ERo was significantly repressed by HBx, indicating
that the effect of HBx is promoter specific. Interestingly,
mutations of the EREs at the pS2 promoter abolished both
the E,-dependent gene activation and HBx-mediated repres-
sion (Figure 2E). A similar repressive effect of HBx on
ERo-mediated transcription was also observed in SMMC-
7721 cells (data not shown). As another control of the effects
of HBx on transcription, HBx stimulated Smad-mediated
gene transcription as reported previously (38), when HepG2
cells were co-transfected with the synthetic TGF-responsive
transcriptional reporter p3TP-Lux (data not shown). Taken
together, our data suggest that specific cis- and trans-acting
elements are required for the HBx-mediated repression.

Additive repression of specific ERa responsive gene
transcription by HBx and ERAS

Since both HBx and ERAS5 repressed ERo transcriptional
activity, we determined if HBx and ERAS had synergistic
or additive effect on ERo transactivation. We co-transfected
HepG2 cells with the ERE-Luc, C3-Luc, pS2-Luc or
pS2AERE-Luc reporter construct, together with HBx or
ERAS or in combination. As expected, HBx alone inhibited
the transcription of the ERE-Luc and pS2-LUC reporter
genes but not the C3-Luc and pS2AERE-Luc reporter genes.
ERAS alone repressed the transcription of all of reporter
genes except pS2AERE-Luc (Figure 3A-D). Cotransfection
with HBx plus ERAS expression vectors gave an additive
effect in repressing the transcription of the pS2-LUC reporter
gene but not the other reporter genes. These results indicate
that the additive effect of HBx and ERAS on ERoi-responsive
gene transcription is promoter specific.

To examine the effect of antiestrogen on suppression of
ERo transactivation by HBx and ERAS, HepG2 cells were
co-transfected with the pS2-Luc reporter, ERo,, and HBx or
ERAS or in combination, and subsequently treated with the
antiestrogen 4-OHT (Figure 3E). 4-OHT alone did not have
significant effect on HBx- or ERAS5-mediated repression,
whereas combination of 173-estradiol (E,) and 4-OHT inhib-
ited E,-induced ER« transactivation regardless of HBx and
ERAS.

Interaction of HBx with ERa in vitro and in vivo

HBx has been shown to regulate viral and cellular gene
transcription by interacting with transcription factors (3—6).
Our observation that HBx could function as a co-repressor

to repress ERou transactivation raised the possibility that
HBx might physically interact with ERa. To test this possib-
ility, GST pull-down experiments were performed using
33S-labeled full-length ERo. and GST-tagged full-length
HBx. As shown in Figure 4A, GST-HBx, but not GST, was
able to pull down the *S-labeled ERat, thus demonstrating
an in vitro interaction between HBx and ERa.

To test if HBx binds to ERo in mammalian cells,
HepG2 cells were transfected with ERa and FLAG-tagged
HBx, and harvested for coimmunoprecipitation experi-
ments. Figure 4B demonstrates that ERo could be co-
immunoprecipitated in a ligand-independent manner in the
presence of FLAG-HBx but not FLAG-tagged empty vector.
To ascertain the HBx—ER« interaction in a more physio-
logical context, the endogenous ERa protein from liver
tissue of an HBV positive patient was immunoprecipitated
with an anti-ERo antibody. Subsequent immunoblotting
with anti-HBx antibody indicated that the endogenous HBx
was coprecipitated with ERa (Figure 4C). In the negative
control experiment, normal rabbit serum or an irrelevant
antibody, anti-FLAG antibody, did not immunoprecipitate
HBx (Figure 4C and data not shown). Taken together, these
data strongly suggest that HBx interacts with ERa in vivo.

Since HBx and ERAS5 have additive effect on the ERo
transactivation (Figure 3C), the effect of ERAS on the
HBx-ERa interaction was investigated. HepG2 cells were
transfected with FLAG-tagged HBx, ERo, and increasing
amounts of ERAS, and collected for coimmunoprecipitation
assays. As shown in Figure 4D, Both ERo and ERAS were
coprecipitated with FLAG-tagged HBx, but not FLAG
control vector. Consistent with the functional results
(Figure 3C), ERAS had little effect on the interaction of
ERo with HBx (Figure 4D).

Co-localization of ERa with HBx

To confirm the protein—protein interaction between HBx and
ERo in situ, constructs were made for EGFP-tagged HBx
(EGFP-HBx) and RFP-tagged ERo. Based on their ability
to regulate the ERE-Luc reporter activity, these fluorescent
protein-tagged constructs were similar to those with or with-
out the above mentioned FLAG tag (data not shown). HepG2
cells were then co-transfected with EGFP-HBx and RFP-
ERa, and analyzed for co-localization of ERo. with HBx.
As expected, EGFP-HBx localizes in both the cytoplasm
and the nucleus of HepG2 cells (39) (Figure 4E). RFP-ERo
localizes essentially in the nucleus of HepG2 cells in both
the presence and absence of estrogen (Figure 4E and data
not shown). Co-localization studies indicated that EGFP-
HBx colocalized with RFP-ERcq, but not with the empty
vector RFP, predominantly in the cell nucleus in a ligand-
independent manner, suggesting that ERo. may facilitate the
nuclear localization of HBx (Figure 4E and data not shown).

Mapping of the ERa and HBx interaction regions

To define the interacting region(s) of HBx on ERo,
GST-fusion proteins containing various regions of HBx
were prepared and the ability of each of these to interact
with *°S-methionine-labeled in vitro translated full-length
ERa were determined by GST pull-down assay (Figure 4F).
Deletion of only the first 51 or last 11 amino acids of HBx
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Figure 2. HBx inhibits ERo-mediated transactivation function in hepatoma cells. (A) HepG2 cells were co-transfected with 0.2 pug of ERE-Luc, 50 ng of the
expression plasmid for ERa and increasing amounts of the expression plasmid for FLAG-tagged HBx in the absence or presence of 10 nM E,. The luciferase
activity obtained on transfection of ERE-Luc and ERo without exogenous HBx in the absence of E, was set as 1. (B) Immunoblotting showing the ERo. and
HBx levels in HepG2 cells. Cells were transfected as in (A). Whole cell extracts were prepared from the cells transfected with 2.0 ug of the expression
plasmid for HBx in the presence of 10 nM E,, and were detected with anti-ERo (Santa Cruz Biotech), anti-FLAG (Sigma) or anti-GAPDH (Biogenesis) antibody.
(C-E) HepG2 cells were co-transfected with 50 ng of the expression plasmid for ERa, 1.0 pg of the expression plasmid for FLAG-tagged HBx, and 0.2 pg of
C3-Luc (C), pS2-Luc (D) or pS2AERE-Luc (E), in the absence or presence of 10 nM E,. The luciferase activity obtained on transfection of the respective
luciferase reporter without exogenous ERo and HBx in the absence of E, was set as 1.
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did not affect the ability to interact with ERo. The
GST-HBx(73-120) containing part of the transactivation
domain bound specifically to ERa, but the GST-HBx(1-72)
and the GST-HBx(121-154) did not.

To map the domain of ERa responsible for interaction
with HBx, a series of 35S_methionine-labeled in vitro trans-
lated ERo. mutants were used in GST pull-down experiments
(Figure 4G). The ERo(282-595) and the ERo(302-595)
containing the AF2 domain were found to associate with
HBx, whereas the ERo(1-185) containing the AF1 and the
ER0(180-282) containing the DBD did not. ERAS, which
has amino acid residues 1-365 of ERa also interacted with
HBx, although with weak binding affinity.

Interaction of HBx with ERa is required for inhibition
of ERa transactivation function

To test the possibility that the interaction of HBx with ERa is
required for the repression of ERa transactivation function,
the HBx mutant [HBx(A73-120)] in which the interaction
region from amino acids 73 to 120 of HBx was deleted
was constructed. HepG2 cells were co-transfected with the
ERE-LUC reporter, ERa, and FLAG-tagged full-length
HBx or HBx(A73-120). As shown in Figure 5A, the mutation
lacking the ERo-binding site abrogated the repression of
ERo transactivation function by HBx. Notably, FLAG-tagged
HBx and HBx(A73-120) were expressed at comparable
levels (Figure 5B). To determine if HBx(A73-120) did lose
the ability to interact with ERa in HepG2 cells, coimmuno-
precipitation experiments were performed. As expected,
HBx(A73-120) did not interact with ERo (Figure 5C).
Taken together, these findings suggest that interaction
of HBx with ERa is required for repression of ERo
transactivation function.

HBx, ERa and HDAC1 form a complex

To investigate whether the observed repression of ERo-
responsive gene transcription by HBx was associated with
recruitment of HDAC complexes, we examined the interac-
tion between HBx and HDAC1 by GST pull-down assay.
As shown in Figure 6A, in vitro translated HDACI interacted
with GST-HBx, but not with GST alone, indicating that
HBx associated with HDACI in vitro.

To determine whether the interaction of HBx with HDACI1
occurred in vivo, we performed coimmunoprecipitation and

immunoblotting (Figure 6B). Transient expression of
FLAG-tagged HBx, but not control FLAG vector, in
HepG2 cells was accompanied by interaction with HA-
tagged HDACI1. These results suggest that HBx interacts
with HDACI in vivo.

To examine whether HBx, ERa and HDACI formed
a complex, HepG2 cells were transfected with ERo and
HA-tagged HDAC1 with or without FLAG-tagged HBx.
The cells were then subjected to immunoprecipitation with
FLAG antibody-conjugated agarose beads, followed by
immunoblot with ERa. and HA antibodies (Figure 6C).
Both ERo. and HDAC1 were coprecipitated with FLAG-
tagged HBx, but not FLAG control vector. To further confirm
the possibility of a ternary complex among HBx, ERo, and
HDACI, the immune complexes precipitated with FLAG
antibody were eluted with a FLAG peptide, and subjected
to a second immunoprecipitation with an anti-ERo antibody.
The anti-ERo. immunoprecipitates were then subjected to
immunoblotting with anti-HA to detect HA-tagged HDACI.
HA-tagged HDAC1 was present after sequential immuno-
precipitation (Figure 6D). In contrast, HA-tagged HDACI
was absent after a second immunoprecipitation with control
antibody. These data provide strong evidence that HBXx,
ERo and HDACI1 together can form a ternary complex
in vivo.

HDAC inhibitor relieves repression of ERa
transactivation function by HBx

Our observation that HBx interacts with HDACI raises the
possibility that the repression of ERa functions by HBx
could be HDAC dependent. To this end, we examined the
effect of TSA, a specific inhibitor of HDAC enzyme, on
HBx-induced repression of ERE transcription in HepG2
cells (Figure 7). We found that HBx-mediated repression
of ERa transcriptional activity could be effectively relieved
by inhibiting HDAC activity. Interestingly, E, and TSA
have additive or synergistic effect in stimulating ERo tran-
scriptional activity. These data suggest that HBx may recruit
HDAC enzyme to repress ERE-mediated transcription.

DISCUSSION

In the present study, we demonstrated for the first time that
both ERAS and HBx can inhibit ERo transcriptional activity

Figure 4. HBx interacts with ERa in vitro and in vivo. (A) Interaction of HBx with ERa in vitro. A GST pull-down assay was performed using 33S-labeled ERa,
and GST or GST-HBx. The bound proteins were subjected to SDS—-PAGE followed by autoradiography. (B) Interaction of HBx with ERa in vivo. ERo. and
FLAG-tagged HBx or empty vector were co-transfected into HepG2 cells. Cell lysates were immunoprecipitated (IP) by anti-FLAG M2 monoclonal antibody
(Sigma), and the precipitates were then immunoblotted (IB) with anti-ERo polyclonal antibody (Santa Cruz Biotech). (C) Interaction of endogenous HBx with
ERo in vivo. Liver tissue extracts from an HBV positive patient were immunoprecipitated with either anti-ERo polyclonal antibody or preimmune control serum
(Santa Cruz Biotech). The precipitates were analyzed by immunoblot using anti-HBx (Chemicon). (D) Effect of ERAS on the interaction between HBx and ERa.
HepG2 cells were co-transfected with 2 ug ERa., 4 ug FLAG-tagged HBx and increasing amounts of ERAS (2 and 4 ug). Cell lysates were immunoprecipitated
by anti-FLAG monoclonal antibody, and the precipitates were detected with anti-ERo polyclonal antibody. (E) Co-localization of HBx and ERo. in HepG2 cells.
Cells were transfected with EGFP-tagged HBx and RFP-tagged ERa or empty vector (RFP) as indicated, and were treated with 10 nM E, for 24 h. The images
were captured by confocal immunofluorescence microscopy. HBx localization is shown with EGFP (green) and ERo. is seen with RFP (red). The nuclei were
stained with DAPI (blue). Co-localization of HBx with ERa is shown in merged images. (F) Mapping of the ERa. interaction region in HBx. A GST pull-down
assay was performed using 3$-labeled ERo. and GST-HBx(1-72), GST-HBx(73-120), GST-HBx(121-154), GST-HBx(1-143), GST-HBx(52-154) and full-length
GST-HBx(1-154) or GST. Schematic diagram of the HBx deletion constructs used is shown at the top, the binding of ERa to different regions of HBx
is demonstrated in the middle, and SDS-PAGE analysis of the purified GST-fusion proteins is shown at the bottom. Asterisks indicate the positions of the
expected purified GST or GST-fusion proteins. (G) Mapping of the HBx interaction region in ERo.. A GST pull-down assay was performed using full-length
GST-HBx(1-154) or GST, and **S-labeled full-length ERo. (1-595), ERo. (1-185), ERo. (180-282), ERa. (282-595), ERo. (302-595) or ERAS. Schematic
diagram of the ERa deletion constructs used is shown at the top.
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Figure 5. The HBx deletion mutant abolishes HBx-induced repression of
ERo transcriptional activity. (A) Luciferase reporter assays with the HBx
deletion mutants. HepG2 cells were co-transfected with 0.2 ug of ERE-LUC,
50 ng of the expression plasmid for ERa and 1.0 pg of the expression vector
for FLAG-tagged HBx or HBx(A73-120), in the presence or absence of
10 nM E,. (B) Western blotting showing expression of FLAG-tagged HBx
and HBx(A73-120). Cells were transfected as in (A). Cell extracts were
prepared from E,-treated cells, and equivalent amounts of each extract were
detected with anti-FLAG or anti-GAPDH antibody. (C) The HBx deletion
mutant abolishes the HBx—ERo. interaction. HepG2 cells were co-transfected
with the expression plasmid for ERo. and the expression vector for
FLAG-tagged HBx or HBx(A73-120). Cell lysates were immunoprecipitated
by anti-FLAG, and the precipitates were probed with anti-ERo.

in human liver cancer cells. We found that the repression
of ERa transactivation function by ERA5 and HBx is medi-
ated by their physical interaction with ERo.. The binding of
HBx with ERo is important for HBx-induced repression
of ERa transactivation function because the HBx deletion
mutant that lacks ERa-binding site completely abolished
the repression of ERa transcriptional activity by HBx. Fur-
thermore, we have shown that ERA5 and HBx have additive
but not synergistic effect on repression of ERa-responsive
gene transcription, suggesting that ERA5, ERo and HBx
may not form a complex.

Estrogen has been reported to promote the growth of
certain human neoplasms, notably tumors of the breast,
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Figure 6. HBx forms a complex with ERo. and HDACI. (A) Association
of HBx with HDACI in vitro. GST-HBx and GST were incubated with
3S-labeled ERct, and a GST pull-down assay was then performed.
(B) Association of HBx with ERa in vivo. HepG2 cells were transiently
transfected with HA-tagged HDAC1 and FLAG-tagged HBx or control
vector. Immunoprecipitation (IP) was performed using anti-FLAG mono-
clonal antibody; immunoblotting (IB) was performed with the indicated
antibodies. (C) HBx interacts with both HDAC1 and ERo in vivo. HepG2
cells were co-transfected with ERo, HA-tagged HDACI, and FLAG-tagged
HBx or control vector. The cell extracts were immunoprecipitated with anti-
FLAG monoclonal antibody followed by immunoblotting with the indicated
antibodies. (D) HBx, ERo. and HDACT forms a ternary complex. HepG2 cells
were transfected as in (C). The cell extracts were immunoprecipitated with
anti-FLAG antibody. Immune complexes were eluted with FLAG peptide and
re-immunoprecipitated (re-IP) using anti-ERo polyclonal antibody and
normal rabbit serum as a negative control. The resulting precipitates were
resolved by SDS-PAGE followed by immunoblotting with the indicated
antibodies.

endometrium and pituitary (40,41). In sharp contrast,
Estrogen was shown to suppress the replication of HBV
that has been clearly recognized as a major etiological factor
for HCC (13). Studies of chemical carcinogenesis also
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Figure 7. Treatment of hepatoma cells with the specific HDAC inhibitor TSA
causes a drastic relieving of HBx-induced repression of ERo. transactivation.
HepG2 cells co-transfected with 0.2 pg of the ERE-Luc reporter, 50 ng of
the expression vector for ERa, 1.0 ug of the expression plasmid for HBx.
Cells were then treated with control (0.1% ethanol) vehicle, 10 nM E, or
100 nM TSA as indicated. The luciferase activity obtained on transfection
of ERE-Luc and ERa without exogenous HBXx in the absence of E, and TSA
was set as 1.

suggested that ERo may modulate HCC risk by inhibiting
the malignant transformation of pre-neoplastic liver cells.
The ERo variant ERAS5 was shown to be preferentially
expressed in patients with HCC compared with parents with
normal livers and to be associated with poor clinical outcome
(25-28). Therefore, it is important to determine whether
the ERAS is able to interfere with the transcriptional activity
of wt ERo.. When ERAS5 was expressed alone in human
ERo-negative hepatoma HepG2 cells, it had little effect
on either basal or E,-mediated ERE-containing reporter
activity. However, when ERAS was coexpressed with wt
ERa, the reporter activity was significantly decreased, similar
to that in human breast cancer cells (42). Our data suggest
that ERA5 functions as a dominant negative receptor in
human liver cancer cells. Although both in breast and
liver cancer cells, ERAS displays dominant negative activity,
ERAS was found to act as a dominant positive receptor
isoform and facilitate both basal and E,-stimulated ERE-
mediated transcription of wt ERo when coexpressed in
ERo-negative human osteosarcoma U2-OS and human
endometrial cancer Ishikawa cells (43,44). These discordant
results could be due to the different cell types used, sug-
gesting that some factors required for ERou transcriptional
activity may be tissue specific.

A number of studies have shown that HBx interacts with
proteins involved in transcriptional regulation (3-5,45).
Most of the studies identify HBx as a co-activator of tran-
scription. For example, HBx enhances the transcription
efficacy of the CREB transcription factor through inter-
action with CREB (46). HBx associates with hypoxia indu-
cible factor-lo. (HIF-1ct), a major transcriptional factor
that regulates expression of angiogenic factors such as vascu-
lar endothelial growth factor (VEGF), and enhances the

transactivation function of HIF-low (47,48). HBx was also
shown to stimulate transcription by activating cellular signal
transduction pathways. For instance, HBx is involved in
activating Wnt/B-catenin signaling by stabilizing cytoplasmic
B-catenin. HBx can stimulate activator protein 1 (AP-1) via
two distinct pathways, the Ras-Raf-mitogen-activated
protein kinase (MAPK) and the c-Jun amino-terminal kinase
(JNK) cascades (49). On the other hand, HBx was found to
act as a co-repressor of transcription. HBx interferes with
pS3 by direct binding and by sequestering p53 in the cyto-
plasm, resulting in the abrogation of p53-mediated trans-
criptional activity (6). HBx binds to DBD of peroxisome
proliferator-activated receptor y (PPARY), a member of
the steroid hormone receptor superfamily, and suppresses
PPARYy-mediated transactivation (50). Our results showed
that HBx represses ERol transcriptional activity through
interaction with ERo and recruitment of HDACI1, which
belongs to a class of enzymes involved in deacetylation
of hyperacetylated histone tails, leading to compaction of
chromatin and transcriptional repression (51). Importantly,
the inhibitory effect of HBx on ERo transcriptional activity
was antagonized by the HDAC inhibitor TSA. Interestingly,
E, and TSA are additive or synergistic in inducing ERa
transcriptional activity. The fact that HBx represses ERa
transcriptional activity in the presence or absence of E, sug-
gests that HBx regulates ERo. transcriptional activity in a
ligand-independent manner. Recently, the tumor suppressor
BRCAI1 has been shown to mediate ligand-independent tran-
scriptional repression of ERo in a manner dependent on
HDAC activity (52). Our observation that HBx, ERa and
HDACI can form a complex and TSA can effectively reverse
ligand-independent repression mediated by HBx suggests
that one of the underlying mechanisms by which HBx medi-
ates ligand-independent repression of ERa transcriptional
activity may involve targeted recruitment by unliganded,
promoter-bound ERo of a HBx-associated HDAC activity.

Tamoxifen is considered to be relatively more estrogenic
than antiestrogenic in the urine, bone and liver tissues (37).
Thus, tamoxifen has been used for the treatment of liver can-
cer. Indeed, initial studies with a relatively small population
of patients with HCC show regression of liver tumor mass
and improved survival in some of the tamoxifen-treated
patients (53). However, more and more recent controlled tri-
als with this drug were disappointing (54-56). Tamoxifen
does not prolong survival in patients with HCC and has an
increasingly negative impact with increasing dose. There is
also no appreciable advantage to quality of life with tamox-
ifen. These studies showed conclusively that, although the
mechanisms by which tamoxifen negatively impacts HCC
are not known, tamoxifen does not benefit patients with
HCC and is likely to be detrimental. Thus, the use of
tamoxifen in patients with HCC is not recommended. Our
study indicated that 4-OHT, a metabolite of the tamoxifen
with a more potent estrogen agonist/antagonist activity than
tamoxifen, acts as a pure estrogen antagonist in HepG2
cells, which is in agreement with the previous study showing
that tamoxifen functions as a pure estrogen antagonist in
HepG2 cells (37). This may at least in part explain why
tamoxifen is ineffective in the treatment of HCC.

Recently, HDAC inhibitors have been used successfully
to inhibit cancer cell growth in vitro and in vivo (57-59).



TSA specifically inhibits classes I and II HDACs by binding
directly to their catalytic site (3). Class I HDACs include
HDACI1, HDAC2, HDAC3, HDAC8 and HDACII, and
Class II HDACs include HDACs 4-7 and HDACs 9-10.
TSA regulates the expression of small subsets of growth-
related genes and has potent antitumor activity in vitro and
in vivo. In hepatoma cells, TSA induces a G,/M cell cycle
arrest followed by apoptosis (60,61). Since E, and TSA are
additive or synergistic in inducing ERo transcriptional
activity in hepatoma cells, it is important to develop more
effective therapeutic agents for HCC that increase ERa
transactivation function, with no obvious side effects.
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