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SUMMARY
We propose an estimator of the probability of developing a disease in a given age range, conditional
on never having developed the disease prior to the beginning of the age range. Our estimator improves
the one described by Wun, Merrill and Feuer (Lifetime Data Analysis 1998; 4, 169–186) that is
currently used by the U.S. National Cancer Institute for the SEER Cancer Statistics Review. Both
estimators use cross-sectional disease rates and provide an interpretation of these rates in terms of
the age-conditional probability of developing disease in a hypothetical cohort. The difficulty of this
problem is that rates are not available per person-years alive and disease free, but only per person-
years alive. Wun et al. used ad hoc methods to handle this problem which did not properly account
for competing risks, did not provide a measure of variability, and only allowed age ranges using
prespecified 5-year age intervals. Here we solve the problem under a unified competing risks
framework, which allows the calculation of the age-conditional probabilities for any age range. We
generalize gamma confidence intervals to apply to our new statistic. Although our new method
provides estimates which are numerically similar to that of Wun et al., this paper provides a
comprehensive theoretical basis for estimation and inference about the age-conditional probability
of developing a disease.
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1. INTRODUCTION
In this paper we use cross-sectional cancer rates and death rates to estimate lifetime and age-
conditional probabilities of developing different types of cancer in a hypothetical cohort. If
rates per person-years alive and cancer free are available then the estimation of these
probabilities is a straightforward application of competing risk methodology. The difficulty is
that many disease registries (including the National Cancer Institute's Surveillance,
Epidemiology and End Results [SEER] cancer incidence data and National Center for Health
Statistics [NCHS] mortality data that we use as our example) provide only rates per person-
years alive. We show how to write the age-conditional probability of developing cancer as a
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function of the available rates, under a simple, standard assumption. In addition, we generalize
the gamma confidence intervals developed for linear combinations of independent Poisson
random variables [1], to apply to these more complex estimators.

Previous work on this problem is described in Wun et al. [2] and historical references may be
found there. Wun et al. [2] did not fully account for competing risks in their model. Although
they did use the theory of competing risks for some parts of their derivation (see equation (3)
of Wun et al. [2]), some omissions were made in fully utilizing the competing risks framework.
For example, in deriving the probability of developing cancer among the total population from
the incidence rate, Wun et al. [2] used the formula for a failure time to a single event instead
of the proper formula that accounts for competing risks (see equation (9) of Wun et al. [2]).
This paper presents a new method for calculating the age-conditional probability of developing
cancer which comprehensively accounts for competing risks. In Section 6 we compare our
method with that of Wun et al. [2].

In Section 2 we review competing risk methods and in the process introduce our notation. In
Section 3.1 we derive our estimator for the age-conditional probability of cancer. In Section
3.2 we provide methods to calculate confidence intervals. In Section 4 we apply the method
to data examples. In Section 5 we explore the properties of our confidence interval estimator
through simulation. A concluding discussion is presented in Section 6.

2. NOTATION AND REVIEW OF COMPETING RISK METHODS
Consider first the standard competing risk problem (see, for example, Kalbfleisch and Prentice
[3]). We observe the time until one of several events, T, and an indicator of the type of event
that occurred, J. In this paper, T is a random variable denoting the age at death and J has one
of two values, J = d means death from the event of interest (for example, breast cancer), and
J = o means death from other causes. For ease of exposition, we use the term ‘cancer’ to denote
the event of interest. The cause specific hazard function for J = j is

λj(a) = lim

ε→0+

Pr a ≤ T < a + ε, J = j ∣ T ≥ a
ε

Thus λd(a) is the rate of cancer deaths per person-years alive at age a, and λo(a) is the rate of
other (that is, non-cancer) deaths per person-years alive at age a. The overall failure rate at age
a is λ(a) = λd(a)+λo(a), and the overall survival function is
S(a) = Pr T > a = exp( − ∫0

aλ(u)du). The probability of dying from cause j in the age interval
[x, y) given survival until just prior to x is

Pr x ≤ T < y, J = j ∣ T ≥ x =
∫x

yλj(u)S(u − )du

S(x − )

where S(a − ) = limε→0S(a − ε).

We also consider the statistically identical competing risks problem where T* is the age at
either first cancer or death before first cancer, and J* is the indicator with J* = c denoting that
T* is the age at first cancer and J* = o denoting that T* is the age at death if death occurs before
the first cancer. The cause specific hazard functions are: λc

∗(a), the rate of first cancer per

person-years alive and cancer free at age a, and λo
∗(a), the rate of deaths per person-years alive

and cancer free at age a. Then, similar to above, the probability of getting a first cancer in the
age interval [x, y) given alive and cancer free until just prior to x is
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A(x, y) = Pr x ≤ T ∗ < y, J ∗ = c ∣ T ∗ ≥ x =
∫x

yλc
∗(u)S ∗(u − )du

S ∗(x − )
(1)

where S ∗(a) = exp{ − ∫0
aλ ∗(u)du} and λ ∗(a) = λc

∗(a) + λo
∗(a).

3. AGE CONDITIONAL PROBABILITIES OF DEVELOPING CANCER
ESTIMATED FROM CANCER REGISTRIES
3.1. The estimator

We wish to estimate A(x, y) as given in equation (1), but we cannot directly obtain estimators
of either λc

∗(a) or λ*(a), the rates of cancer and total deaths, respectively, per person-years alive
and cancer free. However, we can directly estimate the following rates per person-years alive
at age a: λc(a), the rate of first cancer incidence, λd(a), the rate of cancer deaths; λo(a), the rate
of other (that is, non-cancer) deaths. We assume that the rate of non-cancer deaths is the same
for all people regardless of whether or not they have had a cancer, so that λo

∗(a) = λo(a). After
making this assumption, we show in the following that we can rewrite A(x, y) in terms of the
functions λc(·), λd(·) and λo(·).

First consider the numerator equation (1). Rewrite λc(a) as

λc(a) = lim

ε→0+

Pr a ≤ T ∗ < a + ε, J ∗ = c ∣ T ≥ a
ε = lim

ε→0+

Pr a ≤ T ∗ < a + ε, J ∗ = c and T ≥ a
εPr T ≥ a

= lim

ε→0+

Pr a ≤ T ∗ < a + ε, J ∗ = c
εPr T ≥ a =

λc
∗(a)S ∗(a − )

S(a − )

(2)

Using this equation we write the numerator of equation (1) as ∫x
yλc(u)S(u − )du.

Rewrite the denominator, S ∗(a) = Sc
∗(a)So

∗(a), where Sj
∗(a) = exp( − ∫0

aλj
∗(u)du) for j = c, o.

Note that Sj
∗(a) does not have a survival function interpretation (see Kalbfleisch and Prentice,

reference [3, p. 168]). Because we have assumed that λo
∗(a) = λo(a), we write

So
∗(a) = So(a) = exp( − ∫0

aλo(u)du), and the only outstanding problem is finding an estimator of

Sc
∗(a). In the definition of Sc

∗(a), we rewrite the expression for λc
∗(a) using equation (2), and

we obtain the recursive equation

Sc
∗(a) = exp{ − ∫0a

λc(u)S(u − )

So(u − )Sc
∗(u − )

du} (3)

To solve this recursive equation, first let S(t)=S d(t)S o(t), where Sj(t) = exp( − ∫0
tλj(u)du) for

j = d, o. Using the assumption that λo(a) = λo
∗(a), equation (3) becomes

Sc
∗(t) = exp{ − ∫0t

λc(u)Sd(u − )

Sc
∗(u − )

du}
Take log of both sides, then differentiate with respect to t to get

Fay et al. Page 3

Stat Med. Author manuscript; available in PMC 2006 June 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



dSc
∗(t)

dt

Sc
∗(t)

= −
λc(t)Sd(t − )

Sc
∗(t − )

If T * is a continuous random variable then Sc
∗(t) = Sc

∗(t − ) and

dSc
∗(t) ∕ dt = − λc(t)Sd(t − ). Now integrate to obtain Sc

∗(a) − Sc
∗(0) = − ∫0

aλc(t)Sd(t − )dt

and Sc
∗(0) = 1, so that Sc

∗(a) = 1 − ∫0
aλc(u)Sd(u − )du. Thus, under the assumption

λo
∗(a) = λo(a), A(x, y) can be expressed as

A(x, y) =
∫x

yλc(u)S(u − )du

So(x − ){1 − ∫0xλc(u)Sd(u − )du}
(4)

To obtain an estimate of A(x, y) using SEER incidence data and NCHS mortality data, we first
divide the possible ages into k+1 intervals, [a i,a i+1) where 0 = a 0 < a 1 < ⋯ < a k < a k+1 =
∞, and choose a calendar interval, [t 1,t 2). We observe the number of first cancer incident cases
(c i), cancer deaths (d i), and other deaths (o i), occurring at ages in the interval [a i,a i+1) during
the calendar time [t 1,t 2), for i = 0,…,k. Although the cancer incident cases and the deaths often
come from the same population (see Table I), this is not necessary (see Table III). We also
observe ni

( j), which is (t 2 − t 1) times the estimated number of people from the same population
associated with event j (where j = c, d, or o) with ages in [a i,a i+1) at the midpoint, (t 1 + t 2)/
2, of the interval [t 1,t 2), for i = 0,…,k. If t 2 − t 1 = 1, ni

( j) corresponds to the midyear population
with ages in [a i,a i+1).

We assume that the observed counts c i,d i,o i are Poisson and the midinterval populations are
fixed constants. For a motivation and discussion of this assumption see Brillinger [4] with
discussion (see especially the discussion by Keiding). Assuming constant rates within age
intervals, we estimate rates for ages a ∈ [a i,a i+1) by λ̂c(a) = ci ∕ ni

(c), λ̂d(a) = di ∕ ni
(d), and

λ̂o(a) = oi ∕ ni
(o) = λ̂o

∗(a). These estimators replace their associated functions in equation (4) to
obtain our estimator of A(x, y). In Appendix A we show the estimator using summation notation.

Because we are using cross-sectional data from finite populations to estimate hazard rates for
a hypothetical cohort, these estimates may produce hazards that cannot possibly describe a real
cohort. There are two types of these ‘impossible’ hazards. If no one in the oldest age group
dies (that is, d k = 0 and o k = 0), then the resulting hazards describe an impossible cohort where
the probability of living forever is non-zero. Another impossible cohort would result if the
probability of dying of cancer by any age a is greater than the probability of getting cancer by
that same age a (this is equivalent to ∫0

aλd(u)du > ∫0
aλc(u)du). These impossible cohorts would

rarely occur in large populations.

3.2. Confidence limits for A(x, y)
In this section we modify the gamma confidence intervals, developed for linear combinations
of independent Poisson random variables by Fay and Feuer [1], to create confidence intervals
for A(x, y). First, we put all the Poisson counts into one (3K + 3) × 1 vector
z = z1, z2, …, z3k+3

′ = c0, c1, …, ck, d0, d1, …, dk, o0, o1, …, ok
′

Associated with each z i is a random variable Z i which we assume has a Poisson distribution
with mean μi. Let μ = [μ1,μ2,…,μ3k+3]′. In the previous notation
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μ = λc(a0)n0
(c), λc(a1)n1

(c), …, λo(ak )nk
(o) ′. Emphasizing the dependence of A(x, y) on μ, we

write A(x, y) = A(x, y, μ). Using this notation, our estimator is A(x, y, z). For ease of exposition
we write A(x, y, z) = A(z) and A(x, y, μ) = A(μ), suppressing dependence on x and y. Using a
Taylor series expansion

A(z) ≈ A(μ) + ∂A(t)
∂t t=μ

(z − μ) (5)

and
var(A(Z)) ≈ ∂A(t)

∂t t=zdiag(z) ∂A(t)
∂t t=z

′

where diag(z) is a diagonal matrix with the values of z on the diagonal, representing an estimate
of var(Z).

Alternatively, numerical derivatives can be used. Letting

ΔA(z) =

A(x, y, z(+1)) − A(x, y, z)

A(x, y, z(+2)) − A(x, y, z)

⋮
A(x, y, z(+ 3K+3 )) − A(x, y, z)

with z(+ℓ) = z1, …, zℓ−1, 1 + zℓ, zℓ+1, …, z3K+3
′, leads to our variance estimate

V (z) = {ΔA(z)} diag(z){ΔA(z)}′

Our generalization of the gamma intervals [1] is to use the Taylor expansion as the linear
combination of independent Poisson random variables. The only complication is that the
weights may be negative and depend on the Poisson values. This complication does not effect
the lower confidence limit, though; the 100(1 − α) per cent lower confidence limit is given by
L = Gγ,β

−1 (α ∕ 2) where Gγ,β
−1 (p) is the pth quantile of the gamma distribution with parameters

γ = A(z)2

V (z) and β = V (z)
A(z)  (that is, with mean A(z) and variance V(z)). However, for the upper

limit the method has to be altered. When finding the maximum discrete increase in A(z), it is
possible that this may occur with a decrease in one of the Poisson values. Let

z(−ℓ) = z1, …, zℓ−1, max(0, − 1 + zℓ), zℓ+1, …, z3K+3
′

Define z (M) to be the vector value of either z(+ℓ) or z(−ℓ) for ℓ = 1, …, 3K + 3 such that A(z (M))

is maximized. Then the upper confidence limit is U = GγM ,βM
−1 (1 − α

2 ) where

γM =
A(z(M ))2
V (z(M ))  and βM =

V (z(M ))
A(z(M )) . Note that if we let the population and the mean μ get larger

by the same constant, say N, then the generalized gamma intervals approach the usual delta
method intervals (see, for example, Lehmann [5]) as N → ∞ (see Appendix B). For small μ
these generalized gamma intervals perform better and are calculated straightforwardly even
when some z i = 0, while the delta method requires modification whenever some z i = 0 in order
to prevent estimates of zero variance. For the delta method, the variances corresponding to the
elements z are estimated by replacing elements with z i = 0 with 0.5.

4. EXAMPLES
Our examples use SEER cancer incidence data and NCHS mortality data associated with the
corresponding SEER catchment areas (see Ries et al. [6]). We calculate our statistics for two
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types of cancer, invasive female breast cancer, one of the more common cancers, for all races
from the expanded 11 SEER registries from t 1 = 1 January 1996 until t 2 = 31 December 1998,
and acute lymphocytic leukaemia (ALL) for all races from the nine SEER registries active
during t 1 = 1 January 1990 until t 2 = 31 December 1990. ALL was chosen because it is
primarily a childhood cancer (see Table I) and provides an example which has high rates at
young ages unlike many cancer sites, for example, breast cancer, which have increasing
incidence for older age groups.

The raw data are listed in Table I, and A(x, y, z) with the associated 95 per cent confidence
intervals for different values of x and y are listed in Table II. As expected from Appendix B,
the delta method confidence intervals are very similar to the gamma method confidence
intervals for these data. We also calculated the gamma confidence intervals using the exact
derivatives (∂A(t)/∂t) instead of the numerical ones (ΔA(z)), and these intervals (not shown)
give essentially the same results as the gamma intervals listed in Table II (the values in terms
of probabilities are equal up to ve significant digits).

From Table II, the estimated probability of developing invasive breast cancer in one's lifetime
is 0.1332 while the probability of developing breast cancer given alive and cancer free at 30
is 0.1348. It seems contradictory that by surviving from age 0 to age 30 without dying or getting
breast cancer, a woman actually increases the probability of getting breast cancer in the
remainder of her life. To gain more insight into this situation consider an example of a birth
cohort of 100 females and assume that 12 will develop breast cancer over their life time. If by
age 5 two of the girls have died of other causes and none have yet developed breast cancer, the
risk of developing breast cancer after age 5 is 12/98(> 12/100) in this cohort.

5. SIMULATIONS
We tested the coverage probabilities of our method in three situations. For the first two
situations (female breast cancer and ALL) we assumed that the rates were exactly equal to the
rates derived from Table I except we added 0.5 to zero counts. Then we simulated 10000 data
sets assuming independent Poisson distributions with means equal to those counts (with 0.5
added to zeros). For the third situation, we checked our method for extremely low counts; we
used incidence rates of eye and orbit cancer in the nine SEER areas in 1990 (after adding 0.5
to the zero value), and rates of eye and orbit cancer deaths and other deaths from the entire
U.S. in 1990, and simulated these rates applied to the Vietnamese population in the nine SEER
areas in 1990. The raw data are presented in Table III. Thus for example the expected value
for c 1 is 5914 × (28/1817468) = 0.0911, and we have many expected count values that are
much less than 1. Then we simulated 10000 data sets assuming independent Poisson
distributions with means equal to those expected counts. We calculated a 95 per cent confidence
interval for each simulation. In Table IV we list both E L, the percentage of the lower confidence
limits that are greater than the true value and E U, the percentage of the upper confidence limits
that are less than the true value, where the true value refers to the estimator calculated from
the counts with 0.5 added to the zeros.

The situations with larger counts give better error rates, and the third situation with extremely
low expected counts gives error rates that are very conservative. In each of the three situations
the gamma intervals have error rates closer to the nominal 2.5 per cent than the delta method
based confidence intervals, although there is essentially no difference in the first case. For ALL
the asymmetric gamma confidence intervals produce more central confidence intervals (that
is, the tails of the errors are more nearly equal) than the symmetric delta confidence intervals.
For the eye and orbit situation, both methods perform very conservatively, but the gamma
method is generally less conservative. In addition all the lower delta method confidence limits
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were less than 0, and most of the upper limits were greater than the gamma method upper limits.
Thus, in all situations the gamma method performed better than the delta method.

6. DISCUSSION
In this paper we derived a new estimator of A(x, y), the probability of developing a first time
cancer during the age interval [x; y), conditioned on being alive and cancer free at age x. We
assumed that λc(a) is constant within an interval and computed λc

∗(a) which is not constant.
However, it may have been more realistic to assume the hazards among the actual at risk
populations, λc

∗(a), are constant over the interval and computed the non-constant λc(a).
Unfortunately, this approach does not appear to be tractable.

We have generalized the gamma confidence intervals [1] to apply to our new statistic. Although
these intervals appear conservative in cases with extremely low counts, we have shown that
the delta method which adds 0.5 to zero counts in the estimation of the variance of the counts
performs worse. A more general way of performing the delta method is to assume that variances
associated with zero counts are equal to some constant, 0 < δ < 1. The problem is that there is
no obvious choice of δ; we have arbitrarily chosen δ = 0.5 in this paper. Note in the most
extreme case where all counts are zero, the generalized gamma interval gives a non-zero upper
limit, while the delta method gives an upper limit that approaches zero as δ → 0. Other methods,
such as parametric bootstrap confidence intervals, suffer from the same problem of having no
satisfactory method for handling zero counts. In the simple case of linear combinations of
independent Poisson variables, Fay and Feuer [1] discuss similar issues comparing the gamma
intervals and the approximate bootstrap confidence (ABC) intervals.

Our new estimator happens to be numerically similar to the existing method of Wun et al.
[2]. Because our approach is new and not simply a modification of Wun et al. [2] and because
the notations are very different between the two approaches, we have relegated the full
comparison between the two methods to a technical report [7]. In that report, we show through
Taylor series approximations that the two methods are similar. In addition, using the new
method we recalculated Table I-17 of the Cancer Statistics Review, 1973–1998 [6] which gives
lifetime risk of developing cancer calculated for each of 30 difference cancer categories on six
subpopulations, and the new estimator differs by less than 2 per cent from that of Wun et al.
[2] in every case (see [7]).

DEVCAN (Probability of DEVeloping CANcer) software [8] has been freely available to
calculate the statistics of Wun et al. [2] and will be updated to calculate our new estimator in
a future version. See http://srab.cancer.gov/DevCan/ for the most current version of the
software.
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APPENDIX A: WRITING A(x, y, z) AS A SUM
We write our estimator of A(x, y) as A(x, y, z) (see Section 3.2 for motivation of this notation).

Let ai ≤ x < ai+1 and aj < y ≤ a j+1 for x < y, i ≤ j, and j ≤ k . For convenience we regroup the
ages after inserting group delimiters at x and y. Let the new delimiters be

0 = b0 ≤ b1 ≤ b2 ≤ ⋯ ≤ bk+3 = ∞ where 
b0 = a0, …, bi = ai, bi+1 = x, bi+2 = ai+1, …, b j+1
= aj, b j+2 = y, b j+3 = a j+1, …, bk+3 = ak+1 = ∞

.

We let
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Ŝ (bℓ) = exp{ − ∫0
bℓλ̂(u)du} = exp{ − ∑

u=0

ℓ−1
λ̂(bu)(bu+1 − bu)}

and similarly Ŝd(bℓ) = exp{ − ∫0
bℓλ̂d(u)du} and Ŝo

∗(bℓ) = exp{ − ∫0
bℓλ̂o

∗(u)du}. In this notation, A
(x, y) = A(b i+1, b j+2), and we estimate it with

A(bi+1, b j+2, z) =
∑

ℓ=i+1

j+1
∫bℓ

bℓ+1λ̂c(bℓ)Ŝ (bℓ) exp( − ∫bℓ
uλ̂(bℓ)dt)du

Ŝo(bi+1){1 − ∑
ℓ=0

i
∫bℓ

bℓ+1λ̂c(bℓ)Ŝd(bℓ) exp( − ∫bℓ
uλ̂d(bℓ)dt)du}

=
∑

ℓ=i+1

j+1
λ̂c(bℓ)Ŝ (bℓ)∫bℓ

bℓ+1exp( − (u − bℓ)λ̂(bℓ))du

Ŝo(bi+1){1 − ∑
ℓ=0

i
λ̂c(bℓ)Ŝd(bℓ)∫bℓ

bℓ+1exp( − (u − bℓ)λ̂d(bℓ))du}
Because λ̂(bℓ) or λ̂d(bℓ) may equal zero and bℓ+1 may equal infinity, we let

ϕ(λ, ℓ) = ∫bℓ

bℓ+1exp( − (u − bℓ)λ)du. These integrals are

ϕ(λ, ℓ) = {
1 − exp − (bℓ+1 − bℓ)λ

λ
if λ > 0 and bℓ+1 ≠ ∞

bℓ+1 − bℓ if λ = 0 and bℓ+1 ≠ ∞

1
λ

if λ > 0 and bℓ+1 = ∞

∞ if λ = 0 and bℓ+1 = ∞

where the case λ = 0 and bℓ+1 = ∞ is one of the ‘impossible’ hypothetical cohorts (see Section
3.1). Thus, we obtain

A(bi+1, b j+2, z) =
∑

ℓ=i+1

j+1
λ̂c(bℓ)Ŝ (bℓ)ϕ(λ̂(bℓ), ℓ)

Ŝ o
∗(bi+1){1 − ∑

ℓ=0

i
λ̂c(bℓ)Ŝd(bℓ)ϕ(λ̂d(bℓ), ℓ)}

APPENDIX B: ASYMPTOTIC BEHAVIOUR OF THE GAMMA INTERVALS
Fay and Feuer [1] stated that the gamma intervals approach the standard normal intervals if
(using the application of this paper) A(z) goes to infinity in such a way that V(z)A(z)−1 remains
constant. This is not helpful for our situation (nor is it particularly helpful for studying directly
standardized rates as in Fay and Feuer [1]). Here assume that the mean counts, μ, and the
person-years, n = {n0

(c), n1
(c), …, nk

(o)}, both increase by the same factor, say N. Since A(μ) is
a function of the rates only, this value does not change as N increases; however, as one would
expect, the variance estimates will change by a factor of N −1. We write the lower confidence

limit in terms of the chi-square distribution {V ∕ (2NA)}(χ 2)2N A2∕V
−1 (α ∕ 2), where A = A(z)

and N −1 V = V(z). The difference of the lower gamma confidence limit and the standard normal
lower limit approaches zero as N → ∞:

Fay et al. Page 8

Stat Med. Author manuscript; available in PMC 2006 June 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



lim
N→∞{ V

2NA (χ2) 2N A2

V

−1
(α ∕ 2) − (A + ( V

N )1∕2Φ−1(α ∕ 2))} = lim
N→∞

( V
N )1∕2{ (χ 2) 2N A2

V

−1
(α ∕ 2) − 2N A2

V

2( 2N A2

V )1∕2 − Φ−1(α ∕ 2)} = 0

where the result follows since limv→∞
(χ 2)v−1

(p) − v
2v

= Φ −1(p) (Johnson and Kotz, reference

[9, p. 170]), and Φ−1 (p) is the pth quantile of the standard normal distribution. One can similarly
show that the upper confidence limits approach the standard normal limits.
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Table I
Raw data.

Age, years
Female breast cancer, invasive only 11 SEER registries, 1996–

1998
Acute lymphocytic leukaemia, both sexes 9 SEER

registries, 1990

ci oi di ni
(c) = ni

(o) = ni
(d) ci oi di ni

(c) = ni
(o) = ni

(d)

[0,5) 0 5893 0 4052953 97 4096 10 1817956
[5,10) 0 561 0 4032790 61 335 12 1724041
[10,15) 1 627 1 3784789 24 360 12 1629304
[15,20) 9 1367 0 3810986 20 1375 13 1614939
[20,25) 43 1541 6 3675646 7 1898 14 1780348
[25,30) 335 2029 35 4138795 8 2399 4 2066277
[30,35) 1116 3012 173 4575728 10 3266 8 2153289
[35,40) 2670 4531 425 4831799 8 3884 9 1984257
[40,45) 5183 6234 765 4578168 14 4423 6 1776224
[45,50) 7392 8065 1152 3906260 9 4716 7 1349233
[50,55) 8012 9976 1427 3054146 11 5708 8 1064862
[55,60) 7341 12424 1411 2353577 9 8144 3  956807
[60,65) 7010 16957 1436 1981443 9 12837 4  958029
[65,70) 7651 25818 1668 1988371 4 18117 6  901014
[70,75) 8060 39434 1920 1838556 14 21592 10  712642
[75,80) 7146 51697 1800 1541002 11 25109 10  535934
[80,85) 4754 62624 1533 1083867 7 24924 7  340699
[85,90) 2574 63851 1081  629172 6 21139 5  183481
[90,95) 952 48324 531 299128 0 13316 0  71081
[95,∞) 273 26926 232  114178 1 6781 1  23807
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Table II
Estimated per cent developing cancer by age y, given no cancer before age x (with 95 per cent confidence
intervals).

x y Female breast cancer invasive only 11 SEER registries, 1996–
1998

Acute lymphocytic leukaemia, both sexes 9 SEER
registries, 1990

100 × A
(x, y, z) Gamma method Delta method

100 ×
A(x, y,

z)
Gamma method Delta method

0 30  0.0470 (0.0424, 0.0519) (0.0423, 0.0517) 0.0612 (0.0533, 0.0699) (0.0530, 0.0693)
0 50  1.8995 (1.8708, 1.9286) (1.8707, 1.9284) 0.0722 (0.0637, 0.0817) (0.0634, 0.0811)
0 70  7.7861 (7.7130, 7.8598) (7.7128, 7.8594) 0.0867 (0.0769, 0.0976) (0.0766, 0.0969)
0 ∞ 13.3198 (13.2170, 13.4235) (13.2168, 13.4228) 0.1088 (0.0968, 0.1227) (0.0964, 0.1213)

30 50  1.8817 (1.8529, 1.9108) (1.8527, 1.9106) 0.0114 (0.0081, 0.0155) (0.0078, 0.0149)
30 70  7.8609 (7.7868, 7.9355) (7.7866, 7.9351) 0.0263 (0.0205, 0.0333) (0.0201, 0.0325)
30 ∞ 13.4816 (13.3773, 13.5868) (13.3771, 13.5861) 0.0491 (0.0399, 0.0602) (0.0394, 0.0587)
50 70  6.2505 (6.1793, 6.3224) (6.1791, 6.3220) 0.0157 (0.0108, 0.0219) (0.0103, 0.0210)
50 ∞ 12.1264 (12.0217, 12.2320) (12.0214, 12.2313) 0.0395 (0.0307, 0.0506) (0.0301, 0.0490)
70 ∞  7.3149 (7.2202, 7.4109) (7.2199, 7.4100) 0.0302 (0.0213, 0.0422) (0.0204, 0.04
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Table III
Raw data, eye and orbit cancer, both sexes, 1990.

Age, years SEER 9 Total U.S. SEER 9
All races All races Vietnamese

ci ni
(c) oi di ni

(o) = ni
(d) ni

[0, 5) 28 1817468  45269 13 18852851 5914
[5, 10)  2 1723903   3992  3 18061843 6360
[10, 15)  1 1630063   4440  1 17198108 6249
[15, 20)  0 1613257  15710  1 17764520 8555
[20, 25)  1 1777565  21020  2 19134952 7627
[25, 30)  1 2064309  26578  1 21235575 7270
[30, 35)  7 2153703  33507  5 21912156 6895
[35, 40)  5 1986987  39089  4 19982168 6546
[40, 45) 10 1776946  44466  3 17794548 4516
[45, 50) 14 1349043  51850  6 13823785 3008
[50, 55) 15 1064803  66743  9 11369647 2111
[55, 60) 14  956860  97852 13 10474089 1442
[60, 65) 19  958022 154800 31 10619134 1047
[65, 70) 29  901564 217299 34 10076737  724
[70, 75) 35  713026 260584 32  8022791  591
[75, 80) 18  536271 301073 41  6146687  345
[80, 85)  8  340946 300298 27  3935220  180
[85,∞)  4  278600 463076 29  3059585   82
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