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ABSTRACT Assessing the convergence of a biomolecular simulation is an essential part of any careful computational inves-
tigation, because many fundamental aspects of molecular behavior depend on the relative populations of different conformers.
Here we present a physically intuitive method to self-consistently assess the convergence of trajectories generated by molecular
dynamics and related methods. Our approach reports directly and systematically on the structural diversity of a simulation trajec-
tory. Straightforward clustering and classification steps are the key ingredients, allowing the approach to be trivially applied to
systems of any size. Our initial study on met-enkephalin strongly suggests that even fairly long trajectories (;50 ns) may not be
converged for this small—but highly flexible—system.

INTRODUCTION

Conformational fluctuations are essential to the functions of

proteins, whether they are motor proteins (1), enzymes (2,3),

signaling proteins (4–6), or almost any other kind. Different

experiments have enabled observation of protein fluctua-

tions over a huge range of timescales, from picoseconds (7)

to microseconds (5) to milliseconds (3,6,8) to seconds and

longer (9).

Naturally, simulations aim to observe conformational fluc-

tuations as well. A gap remains, however, between the time-

scale of many biologically important motions (microseconds

to seconds), and the timescale accessible to atomically de-

tailed simulation (nanoseconds). To put it another way, some

problems are simply not possible to study computationally,

since it is so far impossible to run a simulation that is long

enough.

For those problems that are at the very edge of being fea-

sible, we would like to know whether we have indeed sam-

pled enough to draw quantitative conclusions. These problems

include the calculation of free energies of binding (10,11), ab

initio protein folding (12,13), simulation of flexible peptides

(14), and conformational changes (15).

Convergence assessment is also crucial for rigorous tests

of simulation protocols and empirical force fields; see, e.g.,

Zaman et al. (16). Many algorithms propose to improve the

sampling of conformation space, but quantitative estimation

of this type of efficiency is difficult, except in simple cases

(17). In the case of force-field validation, it is important to

know whether systematic errors are a consequence of the

force field, or are due to undersampling.

The observed convergence of a simulation depends on

how convergence is defined and measured. It is therefore

important to consider what sort of quantity is to be calculated

from the simulation, and choose an appropriate way to assess

the adequacy of the simulation trajectory (or trajectories).

Many relatively simple methods are commonly used, such as

measuring distance from the starting structure as a function

of simulation time, and calculation of various autocorrelation

functions (16,18). Other, more sophisticated methods are based

on principal components (19,20) or calculation of energy-

based ergodic measures (21).

Many applications, however, require a thorough and

equilibrated sampling of the space of structures. All of the

methods just listed are only related indirectly to structural

sampling. There are many examples of groups of structures

that are very close in energy, but very dissimilar structurally.

In such cases, we might expect energy-based methods to be

insensitive to the relative populations of the different struc-

tural groups. It is therefore of interest to develop methods that

are more directly related to the sampling of different struc-

tures, and see how such methods compare to more traditional

techniques.

Daura and co-workers (22,23) previously considered con-

vergence assessment by counting structural clusters, based

upon a cutoff in the root mean-square deviation (RMSD)

metric. The authors assess the convergence of a simulation

by considering the number of clusters as a function of time.

Convergence is deemed sufficient when the curve plateaus.

This is surely a better measure than simpler, historically used

methods, such as RMSD from the starting structure or the

running average energy. However, it is worth noting that

long after the curve of number of clusters versus time

plateaus, the relative populations of the clusters may still be

changing. Indeed, an important conformational substate that

has been visited just once will appear as a cluster, but its

relative population will certainly not have equilibrated.

The method of Daura et al. (22) also suffers from the need

to store the entire matrix of pairwise distances. For a trajec-

tory of length N, the memory needed scales as N2, rendering

the method impractical for long trajectories. At least two

groups have developed methods that rely on nonhierarchical

clustering schemes, and therefore require memory that is
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only linear in N. Karpen et al. (24) developed a method that

optimizes the clusters based on distance from the cluster

center, with distances measured in dihedral angle space.

Elmer and Pande (25) have optimized clusters subject to a

constraint on the number of clusters, with distance defined by

the atom-atom distance root mean-square deviation (26,27).

In this article, we address systematically the measurement

of sampling quality. Our method classifies (or bins) a tra-

jectory based upon the distances between a set of reference

structures and each structure in the trajectory. Our method is

unique in that it not only builds clusters of structures, it also

compares the cluster populations. By comparing different

fragments of the trajectory to one another, convergence of

the simulation is judged by the relative populations of the

clusters. We believe the key to assessing convergence is

tracking relative bin populations. Our approach can be directly

applied to comparing the efficiency of different sampling

methods.

In the next section, we present a detailed description of

the algorithm and discuss possible choices of metric. We

then demonstrate the method on simulations of met-

enkephalin, a structurally diverse peptide.

THEORY AND METHODS

We will evaluate sampling by comparing structural histo-

grams, described below. These histograms provide a finger-

print of the conformation space sampled by a protein, by

projecting a trajectory onto a set of bins based on distinct ref-

erence structures. Comparing histograms for different pieces

of a trajectory (or for two different trajectories), projected

onto the same set of reference structures, provides a very

sensitive measure of convergence. Not only are we compar-

ing how broadly each trajectory has sampled conformation

space, but also how frequently each substate has been

visited.

Histogram construction

We generate the set of reference structures and correspond-

ing histogram from a trajectory in the following simple way

(our choice for measuring conformational distance will be

discussed below):

Step 1. A cutoff distance dc is defined.
Step 2. A structure S1 is picked at random from the

trajectory.

Step 3. S1 and all structures less than dc from S1 are

removed from the trajectory.

Step 4. Repeat Steps 2 and 3 until every structure in the

trajectory is clustered, generating a set fSig of refer-

ence structures, with i ¼ 1,2,. . ..
Step 5. The set fSig of reference structures is then used to

build a histogram: every structure in the trajectory is

classified according to its nearest reference structure.

Note that this classification step generates a unique

histogram for a given set of reference structures—

unlike the simple clustering that is generated in Step 3.

Such a partitioning guarantees a set of clusters whose

centers are at least dc apart. Furthermore, for a trajectory of N
frames, the number of reference structures, M, and therefore

the memory needed to store the resulting M 3 N matrix of

distances, is controlled by dc. For physically reasonable

cutoffs (e.g., dc;.1 Å RMSD), the number of reference

structures is at least an order-of-magnitude smaller than the

number of frames in the trajectory. The memory requirements

are therefore manageable, since the computation of pairwise

distances scales as N log N.
There is nothing in principle that prevents the use of a

more carefully chosen set of reference structures with our

classification scheme. For example, we may consider a set of

structures that correspond to minima of the potential energy

surface. The cutoff might then be chosen to be the smallest

observed distance between any pair of the minimum energy

structures, and the set of reference structures so determined

could be augmented by the random selection of more refer-

ence structures to span the whole trajectory.

However, we expect that the purely random selection used

here will naturally include the lowest free-energy substates,

since these are the most populated. In either case, any set of

reference structures defines a unique histogram for any tra-

jectory.

Trajectory analysis

Once we have a set of reference structures, we may easily

compare two different trajectories classified by the same set

of reference structures, by comparing the populations of the

various bins as observed in the two trajectories: given a

(normalized) population pi(1) for cluster i in the first

trajectory, and pi(2) in the second, the difference in the

populations DPi ¼ jpi(1) – pi(2)j measures the convergence

of substate i’s population between the two trajectories.

Note that the two trajectories just discussed may be two

different pieces of the same simulation. In this way, we may

self-consistently assess the convergence of a continuous

simulation, by looking to see whether the relative popula-

tions of the most populated substates are changing with time.

Of course, this cannot answer affirmatively that a simulation

has converged (no method can do so); however, it may

answer negatively. In fact, we will see later that our method

indicates that structural convergence may be much slower

than previously appreciated.

Our approach should also be applicable to some types of

noncontinuous trajectories, such as those generated by mul-

tiple starts (e.g., (28)) or parallel exchange protocols (e.g.,

(29,30)). For multiple independent trajectories, one can com-

pare the two histograms generated from 1), the first halves

and 2), the second halves of all simulations. If converged,

Ensemble-Based Convergence Analysis 165

Biophysical Journal 91(1) 164–172



these two histograms should agree. One could also compare

histograms generated by grouping entire trajectories into

distinct sets. For a parallel exchange simulation, where the

ensemble is built from a set of continuous trajectories, his-

tograms from the first and second halves of the simulation

can be compared.

The comparison of histograms clearly will not be appro-

priate when ensembles are generated in a fully decorrelated

way. For instance, starting from a single long trajectory, one

could generate two ensembles by randomly selecting struc-

tures, or perhaps by selecting structures at two different fixed

time intervals. So long as the number of structures in each

ensemble greatly exceeds the number of reference structures

used for classification, it is hard to see how such histograms

could be significantly different. In such cases, dynamical

correlations have been explicitly discarded, and the histo-

grams can only differ statistically.

Structural metrics

Many different metrics have been used to measure distance

between conformations. The choice depends on both phys-

ical and mathematical considerations. For example, dihedral

angle-based metrics are well suited to capture local structural

information (24), but are not sensitive to more global rear-

rangements of the molecule. Least-squares superposition

followed by calculation of the average positional fluctuation

per atom (RMSD) is quite popular, but the problem of op-

timizing the superposition can be both subtle and time-

consuming for large, multidomain proteins (31). In addition,

RMSD does not satisfy a triangle inequality (32). This is not

an issue for the algorithm presented here, but is a consid-

eration for more sophisticated clustering methods (25). We

will use RMSD to measure distance here, though we note that

distance root-mean-square deviation (or sometimes, distance-

matrix error) (26,27) may be appropriate when RMSD is not.

Labeling two structures by a and b, the traditional root

mean-square deviation (RMSD) is defined to be the minimum

of the root mean-square average of interatomic distances over

all possible translations and rotations of xb—namely,

RMSDða; bÞ ¼ min
xb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
+
N

j¼1

kxa

j � xb

j k
2

s( )
; (1)

where N is the number of atoms and xj is the position of

atom j.
It is clear that the choice of dc, together with the choice of

metric, determines the resolution of the histogram. Reducing

dc increases the number of reference structures, and reduces

the size of the bins. How is dc chosen? There is no general

answer, and a suitable cutoff will depend on the problem

under investigation.

The typical RMSD between a pair of structures will

depend on the size of the molecule, its flexibility, and the

conditions of the simulation. If the magnitude of some

important conformational change is known in advance, then

this information will guide the selection of an appropriate

cutoff. If not, then a series of histograms should be con-

structed at several values of dc. The behavior of the histo-

gram as a function of dc will give a sense of the appropriate
value, as we will see below.

RESULTS

We have tested our classification algorithm on implicitly

solvated met-enkephalin, a pentapeptide neurotransmitter.

By focusing first on a small peptide, we aim to develop the

methodology on a system that may be thoroughly sampled

and analyzed by standard techniques.

The trajectories analyzed in this section were generated by

Langevin dynamics simulations, as implemented in the

Tinker v. 4.2.2 simulation package (33). The temperature

was 298K, the friction constant was 5 ps�1, and solvationwas

treated by the GB/SA method (34). Two 100-ns trajectories

were generated, each starting from the PDB structure 1plw,

model 1. The trajectories will be referred to as ‘‘plw-a’’ and

‘‘plw-b’’. Coordinates were written every 10 ps, for a total

of 104 frames per trajectory.

Previous methods: RMSD analysis
and cluster counting

An often-used indicator of equilibration is the RMSD from

the starting structure (see Fig. 1 A). Such plots are motivated

by the recognition that the starting structure (e.g., a crystal

structure) may not be representative of the protein under the

simulation conditions—solvent, force field, and temperature.

This is the case in Fig. 1 A—the computation was performed

with an implicit water model, while the experimental struc-

ture was determined in the presence of bicelles (35). The

system fails to settle down to a relatively constant distance

from the starting structure—rather, it is moving between

various substates, some nearer and some farther from the

starting structure. Although this is not surprising for a pep-

tide renowned for its floppy character, it also indicates that

this method cannot determine when the peptide simulation

has converged. Indeed, Fig. 1 A can tell us little about the

convergence of the simulation, only that it spends most of its

time more than 2.0 Å from the starting structure.

A perhaps better indication of equilibration is provided by

Fig. 1 B, in which we have used the method of Daura et al.

(22), albeit with clusters built by the procedure described in

Theory and Methods (Histogram Construction). The premise

is that convergence is achieved when the number of clusters

no longer increases, as this means that the simulation has

visited every substate. This analysis suggests that conver-

gence is observed by ;7 ns, and the curve has the com-

forting appearance of saturation. However, Fig. 1 B is

insensitive to the relative populations of the clusters. To

illustrate the problem, consider a simple potential, with two
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smooth wells separated by a high barrier. By simple cluster

counting, a simulation will be converged as soon as it has

crossed the barrier once. It is clear, however, that many

crossings will be required before the populations of the two

states have equilibrated. We will address this question using

our ensemble-based method. We find, in fact, that the

relative populations of the clusters continue to change, long

after their number has equilibrated.

Ensemble-based assessment of trajectories

The use of our systematic approach is much more revealing.

We first discuss the selection of an appropriate cutoff. We

then demonstrate two different applications of the ensemble-

based comparison of trajectories—a comparison between a

trajectory and a gold-standard ensemble, and a self-consis-

tent convergence analysis of a single trajectory.

Reference structure generation and cutoff selection

A compound trajectory was formed from trajectories plw-a

and plw-b, by discarding the first nanosecond of each tra-

jectory and concatenating the two into a single, 198-ns tra-

jectory (‘‘plw-ab’’). We then generated a set of reference

structures for the compound trajectory, as described earlier: a

structure is picked at random, and it is temporarily discarded

along with every structure within a predefined cutoff dis-

tance, dc. The process is repeated on the remaining structures

until the trajectory has been exhausted. The result is a set of

reference structures that are separated from one another by at

least the predefined cutoff distance. Lowering the cutoff

(making the reference structures more similar) increases the

resolution of the clustering, and increases the number ref-

erence structures (see Table 1). Although RMSD is system-

size-dependent (36), for a particular system the cutoff defines

a resolution.

A histogram is then constructed by grouping each frame in

the trajectory with its nearest reference structure. The depen-

dence of the histogram on dc is shown in Fig. 2. With dc ¼
3.0 Å, the first three bins already account for.50% of the total

population. It might be expected that such a coarse descrip-

tion of the ensemble may not be particularly informative.

However, we will see in the next sections that this level is

already sufficient to make powerful statements about con-

vergence.

Lowering the cutoff, the general features of the histogram

remain unchanged: a steep slope initially, which accounts for

half of the total population, followed by a flatter region. In

each case, most (90%) of the population is accounted for by

approximately half of all the reference structures. However, a

closer inspection reveals that the fraction of bins required to

account for the noted percentages of population (50, 75, and

90%) is decreasing with the cutoff. For example, for dc ¼
3.0 Å, 16 of 24 bins account for 90% of the trajectory, while

for dc ¼ 2.0 Å, 164 of 331 bins account for 90% of the

trajectory. It should be mentioned, however, that this dif-

ference between the dc ¼ 2.0 Å and dc ¼ 1.5 Å histograms is

so small as to be insignificant.

Although it seems obvious that the most revealing cutoff

will be system-specific, our histograms are more robust than

they first appear. Because reference structures are chosen

arbitrarily, the divisions between bins will not reflect basins

of the landscape. In other words, many, if not most, bins can

be expected to include a number of full and partial local

basins. Thus, a lack of convergence in a macroscopic bin, at

least in principle, can report on more local, microscopic

states. Further, because our approach is so inexpensive

compared to the simulation itself, more than one binning of

configuration space can and should be considered; see Self-

Referential Convergence Assessment and Fig. 4.

TABLE 1 Average number of reference structures generated

for various cutoffs (dc in RMSD)

dc in Å Number of clusters s

1.5 1860.0 14.0

2.0 321.3 6.7

2.5 72.8 3.8

3.0 23.3 2.2

3.5 10.3 0.5

Reported are the average and standard deviation (s) in the number of ref-

erence structures for four independent clusterings of the plw-ab trajectory.

FIGURE 1 (A) RMSD from starting structure for met-enkephalin trajec-

tory plw-a. (B) Number of populated clusters versus simulation time for the

plw-a trajectory. Results are shown for two independent clusterings. After

7 ns, the simulation appears equilibrated. No more clusters appear in the

198-ns plw-ab trajectory.
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Based upon the series of histograms in Fig. 2, we continued

our study of met-enkephalin based upon dc ¼ 3.0 Å. At this

level of resolution, the main features of the histogram are

already present, while the number of reference structures is

small enough to make the computation quite inexpensive.We

shall see that dc ¼ 3.0 Å provides sufficient resolution to

investigate the convergence properties of our simulation.

Though we do not pursue it here, we note that the tail of

the distribution—where half of all the bins account for only

10% of the population—might contain some very interesting

structures. Indeed, at the very end of the tail are found bins that

sometimes contain a single structure. Might some of these

low population bins represent transition states? For now, we

set this question aside, and focus instead on convergence

assessment.

Comparing trajectories to a gold-standard ensemble

In some applications, we want to compare a trajectory to a

gold-standard ensemble. For example, the gold-standard

might be the ensemble sampled by a longmolecular dynamics

simulation, and wemaywish to check the ensemble produced

by a new simulation protocol against the long molecular dy-

namics trajectory.

For met-enkephalin, we use our histogram approach to

illustrate, in Fig. 3, the evolution of convergence in two long

(99 ns) trajectories. The compound trajectory (198 ns) is

taken as a gold-standard, from which reference structures are

calculated using a cutoff dc ¼ 3.0 Å. We can then assess the

convergence of portions of the trajectory against this full

ensemble (see Fig. 3, A–D).
From Fig. 3 A, it is clear that after the first two-

nanoseconds, the simulation is far from converged. Many im-

portant substates have not yet been visited, and many of the

bins are over- or underpopulated by several kBT. (On a semi-

log scale, a factor of two in the population represents an error

of 1/2 kBT.) After 50 ns (Fig. 3 C), all clusters are populated,
but many important substates have not converged to within

1/2 kBT of the 198-ns values.

Fig. 3 presents a picture of a very conformationally diverse

peptide, especially given the large cutoff (dc ¼ 3.0 Å) used.

The first three substates contain only 52% of the observed

structures, while the first nine account for 74%. Indeed, the

(experimentally determined) starting structure is located in

the second-most populated bin.

We also analyzed the entire set of NMR model structures.

These were determined in the presence of bicelles, as it was

hypothesized that interaction of the peptide with the cell

membrane induces a shift in the conformational distribution

(35).We classified the entire set of 80 NMR structures against

our set of reference structures. The overwhelming majority of

the NMR structures, 75%, were nearest to reference structure

23, the second-least populated bin in our simulation. The next

largest group of NMR structures (15 of 80) were nearest to

FIGURE 2 Histograms for the plw-ab trajectory generated for different values of dc, indicated in the upper-right corner of each plot. Pi is the normalized

population of bin i, where i refers to the reference structure.
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McCallum et al. (2), which held a comparable portion of the

simulation trajectory. The remaining five NMR structures

were scattered among four different bins. While not conclu-

sive, the comparison between our simulation data and the

NMR structures supports the hypothesis that binding to the

membrane induces a shift in the distribution of met-enkeph-

alin conformers, relative to the distribution observed in water.

Such conformational diversity is not surprising for a peptide,

which is known to be a promiscuous neurotransmitter by

virtue of its flexibility (35,37,38). However, it will be

interesting to revisit the issue in the study of a protein.

Self-referential convergence assessment

We want to assess convergence without the use of a gold-

standard. Our previous analysis (Fig. 3) might be used to

compare simulation protocols; ensembles from a new proto-

col may be compared to a gold-standard ensemble. (Here, the

gold-standard is the 198-ns compound trajectory.) However,

it is not useful as a means of assessing the convergence of a

single simulation. After all, given only a 4-ns trajectory, one

would like an assessment without reference to the answer.

Fig. 4 therefore demonstrates a purely self-referential

scheme for on-the-fly analysis of a continuous trajectory.

Fig. 4 A compares, for example, the first two-nanoseconds to

the second two-nanoseconds. The series of plots in Fig. 4

shows that the populations of the clusters are still changing

significantly, even between the first and second 50-nanosec-

onds. Presuming we had run only a single 100-ns simulation,

we could make Fig. 4 C, and describe the convergence by

saying, at a resolution of 3.0 Å RMSD, considering bins

containing 75% of the structures, six of nine bins have not

yet converged to within 1/2 kBT. Note the contrast with Fig.

1 B, where it appears convergence is reached after just 7 ns.

This contrast is all the more striking considering that dc¼ 3.0

Å is a rather conservative choice. At a higher resolution

(smaller dc), the observed convergence is worse.

To test whether our analysis is sensitive to the (random)

selection of reference structures, Fig. 4 shows two indepen-

dent sets of reference structures. There is little difference in

the results. Both classifications indicate that .50 ns are

required for convergence when dc ¼ 3.0 Å.

The observed ensembles and corresponding convergence

depend on both the metric used and the value of dc. (This is
of course true of any clustering algorithm.) It is therefore

important to report this information along with any state-

ments about the convergence of a particular simulation.

Indeed, lowering the cutoff, and hence increasing the reso-

lution of the classification, is bound to reduce the observed

level of convergence. Instead of Fig. 4, in which each panel

FIGURE 3 Ensembles for different fractions of trajectory plw-a (bars), compared to the ensemble of the entire 198-ns compound trajectory (solid line): (A) 2

ns, (B) 10 ns, (C) 50 ns, and (D) 99 ns. The value dc ¼ 3.0 Å RMSD. Note that lnPi is a free energy-like quantity; hence, on the semilog scale, the difference in

populations may be read off in units of kbT: a factor of 2 on the y axis corresponds to 0.5 kbT. The percentages indicate the fraction of the 198-ns trajectory

binned to that point.
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is a different length of the trajectory, we could have plotted

the same trajectory length at different resolutions. At a high

enough resolution, we will always find some substates that

are under- or overpopulated. In other words, since all tra-

jectories are finite, a physically acceptable value of dc must

be chosen.

While the choice of dc is somewhat ad hoc in the present

implementation, plots like those in Fig. 4 still can provide

FIGURE 4 Self-consistent convergence analysis of different trajectory lengths for two independent classifications (set 1 and set 2) of the plw-ab trajectory

at dc¼ 3.0 Å. Each plot compares the first-half (diagonal fill) to the second-half (no fill) of the trajectory for total trajectory lengths of (A) 4 ns, (B) 20 ns, (C) 100

ns, and (D), 198 ns. Percentages indicate the portion of the total trajectory binned to that point.
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valuable, quantitative information. For example, imagine that

we wish to calculate the free energy difference between two

experimentally known conformations that differ by 3.0 Å

RMSD. In this case, Fig. 4 suggests that we cannot expect an

accuracy better than 1/2 kBT. Perhaps more importantly, any

fixed choice of cutoff can be useful in comparing different

simulationmethods—even if the difficult question of absolute

convergence is not addressed.

DISCUSSION

We have introduced a structure-based classification approach

for the analysis of biomolecular simulation trajectories. The

method provides a more rigorous evaluation of convergence

than commonly used methods. Our approach is based on

a simple intuitive picture—namely, a comparison of the

relative populations of different conformational substates.

The method is trivially applicable to simulations of proteins

of any size.

The results for met-enkephalin indicate that it takes quite

some time (.50 ns) for the relative populations of the various

substates to equilibrate, even with a fairly promiscuous cutoff

(3.0 Å RMSD) that partitions the trajectory into relatively few

bins. Becausewe can expect that many transitions into and out

of each substate will be required to equilibrate their relative

populations, a simple cluster-counting approach (Fig. 1 B)
will present a deceptively optimistic picture of convergence.

To carefully assess convergence of a simulation, we must

therefore compare the populations of the various substates

from different fragments of the trajectory. A simple, fast way

to carry out such a comparison is provided by the ensemble

method described above. A higher level of rigor can be

achieved by comparing multiple pairs of independent blocks

of the trajectory.

It must be stressed that—though our method may provide

an unambiguous negative answer to the question, Is the

simulation converged?—it may only provide a provisionally

positive answer. A longer simulation may well reveal longer

timescale phenomena, parts of structure space not yet visited.

Our approach should be useful, in its present form, as a

means to assess the relative efficiencies of two simulation

methods. (The cutoff dc can always be reduced enough to

suggest poorer convergence of at least one of the trajectories

analyzed.) Many algorithms have recently generated broad

interest by virtue of their potential to enhance the sampling

of biomolecular conformation space. Some of these algo-

rithms, notably the various parallel exchange simulations

(39), invest considerable CPU time in pursuit of this goal. It

is therefore important to ask whether these methods are in

fact worth the extra expense, i.e., Does running the algorithm

in question increase the quantity: (observed conformational

sampling)/(total CPU time)?

In particular, these parallel exchange algorithms should

be compared to 1), single, parallelized trajectories, as are pos-

sible with NAMD (40), for example; and 2), multiple inde-

pendent trajectories as suggested by Caves et al. (28). The

CPU time is easy enough to quantify, and we hope the pres-

ent report will aid in evaluating the quality of sampling.

In the future, we will study trajectories of larger proteins,

to develop criteria for determining cutoffs in larger systems.

On the one hand, the upper bound on RMSD distance

between any pair of structures increases with the size of the

protein. On the other hand, larger proteins may not be as

structurally diverse as small, floppy peptides—at least on the

timescale currently accessible to simulation. Work already

underway on a G-protein coupled receptor should shed light

on these issues (A. Grossfield, personal communication,

2006). Furthermore, the approach should already be able to

compare different simulation methods in large systems. The

systems that may be treated with our method are not limited

to proteins, or even single chains. Indeed, the method is im-

mediately applicable for analyzing simulations of polymers,

nucleic acids, or macromolecular complexes.
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