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ABSTRACT

We present a general analysis of oligonucleotide
usage in the complete genome of  Bacillus subtilis
Several datasets were built in order to assign various
biological contexts to the biased use of words and to
reveal local asymmetries in word usage that may be
coupled with replication, the control of gene expression
and the restriction/modification system. This analysis
was complemented by cross-comparisons with the
complete genomes of Escherichia coli , Haemophilus
influenzae and Methanococcus jannaschii . We have
observed a large number of biased oligonucleotides
for words of size up to 8, throughout the datasets and
species, indicating that such long strict words play an
important role as biological signals. We speculate that
some of them are involved in interactions with DNA
and/or RNA polymerases. An extensive analysis of
palindrome abundances and distributions provides
the surprising result that prophage-like elements
embedded in the genome exhibit a smaller avoidance
of restriction sites. This may reinforce a recently
proposed hypothesis of a selfish gene phenomena in
the transfer of restriction/modification systems in
bacteria.

INTRODUCTION

To this end we have analysed several aspects of oligonucleotide
usage in the complete genomedBatillus subtilisstrain 168 1).
Bacillus subtilisis, along withEscherichia colione of the best
biochemically studied eubacteria, being the major model for
studies related to the group of Gram-positive bacteria. Due to its
ability to express and secrete heterologous proteins it is an
organism of great industrial interest and due to its ability to
sporulate it seems an interesting organism in which to study basic
developmental processes.

The genome dB.subtilisis (4.2 Mbp long, making it the third
largest available contig in the databanks, W00 genes, of
which about a fourth has unknown or putative functignThe
genome contains 10 prophage-like elements, represérnii¥g
of the genomell).

Studies regarding the linguistic properties of nucleotide
sequences started long ago, just after the first long DNA
sequences became availalae Within these, methods designed
to identify contrast words, i.e. words that are significantly over-
or under-represented by comparison with a model, have been
extensively developed3f). The basic rationale for these
methods is that words over-/under-represented in a sequence, in
contrast to a model, may indicate a phenomena of positive/negative
selection. It must be emphasized that a model is always present
behind the statistical procedure for the identification of the biased
words. Moreover, if contrast words should be considered as good
candidates for biologically relevant signals, one should keep in
mind that words present in average amounts may also have

With the increasing number of full genome sequences availabiglPortant roles.

new and important challenges are emerging in the field of In this work we have sket_ched a general met_hod to analyse in
computational biology. The existence of a long single contigeneral terms word usage in complete genomic sequences. We
representing the full genomic content of a bacterial strain allowVe focused on the genomeBogubiilis using other genomes
the study of a genome as a single whole and not as a m&@y for comparative purposes. Our main intent was to identify
collection of genes. From this point of view, the question is ndtiased use of small words, with the goal of assigning them
to analyse particular features of a protein or a family of protein§iological interpretations. As usually happens in these studies,
but to consider the average or global properties of the ensemBis resulted in some answers, but mostly in a bunch of new
of the genetic text of a bacteria, which includes protein genes, HIH€StIONS.

also tRNA, rRNA, genetic regulatory elements, restriction sites,

recombination hotspots, etc. The first important challenge of MATERIALS AND METHODS

global genome analysis is therefore the description of generg# -

rules that allow bacteria to merge together the different types 0 atistical methods

information present in the genomic text, within its physiologicalt has been a standard methodology to use Markov chains to

and environmental contexts. model DNA sequence$) The basic reasoning behind Markov
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chains is that one should withdraw from the number obf smaller sizes is removed. If a motif is degenerate, i.e. not
occurrences of a word the effects that are due to the smaller wortdsctly conserved in comparison with its consensus sequence, this
it contains. For example, it is well known that the C+G content cdpproach can fail to reveal it because we count exact words,
a genome varies from species to species and it would éereas counts allowing for errors and deletions would be more
misleading to assign a significance to the frequency of appropriate. For very flexible signals, matrix approaches are
dinucleotide ignoring this information. In fact, for a larger wordmore convenientd). However, this kind of signal is usually
e.g. of size 8, one can assign different Markov orders, from 0 &ssociated with larger words than the ones we are considering
6, removing the effects of bias in mononucleotides, dinucleotidd®re. Another important point lies in the definition of a
and so on up to heptanucleotides. In this approach we caignificantly’ biased word. Whatever the statistic (and model)
immediately see that a particularly important case is that afsed, the significance of the deviation betwséw) andE(W)
maximal Markov order, i.e. the model for which we include thevaries with the countsl(W), since the statistical test is able to
information about distribution of words of size 1 nt smallerdistinguish with better accuracy a small deviation when the
(heptanucleotides in our previous example). In this maximalounts are larger (in other terms a statistical test is more powerful
model we are maximising the information provided by the count®r large counts). This has two effects on the detection of biased
of all words of smaller sizes. words that are important to keep in mind when comparing

Let us denote byW = (wyw»...w,) the word made by different datasets of different sizes or words of different lengths
concatenation of then nucleotidesw; and N(W) its observed within the same dataset. The first one is related to the total genome
count in a sequence of lengthJnder the Markov maximal order (or sequence dataset) size under study: for a given word size, the
model the expected couBfW) of W is larger the genome the larger will be the number of detected biased
words. Conversely, for a given dataset, the test will be less
_ N, W Wiy 1) N(WoWs... W) powerful for larger words than for smaller ones.
N(W,W3...W, 1)

Having obtained a theoretical expectation for the count of a wor@onstruction of data sets

we need a way to compare it with the real observed count in

statistically meaningful way. Several statistics have been proposg%‘v'ng defined a Sta.t'St'C"."l frar_‘nework for counting exact words,
for this purpose (for a review s@ In this work we use the we now have to devise biologically relevant datasets to test and

ot analyse. In order to do that, we first have to identify which
value statistic recently proposed by Schistal (6) biological mechanisms are suspected to bias word usage in the

_ NW)-EW) genomic text. This question can be split into four smaller ones,
- W regarding the following biological issues.

Replication.The starbf replication is intimately connected to the
cell cycle and it has been shown to require the existence of signals
near the origin of replication for the attachment and control of
zvalues are a measure of the bias of the word, with values clcia/activity inB.subtilis(9). In the replicating fork mechanism

' é{Sed inB.subtilisthere are strands of DNA replicated continuously

to zero meaning no bias, negative values meaning undet- " N .
representation and positive values meaning over—representatff']d strands replicated in discrete steps through the use of Okasaki

of the word in the genomic text. The real difficulty of the metho fagments {0).

lies in calculating the variance term W&j( For sequences large Coding. The information content of the genome, considered as
enough (i.e. large counts of each word) and the maximal Markade set of genes of proteins and RNAs, is usually the most
model the variance can be well approximated®y ( regarded aspect of word usage. Three issues are particularly
interesting here: the distribution of geradsng the chromosome

in terms of function; the peptide signtilat guide proteins to their

[(NWpWg..- Wi _g) = NOWqW.. Wi, DI[(NWW5. W) = N(WoW3...Wim)] ‘working’ environment; the bias in usage of the code.
N(WWg..W,_p)?

where vanV) represents the calculated variancB@¥) —E(W).
The main advantage of thisvalue is that it follows a reduced
normal distribution for large (6).

var(W) = E(W) x

F h W tth ber of fth ontrol. Signals controlling gene expression are a major source
or €ach wortivve count the number of ocCurrences o1 the WorGy¢yord pias. At the transcription lev@ie is most concerned with

in the sequence and we compute its expected frequency alighais controlling the synthesis of MRNA, among which are the
variance, through the use of counts of smaller words and of the,y\oters ‘and the terminators. At the translation level, most

previous formulae. Then we can test if thealue is significant,  .,ncer is directed towards the ribosome binding sites (RBS) and
i.e. if it is compatible with the assumption of the Markov modelthe use of the start and stop codons.

Since we know the distribution afit suffices to see if it is larger
in absolute value than a given threshold, i.e. to a certain statistié@&fenceThe distribution of restriction sites has long since been
significance. In this study, we have chosen a conservati favourite subject in the field of DNA linguistics due to its
approach and only words that have a chance of at most 1 in 1000mportance in the building up of physical mapkl{2).
being erroneously considered over- or under-represented wdRestriction sites are considered the most important tool for
selected g > 3.29). Since the previous formulae are valid only foprotection of the cell against invasive DNA elements such as
large counts, we have only analysed words of size up to 8 nt lomghages. Naturally, the study of phages themselves should be
It is important to realize what this model measures and whatiitcluded in this category.
does not. Since it evaluates the significance of a word by takingAccording to these biological criteria, one has to define proper
into account the distribution of words of sime- 1, it measures datasets allowing isolation of putative signals by using cross-
the significance of the individual word when all bias due to wordsomparisons. Seven different datasets were considered in this study.
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Single-strand chromosomiEhis is simply the chromosome taken significance level below 1%o.. A similar analysis was made for the
as the published single strand. complete genomes &:.coli, H.influenzaeandM.jannaschii

Symmetrized chromosonTéis consists of concatenation of the Contrast between datasels.a tabular form we have displayed all
published sequence and its inverse complement (i.e. of bolfords significantly over-represented in a set and under-represented
strands of the chromosome). By construction, the count of a woiigthe other. This provides a description of words selected for in
and of its inverted complement are the same and equal the averagget and counter-selected in the other. Additionally, a rank
of their counts on the single-strand chromosome. Symmetrizati@orrelation analysis was performed using zhelues for each

is necessary when word usage analysis is performed on sequengesi of a given size, through computation of the Kerdall-
whose orientation in the chromosome is unknown. When it com@ssociation measure:

to analysis of complete genomes the orientation of the sequence

is no longer a problem, but there is agriori reason for one 22#1.1".

strand of DNA to be preferred over the other. One should T = '
therefore take the precaution of comparing the counts, on a single (Jn(n - 1) - 2./n(n - 1) — 2,
chromosome, of a word and its inverse complement or, equivalently, +1,if[z() — z()][z(0) - )] > O
comp-arlng the single strané chromosome with -the symmetnzeq one. T =41, if[2.(i) — zMI[z0) — z()] < O
Leading strand and lagging strand@he leading strand set is 0 elsewhere

constituted of two sequences corresponding to the strands

replicated continuously in the double-helix of DNA. In the casavherei andj are two generic words amglandty, are the number

of B.subtilisit is composed of the stretch of chromosome from thef ties among pairs of elements in each of the two listsalfies
origin of replication up to position 172and of the reverse (a andb, both of lengthn). The same analysis was performed
complement of the remainder. Conversely, the lagging strandusing other traditional measures of correlation, yielding similar
simply the inverted complement of the leading strand ancksults (data not shown).

therefore corresponds to the DNA replicated in discrete steps. In . . . . . .
B.subtilis [(75% of the genes are present in the leading stranbpistribution of biasWe have used two different kinds of graphics

which means that patterns arising from a comparison between gf?er epresent the distribution of bias along the chromosome. The
leading and lagging strand will also reveal bias in usage of tHisSt iS Simply the curve, for each word, of either the counts or the
code and the presence of regulatory signals. z value calculated in a sliding window along the chromosome.

The size of the window should be adapted to the length of the

Genes, non-genes and prophagésese are subsets constitutedword being studied, so as to obtain sufficient counts. Naturally,
respectively of protein genes, intergenic regions and prophagesis leads to a very confusing representation when several plots

Finally, all these datasets can also be defined for differemave to be superimposed. A second representation (polarogram)
bacterial species. The choice of these species was dictatedi®ymore adapted to these cases. In this plot, each word is
available data and in order to include two different Gram-negatii@presented as one point in polar co-ordinates. This representative
bacteria (as a model organigischerichia coland as a competent point is computed in the following way: The circular chromosome
organism Haemophilus influenzgeand an archaebacterium js first divided inton non-overlapping parts (20 parts for words

(Methanococcus jannaschii of size 2—6 and 8 parts for words of size 7). In each division the
z value for the word is computed and is represented by a vector
Data sources pointing from the origin towards the centre of the division and

whose length equals the absolute value aof tledue. This vector
b i ) . is labelled positive (negative) when thealue is positive (negative).
SubtiList relational databaseld) at hitp://www.pasteur.fr/Bio/ To analyse over-representation of the word we compute the vectorial

SubtiList.html , the complete sequenceBldffluenzag14) and o :
M.jannaschii(15) were downloaded from the Microbial Databasefsum of all positive vectors (conversely we sum the negative vectors

) : or under-representation). The representative point for the word in
atelg;mlz‘)e(Shétpdm&ggﬁr(gllgscgfgé Tvitl)orgcr?elg f?g?ntuii(\:loe'gﬁ’leteeach polarogram corresponds to the extremity of the resulting
9 -d : . . . ty vector. This gives rise to two polarograms, one for positive and
of Wisconsin-Madison (http://www.genetics.wisc.edu ). Informatloqh other for nedative bias
about restriction sites was taken from the REBASE database a oth analyseg are delit;erately general and are intended to
htt_p ://WWW'nEb'COm/ rebase'() and only restriction sites Wh_ose escribe general features, not to focus on particular words. Once
existence irB.subtilisstrains has been confirmed and publishe uch words are identified, other more sophisticated techniques,
in the literature were selected. such as scan {8), can be brought into play.

The complete genome sequencBslbtiliswas taken from the

Summary of the strategy RESULTS AND DISCUSSION

The strategy of analysis is developed at three levels: identification _
of biased words in each set, selection of words biased differeniyord count and bias
in different datasets or species and analysis of the distribution

bias along the chromosome Ierono, di- and trinucleotideg.he G+C content of the genome of

B.subtilisis 43.5%, with a heterogeneous distribution of nucleotides
Word counts and biasefor each of the datasets previouslyalong the chromosome, whether one counts on the sequence as
mentioned, all words of size 1-8 were analysed, counts performpdblished, on the leading or lagging strand, or on the genes, which
and expectations were computed according to maximal ordeflects constraints acting at different levels on the chromosome
Markov chains. Using this information, we selected words at @lablel).
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Table 1a.Basic counts: abundance (%) of nucleotides in the different datasets

Base Single-strand  Leading Genes Intergenic RNAs Prophages
A 28.2 29.4 29.9 31.1 25.0 30.8

C 21.8 20.1 20.3 18.9 235 19.2

G 21.7 235 24.1 18.5 314 18.1

T 28.3 27.0 25.7 31.5 20.1 31.9

Table 1b.Basic counts: significance of dinucleotides and relative ranks in five different datasets

Symmetrized Single-strand Leading Genes Prophages

Rank z Rank z Rank z Rank z Rank z
AA 1 138 1 139 2 133 3 119 1 37.2
AC 14 -126 15 -128 14 -115 14 -95.0 15 -31.9
AG 12 -44.0 13 -443 13 -57.0 13 -66.4 11 5.1
AT 9 12.2 9 12.2 9 13.2 9 19.6 12 -8.0
CA 4 42.9 5 42.9 6 334 6 36.1 5 13.0
CcC 10 -144 11 -145 11 -219 12 -46.8 9 7.6
CG 8 15.7 8 15.7 8 18.4 7 258 13 —-22.1
CT 12 -44.0 12 -43.8 12 -331 11 -21.8 10 -1.9
GA 6 325 7 31.3 5 37.6 5 36.3 8 7.8
GC 3 121 3 121 3 125 2 125 3 19.9
GG 10 -14.4 10 -143 10 -129 10 -12.4 7 10.2
GT 14 -126 14 -125 15 -135 15 -138 14 -30.8
TA 16 —204 16 —204 16 —203 16 -197 16 -52.6
TC 6 325 6 33.6 7 23.2 8 24.2 6 105
TG 4 42.9 4 429 4 55.6 4 60.8 4 14.5
TT 1 138 2 136 1 140 1 133 2 32.7

Rank is the position of the word in the list sorted by decreasiague.

Dinucleotide frequencies are the result of a complex combinatiarp to 7 nt long. This results from three competing effects: on the
of factors, among which are conformational stability, mutationabne hand, the total number of possible words increases with word
hotspots, etc3). In general, dinucleotide bias follows closely length; on the other hand, as mentioned before, the relative
what has been described for the ensemble of prokan@tes (number of biased words a statistics can detect tends to decrease
namely AA, GC and TT are over-represented and TA is the mosith word length. Finally, for a given dataset, longer words
under-represented dinucleotide, followed by GT and AC (Tgble usually play a minor role as strict signals, therefore counting exact
These orders are roughly equivalent in the single-strand and tiverds also tends to underestimate the importance of larger
symmetrized chromosome and, with few exceptions, also in thleignals. As a result, we observe in the figure a maximum for the
leading strand and the genes (Tab)le absolute number of biased words for a word size of 7. This is

Bias in trinucleotides is mainly coupled with usage of the codeonsistently observed in all datasets and in all the analysed
which is not the main topic of this paper and requires a separateganisms. Though we observe more biased words.daoli
study. We remark, however, that the most over(under)-representgezhen compared with a genome of around the same size, such as
trinucleotides are CGG and GCC (TAG and CTA) for theB.subtilig, the general trend of the curve is maintained for species
symmetrized and the single-strand chromosome and TAT amdth very different C+G contents, such Bscoli (51%) and
CGG (AAT and TAG) for the leading strand. M.jannaschii(31%).

General trends in bias of oligonucleotidésgurel presents the Recent works regarding DNA and RNA polymerases may

. . rovide a precious clue to the biological significance of words of
.tOt?]l nu_mbler of bl?jseﬁ (either over-for ur;}der-representedf) WOrSSe 7. Doubliét al (19) have found that the processivity domain
in the single-strand chromosome of each organism as a functi ; o
of word length. Although the plot is given for the single-stramg]nT7 bacteriophage DNA polymerase, produced by association

h i it btained what the dat f thioredoxin, covers a region of 7 nt in length. Additionally, it
chromosome, similar results are obtained whatever the dataggl yeen shown that the upstream part of the RNA polymerase

chosen (data not shown). The insert in the figure displays tt’a vances along the DNA template in discrete steps of 7 nt long

same analysis but in relative terms, i.e. the number of bias ) : :
L ' . . . Further extending these results, one might speculate that
words divided by the total number of possible words of that siz veral of these words are linked with the control of DNA and

Results indicate that the total number of biased words is MUGI\ A extension during replication and transcription.
larger than would be expected by chance alone for all organisms
and word sizes. It should be noted that the bias is evenBrophages.Known prophages integrated in the genome of
distributed across over- and under-represented words (data Bosubtilisare characterized by an A+T content of 63%, as against
shown) and this is why we pooled the two categories in Figure 55% for the complete chromosome. Due to the relatively low

Moreover, the figure shows that the total number of detectatumber of phage sequences (10% of the genome), it is difficult
biased words increases with word length. This is true for words assign statistical significance to words of size larger than 6.
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Figure 1. Total number of significantly biased words (either over- or under-represented) found in the single-strand chromosoroas lo@¢terial species, for
different word lengths. The insert displays the relative number of biased words, i.e. the ratio of the number of biasethevtotid humber of possible words of
that length. Expected stands for the number of significant words expected to be found by chance at the same thresluadad# §lG6if.

However, word bias closely follows the genomic pattern, with the Naturally one might question which is the cause and which is the
relevant exceptions of AT and CG, which are over-represented in tbffect. We believe under-representation of runs of A and T to be the
genomic text and under-represented in prophages, and CC, GG aadse because: (i) in absolute valuexz theues for runs of letters
GCAGC, for which the opposite happens. Analysis of thare much higher than for their negatively correlated counterparts in
correlation between prophages based on nucleotide frequendies same dataset (of the order of 100% higher; data not shown);
gives values from 0.8 to 0.99 (data not shown), with the exceptidii) the same runs of letters are always on top in the under-
of the prophages PBSX arskin which seem to differ more represented words (runs of T and A), whereas the most over-
significantly in nucleotide distribution. Interestingly, the sameepresented anti-correlated counterparts differ with word size,
analysis using dinucleotide frequencies shows consistently high@As/TsC (length 6), FA/TAg (length 7) and AFA7T (length 8).
correlation coefficients, indicating that dinucleotides are mor®lore generally, patterns of under-represented heptanucleotides are
conserved than mononucleotides within prophage. more constant throughout the datasets than the patterns of
over-represented ones. This may indicate that avoidance of
heptanucleotides reflects constraints acting on the ensemble of the

A and T runs.Table 2 displays the 10 most over- and . . o
under-represented h eptanuclpeo)t/i des in the different datasetsg norr;]edwhereas over-representation reveals constraints specific
to each dataset.

striking feature of this table is that uniform series of T and A are
constantly the most under-represented words in all the sets. TRialindromes.Palindromes are especially interesting words in the
is also true for words of size 6 and 8 (data not shown), whiofenomic texts due to their special role as signals, particularly
precludes series of such letters being strongly selected againstamcerning restriction/modification systems (RM). RM systems
the B.subtilisgenome. We note that nothing similar is observedhave been considered as the most important biological tool in
for runs of G or C and that this effect is much less prominent iprotecting bacteria from foreign DNA and it has been argued that
other species (data not shown). We observe that such runs aveidance of restriction sites in bacterial genomic texts would be
even under-represented in intergenic regions, which is even maaused by accidental deletion of restriction sites. However, this
remarkable considering that rho-independent terminators musgpothesis fails to explain two important facts: (i) palindromes have
include a series of T residues. also been found to be rare in the genomes of mitochondria and
The behaviour of the runs of a letter also largely explains thehloroplasts, which do not encode RM systefis; ((i) most
pattern of over-represented words, because words sugh_as Tpalindromes seem to be avoided, even those that are not recognizec
XIXTh —1 (with X = T) or A, _1X/XA,_1 (with X = A)are by the species’ own RM systems. An extensive analysis of
negatively correlated withyTand A, respectively. The Markov palindromes in several complete genomes and a partttatilis
model identifies bias in words whose frequency is not explainegenome has recently been publistid.(Our results are in line with
by random construction of its sub-words (See Materials artteir conclusions in establishing a relationship between the avoid-
Methods). Therefore, once we have the frequencies of words arfice of a palindrome and its role in the RM system. The analysis
size 6, e.g. g, and considering that the biology of the systenshows that restriction sites appear systematically at the top of the list
avoids the construction of wordg, then the pool of wordsgT  of most under-represented palindromes (Taplén the set of 16
will have to be ‘spent’ elsewhere, i.e. in over-representggof  palindromes of length 4, 14 are under-represented and none is
XTg (X = T). Indeed, examination of the tables of over-over-represented. In the set of 64 palindromes of length 6, 25 are
represented words of size 6-8 (e.g. size 7 in TAblkeveals the under-represented and only three are over-represented. No palin-
constant presence of this type of word. drome of size 8 is found to be significantly biased.
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Table 2. The 10 most significantly under-represented and over-represented heptanucleotides in each dataset

Symmetrized Single-strand Genes Intergenic Leading
Under-represented

AAAAAAAITTTTTTT TTTTTTT AAAAAAA TTTTTTT AAAAAAA
CTTTTTA/ITAAAAAG AAAAAAA TAAAAAG AAAAAAA TAAAAAG
ATTTTTC/GAAAAAT CTTTTTA GAAAAAT TAAAAAG TTTTTTT
CAAGCAAI/TTGCTTG TAAAAAG TTGATGG CACCTCC GAAAAAT
CAACCGA/TCGGTTG ATTTTTC TCGGTTG CTTTTTA TTGCTTG
CGATGAA/TTCATCG CAAGCAA TAAATTG GTTTTTA TTGATGG
CAATGAA/TTCATTG GAAAAAT GGAAAAA TTTAATC CTTTTTA
GGAAAAAITTTTTCC CAACCGA TTGCTTG TACAATC TCGGTTG
CAACAAAITTTGTTG CAACGAA GTAAAAA TTCCTTT TAAGAAG
CTTCTTAITAAGAAG CAAGCGA GCTTTTT TTAAAAA TTGATTG
Over-represented

CTTTTCC/IGGAAAAG TTTTTTA GGAAAAG TTTTTTA GGAAAAG
TAAAAAAITTTTTTA GGAAAAG GTAAAAG TAAAAAA TAAAAAA
GTAAAAG/CTTTTAC CTTTTCC AAAAAAT AAAAAAG GTAAAAG
AAAAAAG/CTTTTTT GTAAAAG TAAAAAA CTTTTTT AAAAAAT
CAATGAC/GTCATTG CAATGAC TAAAAGA GTTTTTT GAAATCG
CAAGCTC/GAGCTTG CTTTTAC GGAATCG AAAAAAC CTTTTTT
CAAGCAC/GTGCTTG TAAAAAA ATAAATT TTTTTTG GTCATTG
AAATCAA/TTGATTT GAGCTTG AATTTGA CAAAAAA GTGCTTG
CATTTAC/GTAAATG CTTTTTT AAGAGCT TTCCTTC AAGAGCT
TAAGAAA/TTTCTTA CTCCGCC GCGGCAG TAAAGAT AATTTGA

Each list is sorted by decreasing absoiualues (i.e. the most biased words appear at the top of each list).

The analysis of the abundance of restriction sites in genésllow the rapidity of RM systems switch by specifically
(Table3) revealed that palindromes are generally less avoided @hanging word usage. Therefore, the best evolutionary strategy is
genes than in the single-strand chromosome (and this differertoeavoid all possible restriction sites, i.e. avoid palindromes of
is not due to the slight difference in dataset sizes). This may bength 4 and 6. It is likely that many more RM systems have
caused by restrictions due to the genetic code. However, withiccurred in the genome of the ancestoB sxibtilis each of them
the set of palindromes, restriction sites maintain their relativieaving a trace of under-representation of a word. Through this
ranks when sorted in terms of under-representation, which mayolutionary mechanism one might be able to explain the general
indicate that selection against restriction sites in genes is of thgoidance of palindromes in most bacterial genomes.
same magnitude as for the remaining genome. It is merely theWe have scanned REBASE to search for other very under-
selection against palindromes in general that changes. Thisrépresented palindromes present within organisms taxonomically
consistent with the previous idea of constraints imposed by thelated toB.subtilis There is a general tendency in bacteria for
code on the evolutionary reduction of palindromes. G+C-rich restriction sites and no closely related Gram-positive

Most known restriction sites are not significantly under-bacteria was found to have AATT as a restriction site. The
represented in prophages, though the small size of the prophagader-representation of CATG may be explained by the existence in
dataset does not allow a straightforward comparison with tHBacillus stearothermophilusf a restriction site RCATGY. GATC is
single-strand. Below, in the paragraph on palindrome distributiom, restriction site in five species Bécillus B.stearothermophilys
we will show, by another means, that they are in fact led8.cereus B.megaterium B.sphaericus and B.thuringiensis
under-represented in prophages than in the remaining chromosoM&CA does not seem to be a restriction site for any microorganism
contradicting what would seem to bsige qua noondition for  close toB.subtilis GAGCTC is a restriction site in two genera of
the success of transduction. Gram-positive Nocardia and Streptomycgsand two Gram-

Several results relating analysis of similarities between C-Begative EnterobactemandPseudomonasacteria. TGATCA is
methylasesq2) and linkage between the methylase and nucleaseless biased palindrome, but nevertheless significantly so, and is
genes in RM system&3) have indicated that these systems ara restriction site iBacillus caldolyticu@ndBacillus coagulans
subject to frequent horizontal transfer. In fact, of the eightVe propose thatthese restriction sites were present at a given time
different restriction sites found B.subtilis only one is present in ancestors oB.subtilis.Since they are highly compatible with
in strain 168 (YTCGAR)Z3), indicating that change in the RM its genome, they are also very likely to be present in unstudied
system is much faster than the result of evolutionary tendencissains. We will return to this issue in the section dedicated to the
towards the avoidance of its restriction site. Bacteria cannapatial distribution of words.
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Table 3.Significance and ranks of all the over-represented and of the 10 most under-represented palindromes in the
single-strand dataset (first column), while the two other columns (Genes and Phages) give the significance and rank
of these words in the Genes and Phages datasets respectively

Single-strand Genes Phages

Rank Rank pal zvalue Rank Rank pal zvalue Rank Rank pal zvalue
Under-represented
AATT 1 1 -39.2 6 1 -34.4 4 2 -10.1
GGCC 4 2 -37.7 8 2 -32.7 9 3 -7.8
CATG 12 3 -27.7 13 3 -26.4 2 1 -11.5
CGCG 14 4 —-26.0 16 4 -23.9 33 5 -5.2
CCGG 17 5 -24.6 21 5 -215 81 10 ns
GATC 32 6 -18.1 26 6 —-20.0 25 4 -5.6
TGCA 42 7 -16.1 38 7 -15.7 124 15 ns
TCGA 49 8 -13.9 41 8 -15.0 133 16 ns
ACGT 52 9 -13.6 53 9 -12.6 64 7 -34
ATAT 63 10 -11.1 131 15 ns 72 9 ns
GGATCC 1 1 -19.6 3 1 -18.6 3 1 -4.9
CTGCAG 6 2 -11.2 15 3 -10.8 2993 54 ns
AAATTT 7 3 -11.1 9 2 -12.1 193 11 ns
ATATAT 10 4 -10.0 34 4 -8.6 102 7 ns
GAGCTC 13 5 -8.8 150 10 -5.4 1263 37 ns
ATCGAT 20 6 -7.8 61 5 -75 528 22 ns
CAGCTG 35 7 -6.5 108 7 -6.1 1925 44 ns
AATATT 36 8 -6.5 101 6 —6.2 630 27 ns
GGCGCC 40 9 -6.3 223 14 -4.6 35 4 ns
AAGCTT 49 10 -6.1 110 8 -6.1 1545 41 ns
Over-represented
TAGCTA 17 1 7.7 74 1 7.1 786 7 ns
GTATAC 35 2 6.5 101 2 6.4 1416 15 ns
TCATGA 145 3 4.7 238 3 4.6 428 5 ns

Rank refers to the relative position of the word in the list of all words sorted by decreeasings in over-represented

and increasingvalues in under-represented palindromes (i.e. small ranks always correspond to the more biased words).
Rank pal refers to the rank in the restricted list of palindromes. ns stands for non-significant \Rordlae @f 1%.. Known
restriction sites iB.subtilisstrains are underlined.

Contrast between datasets Patterns of replicationln order to reveal bias due to replication,
the best choica priori would be to compare the leading with the

vsis of lation b d & Wsis of th lagging dataset (in other words, to study in the leading strand the
Analysis of correlation between datasel$ie analysis of the omparative bias of a word and of its reverse complement).

correlation of z scores between the different datasets (S€Qqyever, since iB.subtilismost genes are on the leading strand,

Materials and Methods) shows that the correlation is awayge analysis has to be complemented with a comparison of the
positive and decreases with word size for the same datasg

: T:;\ding strand with the genes.
reflecting the larger number of degrees of freedom of the systemrpa result of the analysis of leading versus lagging strand is

to accommodate the information. The most striking feature is thgh e, in Tablel. Interestingly, at the 1% significance level only
the order of the correlation values between the pairs of datasgis,qs of size 4 and 5 were found to be under-represented in the

remains constant whatever the word length. This order is always, jing strand and over-represented in the lagging strand (the
(symmetrized/single-strandleading/single-strand)(lagging/  conyerse situation is obtained by reverse complementing the
single-strandl> (leading/genesy (lagging/leading)> (genes/ —\yqrqs in the table). Many fewer words are found in the analysis
single-strandy (non-genes/single-strar@llnon-genes/lagging) of the leading strand versus genes (Tablelt is somehow

2 (non-genes/leading} (genes/laggingp (genes/non-genes). r{rgassuring that the only 6 nt word found as over-represented in the

Moreover, the analysis of contingency tables (data not showpyging strand and under-represented in genes is AGGAGG,
reveals that the distribution of word counts on the single-stranghich is the typical RBS consensus signalBubtilis.

and its reverse complement can be considered similar at the 1%o
level of significance for every word size. Hence, the hypothesiSontrast between specidéis.Table5 we display a comparison of

of global equivalence between both strands of Bteubtilis  B.subtiliswith all other organisms. This analysis was made by
genome seems to be satisfied. This does not mean that takingh@osing every word significantly over-(under-)represented in
stretch of the genome at random one should expect to find tBesubtilisand significantly under-(over-)represented in all the
same distribution of words in each strand, because the distributiolesnaining organisms. These words should be at least Gram-positive
differ locally; it is the general character that is similar. specific (though not necessarily species specific). It is interesting
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to note that no dinucleotides are found fulfilling this condition,Table 5.Contrast words betwedisubtilisand all other species
though GA and TC are over-representedisubtilisand under-
represented in the Gram-negative species under consideration. Al hgle-strand  Genes Single-strand  Genes
no words of size 7 and 8 are found through this analysis. In facc

; T GTC CAAC AAC
words of smaller size strongly reflect codon usage, RM systems an b ATG TCGG CCAC cCA
mutational hotspots that may change significantly from species t

Bacillus subtilis+/other — Bacillus subtilis—/other +

species in directions that make them inversely biased. Signals 6\°CC AAATG GTGG TGG
larger size are involved in different phenomena, such as RBQATCG AATAG GTTG ATAA
promoter recognition ang sites, which, though changing among AATTG ATAAG AAAAT CAAC
species, do not have reasons to change in the opposite sense. AGGTG ATCTG AAGCC CCAG

In addition, we looked for words simultaneously CAATT CAATT AATAT CTTT
under-(over-)represented iB.subtilis and H.influenzae and CACTC GGCCA AGGTT GCTA
over-(under-)represented in the other species, with the aim afATTT TATCC ATTTT GGTA
detecting words that both species could have in common andGarT TATTT CAATA GTTG
which could be involved in their competence. No such wordsgcTtac TTATT CAGTA AAAAT
were found for oligonucleotides of size 6, 7 or 8. For smaller sizesgtacc TTGCG CCGGG AATCC
the words undter(;r_eprterz]sen:ﬁd in ﬁu@glf(l:nflée%r_}z?e_grogg a}Ar\\gGC TTGCG AAGCAA GCATT ATGAC
over-represented in the other are: , size 3), ,
GCGT, GTTA, TAAC (size 4) and AAAGC (size 5). The 1o OTOMC el hyindia
converse situation yields: AAG, CTT (size 3), ATGG, CCAT, TATTG GGCTT
GCAC (size 4), CAGCT, CGCGT and CTCGT (size 5).

TCCTG TATTG

Genomic distribution of words

The left columns present all words significantly over-represented iB.¢hbtilis
single-strand and genes dataset respectively and significantly under-represented in all
other speciesH.coli, H.influenzaeandM.jannaschi) in the same sets. The right

General trendsLike all prokaryote genomes analysed so far, theolumns depict the converse situation.

genome oB.subtilishas no isochore-like structure. However, the

distribution of nucleotides along the chromosome is far from Itis possible from a simple graph of the distribution of A+T to
being constant, as was perceived earligf) from a contig devise regions that host potential prophages, since these have &
representing 5% of the genome. There is an asymmetry inuch higher A+T contentl). Conversely, C+G content can be
nucleotide frequencies between the first half of the single-strantged to find tRNA and rRNA genes, which present high
chromosome and the second half. In fact, G and A are moftequencies of these nucleotides (Table

abundant than C and T in the first half of the chromosome, The distribution of dinucleotides presents few large patterns
whereas the converse happens in the second half. This differetesides those dictated by local nucleotide frequenciesZFig.

is mainly explained by the larger proportion of these bases iFhis seems to indicate that dinucleotide bias is a result of

genes (Tablé&).

Table 4.Contrast words observed in the leading strand versus the lagging

strand (top) and versus genes (bottom)

Leading +/lagging —

Leading —/lagging +

CTTG (13.7/-9.5)
GTCG (4.3/-4.1)
GCCC (3.7/-3.7)
GTAG (9.0/-4.5)
GTTC (4.3/~9.2)
ACCC (4.2/-9.5)
GCCGG (4.6/-4.8)
TATCG (4.2/-6.8)
TAAGC (4.8/-5.3)
ATTAC (4.6/—4.5)
ATGAA (3.7/-3.6)

CAAG (-9.5/13.7)
CGAC (-4.1/4.3)
CGGG (-3.7/3.7)
CTAC (~4.5/9.0)
GAAC (=9.2/4.3)
GGGT (-9.5/4.2)
CCGGC (-4.8/4.6)
CGATA (-6.8/4.2)
GCTTA (-5.3/4.8)
GTAAT (-4.5/4.6)
TTCAT (-3.6/3.7)

Leading +/genes —

Leading —/genes +

AGG (4.21-11.4)
ATA (44.4/-9.6)
ATAA (4.0/-5.5)
CCTC (4.6/-4.2)

AGGAGG (4.0/-3.3)

CAGG (~4.0/3.3)

ATTTT (-3.7/6.0)

+ indicates over-representation and — indicates under-representatipuallies are

given in parentheses.

properties that do not have gradients along the genome, i.e. that
change solely due to the existence of biological objects, such as
genes or prophages. A particularly dramatic decrease/increase is
generally observed near tBe andTersites (Fig2). Additional
disruptions are also observed for some dinucleotides due to the
presence of local features. An example of this is the large peak
found for the dinucleotide CT &R.15 Mb, which is related to the
presence of the $Hrophage at that location. Similarly, the CG
dinucleotide, which is globally over-represented, is actually
under-represented within phages (Tableand therefore its plot
presents a peak near fer site (where most prophages reside).

Polarograms of biagGenerally, the analysis of polarograms (see
Materials and Methods) reveals that, for word lengths up to 6,
there is a tendency towards larger outlier moments in the regions
90° and 270 (data not shown). This tendency decreases with
increasing word size. However, it is important to note that this
tendency is restricted to outliers and the distributiarvafue for
the majority of words is homogeneous across the chromosome.
An interesting phenomenon is visible in the series of T and A
that has been raised before. The series of A residues is biased
towards negative moments at 90—1260d the series of T towards
a negative moment at 27(Qsee Fig3 for words of size 7). For
heptanucleotides, all significantly under-represented words in the
single-strand chromosome (Tallestand out as outliers in the
negative polarogram (Fi@), but few of the over-represented
words (Table) appear as outliers in the positive polarogram (data
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] Figure 3. Polarogram of negative bias for heptanucleotides (see Materials and
10 Methods). Inside circles are bivariate normal ellipse® ofalue 0.5, 0.95

and 0.995.
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position

Figure 2. Distribution of the number (top) and significance (bottom) of the . L. . .
dinucleotides GA and CT along the chromosomB.stibtilis(the curve was Und?r'represeme.d. near th_e terminus Of r?phcatlon, Wthh IS
computed using a sliding window of 50 kb and a step of 10 kb). The locationsparticularly surprising considering that this is the zone hosting

of known prophages &.subtilisare indicated by black boxes abovextais. most prophages. Considering that prophage&.sabtilishave
necessarily achieved transduction, we have the paradox that
successful bacteriophages are characteristically careless about the
: ; ; ; M system of the host.
not shown). This reinforces our previous conclusion tha"fa ; o , ,
avoidance of heptanucleotides is a localized phenomenono-:;;'g grr]r?lgfsfnézrfrtért?:sre;?éggogc(%% .Fgetggmaggls%ﬂsoﬁ;;he
whereas over-abundance tends to be more global. P 9 P P
spatial distribution of known restriction sites and other avoided

Distribution of palindromesWe return here to the palindromes, palindromes reveals similar patterns of dispersion and consistently
to analyse their spatial distribution. Figu#e displays the reveals regions of less important avoidance. Particularly, GATC,
distribution along the chromosome of known restriction siteSGAGCTC, TGCA and AATT show polarities similar to the
together with some of the other more under-represented paliknown restriction sites. This reinforces our previous statement
dromesn B.subtilisfor which a noticeable deviation from a flat that these words may be actual restriction sites, either in ancestors
graph was found. It is apparent that restriction sites are les§B.subtilisand/or in some other strains of this species.

Z=value
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CATGY

Wi Tes
I T I 5 |
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Position

Figure 4. Distribution of some known (underlined) and potential restriction sites along the chromosomexiBhgives the values computed in sliding windows
of 450 kb and steps of 100 kb (left). The locations of known prophagesuitilisare indicated by black boxes abovextaxis. The right part of the figure displays
the polarogram of negative bias for all known (underlined) and potential restriction sites.
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CONCLUSIONS AND PERSPECTIVES

Many works have been published in the last decade about wi

usage in different species, mostly using dispersed data provi

by different methods, in different species and strains. With th

increasing growth of available complete genomes, differe

weakening the standard paradigm of RM as the main defence tool

of bacteria. This work further indicates that the issue of RM

%%tems is far from being completely understood.
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