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ABSTRACT Using distributed molecular dynamics simulations we located four distinct folding transitions for a 39-residue
bbab protein fold. To characterize the nature of each room temperature transition, we calculated the probability of transmission
for 500 points along each free energy barrier. We introduced a method for determining transition states by employing the
transmission probability, Ptrans, and determined which conformations were transition state ensemble members (Ptrans � 0.5).
The transmission probability may be used to characterize the barrier in several ways. For example, we ran simulations at 82�C,
determined the change in Ptrans with temperature for all 2,000 conformations, and quantified Hammond behavior directly using
Ptrans correlation. Additionally, we propose that diffusion along Ptrans may provide the configurational diffusion rate at the top of
the barrier. Specifically, given a transition state conformation x0 with estimated Ptrans ¼ 0.5, we selected a large set of
subsequent conformations from independent trajectories, each exactly a small time dt after x0 (250 ps). Calculating Ptrans for the
new trial conformations, we generated the P(Ptransjdt ¼ 250 ps) distribution that reflected diffusion. This approach provides a
novel perspective on the diffusive nature of a protein folding transition and provides a framework for a quantitative study of
activated relaxation kinetics.

INTRODUCTION

Determining transition state structures is important for protein

folding theory because the activated conformations are of

pivotal importance for folding and unfolding kinetics. Given

equilibrium sampling of a free energy barrier, the transition

state ensemble (TSE) corresponds to the set of conformations

of highest free energy along the path or paths of lowest free

energy between the native folded (F) and unfolded (U)

macrostates. Simple reactions such as bond breaking in a di-

atomic molecule have a clear pathway. In contrast, proteins

have many degrees of freedom, and the conformational

changes of proteins may be imperfectly captured in one-

or two-dimensional reaction coordinates. Work from many

groups has demonstrated the usefulness of root mean-square

deviation (RMSD), the fraction of native contacts Q, principle

components, or otherwise optimized structural reaction

coordinates (1–5). Despite demonstrated utility, low dimen-

sionality is an approximation and the search continues for

more universal solutions to the ‘‘curse of dimensionality’’.

Advances in computer power and new path sampling

algorithms have allowed progress in this direction (6–9). It is

now tractable to determine if a structure is a member of the

TSE without constructing a reaction coordinate (10–12). For

example, after defining folded and unfolded sink states, one

can calculate the probability that a given conformation

reaches the folded sink before it reaches the unfolded sink. If

this commitment probability, Pfold, is ;0.5, then the struc-

ture lies along the high dimensional hyperplane (separatrix)

between the sink states. The TSE is a set of low free energy

conformations on the separatrix.

Here, we introduce new methods related to Pfold and use

them to probe the activated kinetics of the 39-residue

N-terminal domain of L9 (L9–39). Although L9–39 is small,

it is a challenging system to examine computationally, due to

its complex topology and a relatively slow millisecond fold-

ing timescale. Although the system appears two state to ex-

perimental probes (13), we found an unfolding mechanism

that included parallel unfolding pathways with intermedi-

ates. We will describe the detailed L9–39 folding mechanism

elsewhere. Here, we focus on the methodology needed to

characterize the observed free energy barriers with extensive

kinetic simulations.

METHODS

Pfold determination

The division of the continuous free energy landscape into macrostates is

arbitrary unless there is a dominant free energy barrier. One logical division

scheme defines macrostates that mimic experimental observables. For ex-

ample, Shakhnovich and co-workers tested folding cutoffs that calculate

tryptophan burial (14). An alternate approach is to define kinetic macro-

states. In the presence of a dominant barrier the system acquires a slow

global relaxation time, trxn, and it becomes possible to self-consistently divide

the conformational space into stable macrostates (minima F and minima U).

The mean first passage time for trajectories released from a U microstate

to capture at an F sink should yield the phenomenological rate constant. In

comparison to the slow barrier-crossing timescale, relaxation of an activated

conformation to a sink is rapid and rarely experimentally resolved (15). In

this study, we are interested not only with the mean time to capture but with

the identification of activated conformations. Activated conformations have

a significant probability of absorption by sinks in both F and U. In the limit

of an infinite number of trajectories of infinite length, the ratio of trajectories

captured by the F sink is rigorously converted into a probability.

In practice, we have only a finite number of trajectories, and it is not

trivial to precisely calculate mean first passage times or the relative probability
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of capture at sink F and U. Determining a Pfold value is a large computational

expense. Instead, we take the following approach. For each tested

conformation, x0, N molecular dynamics (MD) trajectories are started

from x0 (with randomized initial velocities drawn from a Maxwell

distribution). Since the trajectories are long enough to reach either the

folded or unfolded state, every simulation has only two possible outcomes.

Therefore, each simulation represents a Bernoulli trial. Given a conforma-

tion specific transmission probability, Pfold(x0) ¼ p, we expect a finite

sequence of N independent Bernoulli trials to contain n folding events

with probabilities determined by the binomial distribution PðnjNÞ ¼
N!ðn!ðN � nÞ!Þ�1pnð1 � pÞN�n

.

Unfortunately, statistical error is an obstacle to the application of this

method. The uncertainty in each Pfold calculation may be estimated by the

standard deviation of the binomial distribution mean, ðpð1 � pÞÞ0:5N�0:5,

such that a Pfold value calculated using 80 simulations retains half the

statistical error of a Pfold value calculated with 20 simulations. In this work,

we employ an alternate treatment of the statistical error using Bayesian

inference (Appendix) to estimate each specific transmission probability. Our

error bounds are 95% credible intervals for each Pfold obtained by integrating

the Bayesian posterior distribution.

The idea of conformation-specific transition probabilities has a long

history, and the term Pfold has been used to describe several subtly different

calculations. Onsager originally described a splitting probability for the case

of ion-pair recombination (16). With increased computational power it be-

came possible to apply this idea to complex reactions. Du et al. calculated

the relative probability of reaching sink F before sink U for a lattice protein,

where sink F corresponded to the native microstate and sink U corresponded

to an unfolded macrostate with few native contacts (12). Thanks to the

computational tractability of lattice protein models, they were able to run

many trial Monte Carlo (MC) trajectories to completion (N¼ 400) from each

initial conformation of interest. A similar approach was applied to all-atom

MD simulations of a hairpin, terminating trial trajectories when they reached

specified cutoffs (17). Whereas Du et al. originally termed their calculation a

‘‘transmission coefficient’’ it is now often termed the probability of folding,

Pfold. Caflisch and co-workers have applied these methods to atomistic MD

simulations of various systems including sizable proteins. For example,

Gsponer and Caflisch calculated six approximate Pfold values (N¼ 10) for an

SH3 domain (18). Pfold calculations are challenging because the relaxation

times can be quite slow; 10% of the SH3 simulations had not reached either

sink after 200 ns. Such uncommitted trajectories are common and are

problematic because excluding uncommitted trajectories from the Pfold ratio

decreases the precision and rigor of the calculated probabilities.

Timescale of commitment

Others have explicitly considered the timescale for commitment, adopting a

methodology that eliminates uncommitted trajectories by construction.

Rather than calculating the probability of reaching sink F before sink U, one

calculates the probability of being within macrostate F after some elapsed

time, tcommit. To understand why a short relaxation time tcommit is sufficient,

we refer to nonequilibrium statistical mechanics. The Onsager regression

hypothesis asserts that relaxation from a prepared nonequilibrium ensemble

is related to the equilibrium relaxation of a spontaneous fluctuation (19,20).

Chandler provides a derivation of this relationship using the fluctuation-

dissipation theorem and linear response theory with the assumption that the

initial perturbed ensemble is not far from equilibrium (21). Dellago, Bolhuis,

and Geissler derive the Onsager regression hypothesis for arbitrarily large

perturbations away from equilibrium (22).

Here, each initial nonequilibrium ensemble consists of a single activated

protein conformation with randomly selected Maxwell-Boltzmann initial

velocities. The activated conformation must relax to a nonequilibrium pop-

ulation of macrostates F and U within the transient tcommit interval. From this

initial nonequilibrium population of F and U, we may calculate the reactive

flux across a dividing cutoff between F and U (21,23). After tcommit, the

reactive flux across the cutoff matches the phenomenological rate constant.

The tcommit time is much shorter than the barrier-crossing time trxn. This

separation of timescale between tcommit and trxn is a natural consequence of

the free energy barrier. Long timescale behavior (dt. trxn) is quite different:

all correlation with x0 is lost, the reactive flux goes to zero, and the ensemble

fraction of F and U approaches the equilibrium constant. Roughly speaking,

we may think of tcommit as A), the timescale for relaxation from the transition

state to the free energy minima, B), the timescale at which recrossing the

dividing surface becomes negligible, or C), the timescale at which the

ensemble fraction on either side of the cutoff reaches a plateau (24).

These properties allow us to calculate transmission probabilities after an

elapsed time. For example, Hubner et al. calculated the fraction of MC trials

that met various folding cutoffs after tcommit ¼ 107 MC steps (14). In other

words, Shakhnovich and co-workers estimated the time necessary for trial

trajectories to commit to a stable macrostate and calculated the fraction

within macrostate F at this time. They term this fraction Pfold. An alternate

terminology was introduced by Bolhuis and co-workers, who define the

‘‘committor’’ PA, the probability that short trajectories initiated from a

particular configuration with randomly chosen initial moments will end

inside cutoff F after a short interval tcommit.

We employ a committor we call the probability of transmission,

Ptrans(dt,x0). We define Ptrans(dt,x0) in the following manner: we choose a

fixed dividing surface separating product from reactant, start N trajectories

from a specific conformation x0, and calculate the fraction of trajectories on

the product side of the dividing surface after an elapsed time dt (Fig. 1). We

call our committor Ptrans because it is defined over four different transitions

rather than a single folding transition. Also, we wish to avoid overloading

the term Pfold. We defined Ptrans values for each barrier in such a way that

Ptrans ¼ 1 corresponds to commitment to the more folded state and Ptrans ¼ 0

corresponds to the less folded state. Where convenient, we include the ar-

guments dt and x0 to emphasize that each Ptrans(dt,x0) calculation is specific

to an individual conformation and depends on the elapsed time. Qualita-

tively, Ptrans(dt,x0) and Pfold both aim to provide the same splitting

probability. Excepting the placement and sensitivity analysis of the cutoff at

the barrier top and the explicit consideration of the convergence with time,

our Ptrans(dt,x0) calculations are quite similar to previous Pfold calculations

(14).

L9–39 K12M, model system

Our model protein is L9–39 K12M, a truncated mutant of the ribosomal

protein L9 (13). This system has a complex bbab topology and folds on the

millisecond timescale. The parent molecule NTL9 has been thoroughly

studied by the Raleigh laboratory (25–28). NTL9 consists of the first 56

residues of the L9 protein from Bacillus stearothermophilus. Crucially,

FIGURE 1 Two kinetic parameters: Pfold and reactive flux. (a) The Pfold

value is not defined until trajectories cross the cutoffs. Trajectories that do

not commit within the simulation time are often ignored. In contrast, (b) the

transmission probability Ptrans(dt) is always defined but is a function of

elapsed time. To compute a Ptrans diffusion value at the barrier top, we start

new ensembles of simulations from multiple daughter conformations.
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Horng et al. reported that the first 39 residues (L9–39) are stable in isolation

and that a point mutant (L9–39 K12M) folds more rapidly (13).

Native state simulations at moderate and high temperature have produced

many unfolding events (complete loss of the b-sheet), and we describe new

order parameters to track the loss of each strand pair (1:2 and 1:3). A set of

native sheet hydrogen bonds was chosen from inspection of native state

simulations (Fig. 2 D). A set of strand a-carbon positions was chosen from

inspection of the native NMR model. The two strand pair order parameters

(S1:2, S1:3) are the sum of the DSSP (http://swift.cmbi.ru.nl/gv/dssp/)

hydrogen bond energy for the set of hydrogen bonds between each strand

(E1:2, E1:3) and the RMSD of the inter-a-carbon distance matrix (dRMSD)

to the equivalent native model strand pair (D1:2, D1:3). The electrostatic

component provides dynamic range to distinguish strand pairs with strong

native hydrogen bonds, and the dRMSD component tracks differences

between conformations that lack native hydrogen bonds.

We made precise kinetic calculations by collecting over 600,000

individual MD trajectories, representing over 11 ms of atomistic simulation

(Table 1). MD trajectories were simulated in 10-ns segments by volunteer

processors on the Folding@Home distributed computing platform (29). We

used a 2-fs timestep and recorded protein conformations every 250 ps.

Simulation details were similar to previous protein folding simulations (30)

using the TINKER (31) implementation of Allen’s stochastic integrator (32)

with the OPLS unified atom force field (33) and the Still generalized Born/

surface area implicit solvent model (34).

The transitions of interest are in the high friction or spatial diffusion limit. In

this limit, inertia plays no role because the transitions of interest are much slower

than the timescale at which velocitiesdecorrelate. This is true by construction for

our Langevin simulations because the polymer particles are impacted by a

random force that mimics the thermal buffeting of solvent. This external

buffeting is modeled via a friction coefficient (91 ps�1) chosen to reproduce

water viscosity (35). The protein experiences collisions that alter velocities

unpredictably after several MD timesteps. In comparison, the collective

transitions of interest occur over hundreds of thousands of MD timesteps.

RESULTS

Diffusive dynamics on the L9–39 projection

We bin all observed conformations from 25�C, 82�C, and

200�C unfolding ensembles in terms of the two strand pair

order parameters and contour the log probability in Fig. 2,

a–c. Two features stand out. First, unfolding trajectories are

extremely rare at 25�C. Second, concerted loss of both

b-strands is unusual compared to sequential loss through

discrete hairpin intermediates. These plots do show compa-

rable transitions at each temperature but do not quantitatively

reveal the free energy surface because the underlying en-

sembles are not at equilibrium.

We show the same 200�C unfolding ensemble in terms of

two other popular order parameters: a-carbon RMSDca to

the native model and the fraction of native contacts retained,

Q (Fig. 2 e). The set of native contacts was chosen from in-

spection of the 25�C native ensemble after 100 ns. The

RMSDca and Q order parameters do not resolve the strand

pair intermediates noted in Fig. 2 c. Similarly, we expect that

additional distinct kinetic species are unresolved by the S1:2

and S1:3 strand quality order parameters. Unresolved kinetic

species are troublesome when they persist for timescales

exceeding the simulation length.

S1:2 and S1:3 successfully separate macrostates as shown

in Fig. 2, a–c, but individual reactive trajectories cross the

dividing cutoffs many times. Therefore, S1:2 and S1:3 are

effective order parameters but are not optimal reaction

FIGURE 2 Unfolding landscape and

topology of L9–39 K12M. Large MD

ensembles were started in the native

state at (a) 25�C, (b) 82�C, and (c)

200�C. In each plot, the log probability

of observing a conformation is calcu-

lated for all combinations of the strand

quality parameters S1:2 and S1:3.

Moving from left to right corresponds

to breaking the 1:2 strand pair. Moving

from bottom to top corresponds to

breaking the 1:3 strand pair. The histo-

grams are displayed as surfaces with

kBT contours. We study net ensemble

population changes of each quadrant

(folded F, unfolded U, intermediates

I12 and I13). The 200�C ensemble

illustrates cutoffs at 60.5 in addition

to the normal 0 cutoff. We also show

(d) the topology of L9–39 and a set of

native hydrogen bonds. (e) The 200�C
ensemble was also projected along

RMSDca and the fraction of native

contacts Q. This projection obscures the

strand pair intermediates.
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coordinates. Interpreting single trajectory motion in terms of

strand pair quality is difficult because the dynamics are dif-

fusive, depend on orthogonal degrees of freedom, and are

rough at the 250-ps frequency at which we record snapshots.

These shortcomings make it difficult to directly extract barrier-

crossing dynamics of single trajectories. Furthermore, it is

inappropriate to interpret the strand pair order parameters

physically because they combine geometric and energetic cri-

teria and thus lack meaningful units.

Such difficulties can be bypassed with ensemble mea-

surements. To characterize the rate of transition from the na-

tive basin to an intermediate, we may simply consider the net

change in population. We divide the L9–39 conformational

space into four quadrants (Fig. 2, a–c) corresponding to the

folded state F, the intermediate state I13 that retains the 1:3

strand pair, the intermediate state I12 that retains the 1:2

strand pair, and the unfolded state U. The two dividing

cutoffs are quite simple and correspond to S1:2 or S1:3 ¼ 0.

Shifting this cutoff 60.5 along each barrier changed the

Ptrans values very little (0.048–0.063 RMSD). The transmis-

sion probability is robust with respect to the cutoff because

the overlap between macrostates is minimized at the dividing

surface.

Calculating Ptrans for conformations along specific barriers

is slightly complicated by the existence of four macrostates.

It is an approximation to treat individual barriers as in-

dependent two-state transitions. For example, when measur-

ing Ptrans for an activated F-I13 conformation (loss of the 1:2

strand pair), a small fraction of the trajectories (,5%)

appears to cross the other cutoff (loss of 1:3). These cutoff

crossing events reflect both noise and true side reaction

transitions. A meaningful Ptrans(dt,x0) value should exist as

long as dt is short compared to subsequent processes that

affect the ratio of product to reactant. When computing each

Ptrans value, including or excluding the small side reaction

fraction produced similar results (data not shown). We

included this fraction. For example, when measuring the

Ptrans for the F-I13 transition, the unfolded quadrant is treated

as equivalent to the I13 quadrant and the I12 quadrant is

treated as equivalent to the F quadrant (Fig. 2).

Kinetic memory, a transition state
identification heuristic

We used a heuristic to select putative TSE members from a

200�C unfolding ensemble. The ensemble consisted of thou-

sands of simulations of varying length (e.g., 4,700 simula-

tions reach 10 ns, 1,500 continue to 50 ns) for an aggregate

simulation time of more than 200 ms. This ensemble con-

tains more than 500 independent unfolding events through

each identified barrier (using S1:2 and S1:3). For each

unfolding event, we selected the last conformation before

barrier crossing. To filter out transitions that rapidly recross

the cutoff, we provided each conformation with a 1-ns ki-

netic memory and considered only putative transition state

conformations from trajectories that dwell in both the prior

and posterior quadrant for 1 ns. We collected 500 putative

conformations for each identified barrier and calculated the

transmission probability for each conformation. Despite our

efforts to pick conformations that correspond to pivotal

barrier-crossing instances, only a subset (;10%) of the

putative TSE members had transmission probability values

between 0.4 and 0.6 (Fig. 3 a). This reflects the difficulty of

selecting TSE members using a heuristic and underscores the

need to validate putative TSE conformations.

Ptrans statistical error and convergence

It is difficult to precisely calculate Ptrans because the sta-

tistical noise is proportional to N�0.5. Increasing N to obtain

higher precision has sharply diminishing returns. Despite

the immense computational cost, we obtained thousands of

precise Ptrans values (N . 100) over the course of 9 months.

Hundreds of thousands of simulations were provided by the

Folding@Home distributed computing platform. For exam-

ple, we determined Ptrans (N ¼ 150) for 500 different initial

conformations across the F-I13 barrier (loss of the 1:2 strand

pair). Fig. 3 a illustrates the statistical noise we must over-

come; we plot the Ptrans correlation between each half of the

data set such that each axis is determined with N ¼ 75

simulations (0.056 RMSD).

To most accurately estimate the probability of transmis-

sion, we must run simulations long enough that Ptrans(dt,x0)

converges to a plateau. Unless otherwise noted, all Ptrans

values represent the ensemble fraction calculated at 10 ns,

Ptrans(10 ns,x0). To demonstrate that 10 ns is a reasonable

commitment time, we show the good correlation between

Ptrans(10 ns,x0) values and Ptrans(20 ns,x0) values (Fig. 3 b)

with RMSD values for each barrier (500 conformations)

ranging from 0.043 to 0.058. Transmission probability

values calculated after 5 ns, Ptrans(5 ns,x0), were also quite

similar (RMSD ¼ 0.061) to Ptrans(10 ns,x0). In contrast, Ptrans

values calculated in the first several nanoseconds had not yet

converged. For example, the Ptrans(250 ps,x0) values were

quite different (RMSD ¼ 0.219) from the Ptrans(10 ns,x0)

values (Fig. 3 c). The rate at which the Ptrans(dt,x0) values

TABLE 1 MD ensembles aggregate simulation time

and lengths

L9–39 K12M

Ensemble

Aggregate

[ms]

No. to

10 ns

No. to

20 ns

. . . No. to

100 ns

Unfolding at 200�C 203 4706 3636 491

F to I13 at 25�C 1694 75,000 74,999

F to I12 at 25�C 1365 69,928 47,438

I13 to U at 25�C 1359 69,993 47,286

I12 to U at 25�C 1359 69,911 47,360

F to I13 at 82�C 977 49,255 48,477

F to I12 at 82�C 976 49,188 48,430

I13 to U at 82�C 1438 72,928 70,906

I12 to U at 82�C 1435 72,829 70,678

Ptrans-diffusion at 25�C 1146 57,510 57,046

A Kinetic Protein Folding Reaction Coordinate 17

Biophysical Journal 91(1) 14–24



converged to a stable value could be observed by plotting

the RMSD of all Ptrans(dt,x0) values versus all reference

Ptrans(10 ns,x0) values (Fig. 3 d). Given the rapid decay in the

RMSD of all Ptrans values, we infer that most individual

Ptrans(dt,x0) values quickly converge. This relaxation is im-

perfectly fit by a single exponential decay with rate constant

kdecay ¼ (2.4 ns)�1 and is well fit by a stretched exponential

Aexpð�ðkdecaytÞbÞ1C with kdecay ¼ (1.8 ns)�1 and the

stretching factor b ¼ 0.51.

These rates provide a rough estimate for the molecular

timescale tcommit of this barrier. Stretched exponentials have

been previously used to model downhill processes or processes

with many relevant kinetic states (36). The rapid relaxation of

an activated ensemble of varied initial states fits both criteria. It

is difficult to extract additional information from this initial

relaxation. At short times (Fig. 3 c), the Ptrans is usually lower

than the plateau value, reflecting a transient unfolded excess.

This property might reflect the origin of the initial conforma-

tions from the high temperature 200�C ensemble or a tendency

of the selection heuristic (which selects putative transition

states immediately before unfolding events).

We show typical Ptrans(dt,x0) time courses in Fig. 3, e and

f. A small fraction of the initial conformations do not reach

stable Ptrans(dt,x0) values in the length of our simulations.

This is a source of noise in the remaining analysis. We have

not culled unconverged Ptrans(dt,x0) values to avoid intro-

ducing bias. One direction for future work is the careful time

averaging and extraction of Ptrans(dt,x0) plateau values from

each Ptrans(dt,x0) trace.

The challenges associated with precisely calculating Ptrans

values are significant: both the requirement for hundreds

of MD simulations per trial conformation and the requirement

FIGURE 3 We show Ptrans values for 500 conformations

along the F-I13 barrier (loss of the S1:2 strand pair) as

calculated using a large ensemble of ;70,000 simulations

with ;140 trajectories for each initial conformation. (a)

To illustrate statistical Ptrans error, we compare the Ptrans

estimate from each half of the data. (b) Ptrans(20 ns) values

were similar to Ptrans(10 ns) values. Error bars represent the

Bayesian posterior 95% interval. At short times many

Ptrans(dt,x0) traces have not yet converged as seen in c, the

correlation between Ptrans(250 ps) and Ptrans(10 ns). (d) As

a function of time, the RMSD between the Ptrans(dt,x0)

values and the Ptrans(10 ns,x0) values may be approximated

as an exponential decay with k ¼ (2.4 ns)�1 or a stretched

exponential with k ¼ (1.8 ns)�1 and b ¼ 0.48. (e) Many

Ptrans(dt,x0) traces plateau immediately or within 10 ns.

Examples were chosen to minimize overlap. (f) Other

Ptrans(dt,x0) traces equilibrate dramatically, or occasionally

plateau slowly.
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that these simulations reach the characteristic timescale

tcommit. We have demonstrably satisfied these constraints

here given four distinct strand pair transitions of a small

protein that folds on the millisecond timescale. It is quite

likely that longer proteins will exhibit transitions that require

MD simulations of greater length. It may also be difficult to

map larger protein motions to distinct two-state barrier-

crossing events, a necessary precondition for studying the

kinetics of activated conformations using these methods.

Ptrans correlation and Hammond effects

Now we turn to the applications of detailed kinetic obser-

vations. One question we address is the effect of polymer

temperature on the TSE. To consider the effect of temper-

ature on both the protein and solvent, one would ideally

employ an explicit solvent model parameterized to reproduce

solvent properties and the hydrophobic effect over a large

range of temperature values. In the absence of such models,

we have employed an implicit solvent model that does not

change with temperature. Accordingly, our high temperature

simulations only reflect the effect of temperature on the

polymer. This perturbation is useful to determine the nature

of the folding reaction at room temperature through observ-

able shifts in Ptrans. Also, we probe the shape of the 25�C and

82�C free energy landscapes at points chosen from nonequi-

librium high temperature unfolding ensembles. Ideally, such

probe points would be selected from an equilibrium ensem-

ble at room temperature to guarantee that the points sample a

relevant portion of the landscape.

Caveats aside, we believe that we have sampled the

relevant TSEs and can generalize the effect of polymer

temperature. A drastic change in the L9–39 TSE due to poly-

mer temperature seems unlikely given the similar saddle

point positions observed in the strand quality projection (Fig.

2, a–c). Robust unfolding mechanisms with respect to tem-

perature have been observed in previous simulations in-

cluding explicit solvent unfolding simulations (37).

The expected effect of elevated temperature is Hammond

behavior: the TSE should become more similar to the native

state. For example, a conformation that is a transition state

conformation with Ptrans ¼ 0.5 at room temperature would

have Ptrans , 0.5 at elevated temperature. Fig. 4 shows the

Ptrans correlation between 25�C and 82�C for each trial

conformation. As expected, the room temperature Ptrans

values were higher than the Ptrans values at the experimental

Tm. Qualitatively, the 25�C and 82�C free energy barriers

appear quite similar. We then calculated the transition state

shifts (Dxz) and barrier width changes (s9) most consistent

with observed Ptrans shifts, assuming a quadratic free energy

barrier shape. For a more detailed explanation of the fitting

routine and theory, we refer the reader to Rhee and Pande

(38). In all cases, the small observed temperature shifts qual-

itatively matched expected Hammond effects, moving the

TSE toward the more folded minima. Furthermore, the

sigmoid shape of Fig. 4 a reveals that the F-I13 free energy

barrier both shifts slightly and contracts as the temperature

drops to 25�C. The barrier contraction may be rationalized

by considering that low temperature is likely to stabilize I13

in addition to F. Since Pfold is exponentially dependent on the

free energy barrier (38), we expect Ptrans correlation to be a

sensitive probe of perturbations to the free energy landscape.

Due to finite sampling, there is noise in the Ptrans(dt,x0)

values, but the deviations from the identity line are small. To

gauge the certainty of the fitting process and construct con-

fidence intervals for the calculated changes in barrier width

and position, we use a bootstrap error analysis. Essentially,

we repeated the Ptrans correlation fitting process for 100

bootstrap samples. Each bootstrap sample contains 500 Ptrans

values drawn with replacement from the full Ptrans distribu-

tion. Using 95% confidence bounds, we found that the most

evident differences between each barrier were statistically

justified (Fig. 4); namely, the TSE shift for the I12-U

transition is larger than the TSE shift for I13-U, which is in

turn larger than the TSE shift for the other two transitions.

Also, the 25�C barrier width decreases more for the F-I13

transition than the other three transitions. These Ptrans

correlation calculations provide a first step toward quantita-

tive Hammond effect analysis, with comparison of the

magnitude of barrier shifts and width changes.

Ptrans diffusion rate and transition rate theory

To the extent that the free energy profile along Ptrans is the

ideal one-dimensional coordinate for representing reaction

kinetics, the intrinsic diffusion constant along this coordinate

is the ideal configurational diffusion constant. In the limit of

small perturbations around the TSE, we postulate that dif-

fusion along the Ptrans reaction coordinate should reflect

flat one-dimensional diffusion (i.e., in the absence of a free

energy gradient). If this hypothesis is correct, we would

predict a Gaussian distribution of Ptrans values to arise from a

transition state after short times.

Calculating a configurational diffusion constant directly

from simulation is an avenue for comparison with analytical

folding theory. Theoretical work related to diffusion along

structural reaction coordinates is quite extensive (39–45).

For example, Wolynes and co-workers relate the configura-

tional diffusion constant on a structural reaction coordinate Q
to the autocorrelation time of Q within a neighboring basin of

attraction (39). Baumketner and Hiwatari provide a recent

example, calculating the configurational diffusion constant

along a physical reaction coordinate for an off-lattice hairpin

using an ensemble averaged time correlation (40). We

believe that direct calculation of diffusion at the TSE using a

kinetic reaction coordinate will complement theories that

have been developed for the diffusion of proteins along

structural reaction coordinates.

We calculated diffusion along the Ptrans coordinate for the

F-I13 transition. To do so, we constructed the distribution
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P(Ptransjdt¼ 250 ps) using 144 trial daughter conformations,

each a snapshot 250 ps after an initial father conformation x0

with Ptrans � 0.5. The father conformation is the validated

transition state conformation shown in Fig. 5. We expected

250 ps to be a short interval relative to barrier crossing and

thus anticipated that most of the 144 daughter conformations

would also be transition state conformations. We calculated

Ptrans for each conformation. As expected, the daughter

conformations were still activated (0.20 , Ptrans , 0.70).

The daughter distribution P(Ptransjdt ¼ 250 ps) is shown in

Fig. 6 a. For a finite number of shooting trajectories, N, the

width of the daughter distribution is partially due to

uncertainty in each Ptrans calculation. To minimize the con-

tribution of the statistical uncertainty, we simulated many

(N » 400) trajectories for each daughter Ptrans value.

We present three arguments that N » 400 is sufficiently

large. First, the standard deviation of each Bayesian Ptrans

estimate is small (;0.024) relative to the observed standard

deviation (0.097) of the P(Ptransjdt ¼ 250 ps) distribution.

Second, we extracted an estimate for the limiting standard

deviation of the P(Ptransjdt ¼ 250 ps) distribution by plotting

the standard deviation for cumulative subsets of the data

(Fig. 6 c). The standard deviation of the P(Ptransjdt¼ 250 ps)

distribution decays with increasing N, converging to a

limiting standard deviation. Specifically, the standard devi-

ation trend was least squares fit by A 3 N�0.5 1 C with C ¼
0.093. Third, we directly illustrate the statistical noise (Fig.

6 b) by regrouping ;50,000 simulation outcomes to

construct 110 uniformly distributed samples (three trajecto-

ries per daughter conformation, N� 432). In other words, we

calculate Ptrans for a cluster of similar conformations rather

than one distinct conformation. Each of these 110 samples is

an independent estimate of the Ptrans value for the entire

cluster of daughter conformations. Accordingly, the width of

FIGURE 4 Ptrans correlation along the (a) F-I13, (c)

F-I12, (e) I13-U, and (g) I12-U barriers at room

temperature (25�C) and the experimental Tm (82�C).

Each room temperature (and Tm) Ptrans value was

calculated as the refolding fraction at 10 ns of ;140

(;100) trajectories. The correlation plots show the

identity line (gray) and the fit obtained for a change in

barrier mean and width (black). (b, d, f, and h) We

show schematics for the best fit shift in the barrier

width and position. With the Tm barrier as the quadratic

reference (dashed), we show the best fit shift Dxz and

width s9-values most consistent with the observed

Ptrans correlation upon reducing temperature to 25�C
(solid) with 95% bootstrap confidence limits.
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the resulting distribution, P(Ptrans), reflects statistical noise,

and the standard deviation trend was successfully least

squares fit by A3 N�0.5. These three arguments demonstrate

that the spread seen in Fig. 6 a is not merely the statistical

noise associated with individual Ptrans calculations but is

instead related to the properties of the 250-ps daughter

ensemble.

The calculation of Ptrans for an entire cluster is not merely a

control. One might wish to treat the entire set of daughter

conformations as a homogeneous cluster because they are

structurally and kinetically related. In fact, Rao et al. have

provided a precedent, employing an algorithm that calculates

Pfold for a cluster of structurally related conformations given a

long equilibrium simulation (46). Given sufficient trajectories,

the Ptrans value of a cluster should converge to a single value

corresponding to the ensemble average Ptrans. Indeed, if we

estimatePtrans using all data for the daughter cluster,n¼ 26,346

and N ¼ 57,510, we obtain the most precise commitment

fraction calculated to date (Ptrans ¼ 0.458 6 0.002).

The P(Ptransjdt ¼ 250 ps) distribution reflects diffusion

along a kinetic reaction coordinate. The Gaussian shape of

this distribution (0.01 skewness and 0.04 kurtosis) supports

the hypothesis that kinetic diffusion near the TSE is flat. As a

proof of concept, we use the P(Ptransjdt ¼ 250 ps) dis-

tribution to obtain a configurational diffusion constant. As

described above, the standard deviation of the P(Ptransjdt ¼
250 ps) distribution was estimated to be 0.093 in the limit of

large N. Therefore, the most rapid motion along the Ptrans

coordinate, DPtrans/dt, was 0.093 per 250 ps, or 0.374 ns�1.

We take the inverse, dt/DPtrans ¼ 2.7 ns per event, as an

estimate of tcommit, the molecular timescale for this transi-

tion. This corresponds well with 2.4 ns, the rough estimate of

tcommit obtained earlier as the timescale for Ptrans(dt) plateau.

However, interpreting DPtrans/dt as a velocity is incorrect

because the standard deviation of a diffusing distribution s is

proportional to the square root of the elapsed time dt and the

diffusion constant D. For short dt, we extract a proper dif-

fusion constant assuming diffusion along a flat one-dimen-

sional coordinate, s ¼ ð2DdtÞ0:5
. We calculate D ¼ 0.0175

ns�1 at the barrier top. If ideal diffusion holds, a d function at

time zero (Ptrans ¼ 0.5) diffusing with D ¼ 0.0175 ns�1 will

be completely absorbed by boundaries at 0 and 1 within 16

ns. This absorption process may be roughly approximated as

an exponential decay (tcommit ¼ 5.3 ns). However, the

FIGURE 5 Stereodiagrams for L9–39 K12M, includ-

ing (a) a native model derived from Protein Data Bank

identification No. 1CQU and (b) a thoroughly character-

ized transition state (x0) example for the loss of the strand

1:2 pair. This conformation has one clear hydrogen bond

(black) between strands 1 and 2 (H-5–O-17).Ptrans(10 ns)¼
0.5 from 144 simulations after 10 ns, meaning that exactly

half of the simulations refold the S1:2 strand pair.

FIGURE 6 (a) Distribution of Ptrans values

P(Ptransjdt ¼ 250 ps) for 144 daughter confor-

mations of father conformation x0 with

Ptrans(10 ns,x0) � 0.5. (b) We calculate the

Ptrans(10 ns) for the entire cluster of initial

daughter conformations with 110 uniform

samples (N � 432). The P(Ptrans)cluster distri-

bution width represents statistical noise. (c)

Convergence of the standard deviation of

P(Ptransjdt ¼ 250 ps) and the cluster P(Ptrans)

as we include more trajectories for each Ptrans

value. (d) Because the 144 daughter confor-

mations had only 250 ps to diverge from x0, the

Ca-Ca dRMSD between each pair of confor-

mations ranges from 0.46 to 2.56 and the

DPtrans between each pair ranges from 0.00 to

0.50. It is difficult to infer kinetic similarity

from structural similarity, yet a cutoff under 1 Å

Ca dRMSD might serve.
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observed ideal Gaussian diffusion will not hold after longer

elapsed times. At longer dt the simulations will relax into

product and reactant minima and the distribution P(Ptransjdt)
should become bimodal. Also, an asymmetric P(Ptransjdt) dis-

tribution could arise from a free energy gradient or dif-

ferential diffusion. Future simulations started from daughter

conformations with longer dt should allow us to gauge these

effects and to deduce the shape of the free energy barrier.

Classical transition state theory treats the folding pro-

cess with a single constant prefactor, k0, where kTST ¼
k0e

ð�DGðTSEÞÞ=kBT . The Ptrans diffusion rate provides a route to

test this approximation by determining the configurational

diffusion constant for different free energy barriers, altered

temperature, mutation, or even for a different member of the

same TSE. The transition state prefactor, which relates to the

maximum speed of protein folding, depends on the nature of

the conformational transition and polymer length. Eaton and

co-workers have proposed a Nres/100-ms rule of thumb for

the protein folding speed limit where Nres is the number of

residues (47). This would predict a ;400-ns speed limit for

L9–39 which actually folds more than three orders of mag-

nitude more slowly. This is unsurprising given the com-

plexity of L9–39 topology relative to other small proteins.

Also, in this work we are examining a single transition

within the context of a larger folding process. Furthermore,

barrier top diffusion may be rapid in comparison to diffusion

along other portions of the free energy landscape. Our most

rapid observed relaxation time was ;3 ns, which is just

faster than the most rapid events characterized by Kiefhaber

and co-workers in studies of triplet-triplet energy transfer

across various peptide sequences (48). The speed limit rule

of thumb, our Ptrans-diffusion calculations, and the presence

of intermediates are all consistent with the premise that L9–

39 could be optimized to fold more quickly. The K12M

mutant itself is one such an example, as it folds more quickly

(1209 6 72 s�1) than wild-type L9–39 (778 6 72 s�1) (13).

Kinetic similarity and structural similarity

Our data are well suited to address the connection between

kinetic and structural similarity. As the structural deviation

between two conformations goes to zero, DPtrans must also

go to zero. How similar must two conformations become

before we may assume that their kinetic properties are

similar? With our Ptrans-diffusion data set we can address this

question (Fig. 6 D). For each pair of daughter conformations,

we calculated the RMSD in the inter-a-carbon distance

matrix (Ca dRMSD) and found a fairly normal distribution

centered around 1.33 Å. In contrast, the absolute change in

the transmission probability jDPtransj between each pair of

conformations was biased toward low changes because the

possible values are restricted to the range from 0 to 1.

Plotting the correlation between these properties for each

daughter pair, we found that larger structural deviations did

not prevent similar Ptrans values. However, conformations

within 1 Å Ca dRMSD rarely had jDPtransj. 0.25. Thus, we

pose the hypothesis that a structural cutoff, Ca dRMSD ,

1 Å may be sufficient to ensure kinetic similarity (jDPtransj,
0.25) for sufficiently large protein conformation transitions.

The ability to infer kinetic similarity from structural sim-

ilarity is crucial when clustering conformations to build a

Markovian state model, a master equation description of

global kinetics (49–51). Specifically, a principal limitation of

Markov state models is that one must only cluster protein

conformations with similar kinetic properties. An ideal clus-

tering metric would be sufficiently detailed to capture the

precise structure-kinetics correlation yet would be general

enough to detect every slow protein transition.

CONCLUSIONS

Imperfections in analysis of protein folding transitions due to

high dimensionality can be avoided by studying the transition

using a kinetic coordinate. Although this is a computationally

expensive process (due to the statistical error of estimating the

transmission probability for each conformation of interest),

it is naturally parallelizable and well suited to distributed

computing. We have applied this technique on a very large

scale, calculating transmission probabilities for 2,000 putative

transition state conformations spread over four distinct free

energy barriers of the model system L9–39. We determined

validated transition state conformations for a small protein of

interest and demonstrated a new level of precision in such a

kinetic ruler using hundreds of 10-ns atomistic simulations to

determine each transmission probability value.

We demonstrated Hammond effects using kinetic mea-

surements and found changes to both the free energy barrier

position and width. Transition state shifts due to polymer

temperature (25�C vs. 82�C) were small. Finally, we de-

termined that it is possible to estimate a transmission

probability diffusion rate. With precise Ptrans values (;400

simulations per conformation), we determined the molecular

timescale and the rate of kinetic diffusion at the barrier top.

These parameters should prove useful to decouple the kinetic

and thermodynamic contributions to the rate theory of L9–39

folding.

APPENDIX

Here, we briefly review the use of Bayesian inference to estimate a specific

commitment probability Ptrans(x0) ¼ p from a finite number of trials. The

probability density for p, given the observed data V, is PðpjVÞ ¼ PðVjpÞ
PðpÞðPðVÞÞ�1

. This expression has three important terms. The posterior

distribution, PðpjVÞ, is proportional to the data likelihood, PðVjpÞ, times

the prior distribution, PðpÞ. Because each simulation has two possible out-

comes, the data likelihood is given by the binomial distribution PðVjpÞ}
pnð1 � pÞN�n

.

The prior distribution contains any information about the distribution of

p that is available before data collection. One may bias the result toward

a predicted p value in exchange for more rapid convergence. Here, we used a

so-called uninformative prior Betað1j1Þ that is simply a constant distribution

and introduces no bias. The Beta distribution is also a conjugate prior, a
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convenient choice of prior distribution that simplifies the derivation of the

posterior distribution. The form of the Beta distribution Betaðpja;bÞ¼
Gða1bÞðGðaÞGðbÞÞ�1pa�1ð1 � pÞb�1

reveals that the Beta distribution is

similar to the binomial distribution, with the parameters a and b replacing

n and N � n, respectively. The G-functions simply normalize the Beta

distribution.

All factors that do not depend on p are constants and can be ignored,

leaving a posterior distribution for p proportional to pn1a�1ð1 � pÞN�n1b�1
.

This posterior distribution is itself a Beta distribution and equals Betaðn11j
N � n11Þ for the uniform prior. As additional observations are collected,

the posterior distribution depends only slightly on the prior. The peak of the

posterior distribution may fall at any value between 0 and 1. The expectation

value and variance of BetaðajbÞ are aða1bÞ�1
and abða1b11Þ�1

ða1bÞ�2
, respectively. Upper and lower limits for 95% confidence intervals

were determined to each exclude 2.5% of the probability distribution. All

distribution statistics were calculated using Mathematica 5.0 (52).

We thank the Folding@Home community http://folding.stanford.edu/, who

make these simulations possible, and John Chodera for useful suggestions.

C.D.S. and Y.M.R. were supported by fellowships from the Howard

Hughes Medical Institute and Stanford University, respectively.

REFERENCES

1. Shea, J. E., and C. L. Brooks. 2001. From folding theories to folding
proteins: a review and assessment of simulation studies of protein
folding and unfolding. Annu. Rev. Phys. Chem. 52:499–535.

2. Onuchic, J. N., and P. G. Wolynes. 2004. Theory of protein folding.
Curr. Opin. Struct. Biol. 14:70–75.

3. Chavez, L. L., J. N. Onuchic, and C. Clementi. 2004. Quantifying the
roughness on the free energy landscape. Entropic bottlenecks and
protein folding rates. J. Am. Chem. Soc. 126:8426–8432.

4. Sanbonmatsu, K. Y., and A. E. Garcia. 2002. Structure of Met-
enkephalin in explicit aqueous solution using replica exchange
molecular dynamics. Proteins. 46:225–234.

5. Best, R. B., and G. Hummer. 2005. Reaction coordinates and rates
from transition paths. Proc. Natl. Acad. Sci. USA. 102:6732–6737.

6. Ding, F., N. V. Dokholyan, S. V. Buldyrev, H. E. Stanley, and E. I.
Shakhnovich. 2002. Direct molecular dynamics observation of protein
folding transition state ensemble. Biophys. J. 83:3525–3532.

7. Davis, R., C. M. Dobson, and M. Vendruscolo. 2002. Determination of
the structures of distinct transition state ensembles for a b-sheet peptide
with parallel folding pathways. J. Chem. Phys. 117:9510–9517.

8. Bolhuis, P. G. 2003. Transition-path sampling of b-hairpin folding.
Proc. Natl. Acad. Sci. USA. 100:12129–12134.

9. Bolhuis, P. G., D. Chandler, C. Dellago, and P. L. Geissler. 2002.
Transition path sampling: throwing ropes over rough mountain passes,
in the dark. Annu. Rev. Phys. Chem. 53:291–318.

10. Li, L., and E. I. Shakhnovich. 2001. Constructing, verifying, and
dissecting the folding transition state of chymotrypsin inhibitor 2 with
all-atom simulations. Proc. Natl. Acad. Sci. USA. 98:13014–13018.

11. Hummer, G. 2004. From transition paths to transition states and rate
coefficients. J. Chem. Phys. 120:516–523.

12. Du, R., V. S. Pande, A. Y. Grosberg, T. Tanaka, and E. S.
Shakhnovich. 1998. On the transition coordinate for protein folding.
J. Chem. Phys. 108:334–350.

13. Horng, J. C., V. Moroz, and D. P. Raleigh. 2003. Rapid cooperative
two-state folding of a miniature alpha-beta protein and design of a
thermostable variant. J. Mol. Biol. 326:1261–1270.

14. Hubner, I. A., J. Shimada, and E. I. Shakhnovich. 2004. Com-
mitment and nucleation in the protein G transition state. J. Mol. Biol.
336:745–761.

15. Wei, W. Y., and M. Gruebele. 2003. Folding at the speed limit. Nature.
423:193–197.

16. Onsager, L. 1939. Initial recombination of ions. Phys. Rev. 54:554–557.

17. Pande, V. S., and D. S. Rokhsar. 1999. Molecular dynamics

simulations of unfolding and refolding of a beta-hairpin fragment of

protein G. Proc. Natl. Acad. Sci. USA. 96:9062–9067.

18. Gsponer, J., and A. Caflisch. 2002. Molecular dynamics simulations of

protein folding from the transition state. Proc. Natl. Acad. Sci. USA.
99:6719–6724.

19. Onsager, L. 1931. Reciprocal relations in irreversible processes. I. Phys.
Rev. 37:405–426.

20. Onsager, L. 1931. Reciprocal relations in irreversible processes. II.

Phys. Rev. 38:2265–2279.

21. Chandler, D. 1987. Introduction to Modern Statistical Mechanics.

Oxford University Press, New York.

22. Dellago, C., P. G. Bolhuis, and P. L. Geissler. 2005. Transition path

sampling methods. In Lecture Notes for the International School of

Solid State Physics. K. Binder and G. Ciccotti, editors. Springer, Erice,

Sicily.

23. Chandler, D. 1978. Statistical mechanics of isomerization dynamics in

liquids and the transition state approximation. J. Chem. Phys. 68:2959–

2970.

24. Montgomery, J. A. J., D. Chandler, and B. J. Berne. 1979. Trajectory

analysis of a kinetic theory for isomerization dynamics in condensed

phases. J. Chem. Phys. 70:4056–4066.

25. Horng, J. C., and D. P. Raleigh. 2003. Phi-values beyond the

ribosomally encoded amino acids: kinetic and thermodynamic conse-

quences of incorporating trifluoromethyl amino acids in a globular

protein. J. Am. Chem. Soc. 125:9286–9287.

26. Horng, J. C., V. Moroz, D. J. Rigotti, R. Fairman, and D. P. Raleigh.

2002. Characterization of large peptide fragments derived from the

N-terminal domain of the ribosomal protein L9: definition of the

minimum folding motif and characterization of local electrostatic

interactions. Biochemistry. 41:13360–13369.

27. Cho, J. H., S. Sato, and D. P. Raleigh. 2004. Thermodynamics and

kinetics of non-native interactions in protein folding: a single point mutant

significantly stabilizes the N-terminal domain of L9 by modulating non-

native interactions in the denatured state. J. Mol. Biol. 338:827–837.

28. Luisi, D. L., C. D. Snow, J. J. Lin, Z. S. Hendsch, B. Tidor, and D. P.

Raleigh. 2003. Surface salt bridges, double-mutant cycles, and protein

stability: an experimental and computational analysis of the interaction

of the Asp 23 side chain with the N-terminus of the N-terminal domain

of the ribosomal protein l9. Biochemistry. 42:7050–7060.

29. Snow, C. D., E. J. Sorin, Y. M. Rhee, and V. S. Pande. 2005. How well

can simulation predict protein folding kinetics and thermodynamics?

Annu. Rev. Biophys. Biomol. Struct. 34:43–69.

30. Snow, C. D., H. Nguyen, V. S. Pande, and M. Gruebele. 2002.

Absolute comparison of simulated and experimental protein-folding

dynamics. Nature. 420:102–106.

31. Ponder, J. W., and F. M. Richards. 1987. An efficient Newton-like

method for molecular mechanics energy minimization of large mole-

cules. J. Comput. Chem. 8:1016–1024.

32. Allen, M. P. 1980. Brownian dynamics simulation of a chemical-

reaction in solution. Mol. Phys. 40:1073–1087.

33. Jorgensen, W. L., and J. Tirado-Rives. 1988. The OPLS potential

functions for proteins. Energy minimizations for crystals of cyclic

peptides and crambin. J. Am. Chem. Soc. 110:1657–1666.

34. Qiu, D., P. S. Shenkin, F. P. Hollinger, and W. C. Still. 1997. The GB/

SA continuum model for solvation. A fast analytical method for the

calculation of approximate Born radii. J. Phys. Chem. A. 101:3005–

3014.

35. Yun-yu, S., L. Wang, and W. F. van Gunsteren. 1988. On the approxima-

tion of solvent effects on the conformation and dynamics of cyclosporin A

by stochastic dynamics simulation techniques. Mol. Simul. 1:369–383.

36. Gruebele, M. 1999. The fast protein folding problem. Annu. Rev. Phys.
Chem. 50:485–516.

A Kinetic Protein Folding Reaction Coordinate 23

Biophysical Journal 91(1) 14–24



37. Day, R., B. J. Bennion, S. Ham, and V. Daggett. 2002. Increasing

temperature accelerates protein unfolding without changing the path-

way of unfolding. J. Mol. Biol. 322:189–203.

38. Rhee, Y. M., and V. S. Pande. 2005. On the role of chemical detail in

simulating protein folding kinetics. Chem. Phys. 323:66–77.

39. Socci, N. D., J. N. Onuchic, and P. G. Wolynes. 1996. Diffusive

dynamics of the reaction coordinate for protein folding funnels. J.
Chem. Phys. 104:5860–5868.

40. Baumketner, A., and Y. Hiwatari. 2002. Diffusive dynamics of protein

folding studied by molecular dynamics simulations of an off-lattice

model. Phys. Rev. E. 66:011905.

41. Hummer, G. 2005. Position-dependent diffusion coefficients and free

energies from Bayesian analysis of equilibrium and replica molecular

dynamics simulations. N. J. Phys. 7:34.

42. Zwanzig, R. 1988. Diffusion in a rough potential. Proc. Natl. Acad.
Sci. USA. 85:2029–2030.

43. Bryngelson, J. D., and P. G. Wolynes. 1989. Intermediates and barrier

crossing in a random energy model (with applications to protein

folding). J. Phys. Chem. 93:6902–6915.

44. Woolf, T. B., and B. Roux. 1994. Conformational flexibility of

o-phosphorylcholine and o-phosphorylethanolamine: a molecular dy-

namics study of solvation effects. J. Am. Chem. Soc. 116:5916–5926.

45. Wang, J., K. Zhang, H. Lu, and E. Wang. 2005. Quantifying kinetic
paths of protein folding. Biophys. J. 89:1612–1620.

46. Rao, F., G. Settanni, E. Guarnera, and A. Caflisch. 2005. Estimation of
protein folding probability from equilibrium simulations. J. Chem.
Phys. 122:184901.

47. Kubelka, J., J. Hofrichter, and W. A. Eaton. 2004. The protein folding
‘speed limit’. Curr. Opin. Struct. Biol. 14:76–88.

48. Krieger, F., B. Fierz, O. Bieri, M. Drewello, and T. Kiefhaber. 2003.
Dynamics of unfolded polypeptide chains as model for the earliest
steps in protein folding. J. Mol. Biol. 332:265–274.

49. Swope, W. C., J. W. Pitera, and F. J. Suits. 2004. Describing protein
folding kinetics by molecular dynamics simulations. 1. Theory. J. Phys.
Chem. B. 108:6571–6581.

50. Swope, W. C., J. W. Pitera, F. J. Suits, M. Pitman, M. Eleftherious,
B. G. Fitch, R. S. Germain, A. Rayshubski, T. J. C. Ward, Y. Zhestkov,
and others. 2004. Describing protein folding kinetics by molecular
dynamics simulations. 2. Example applications to alanine dipeptide and
a beta-hairpin peptide. J. Phys. Chem. B. 108:6582–6594.

51. Singhal, N., C. D. Snow, and V. S. Pande. 2004. Using path sampling to
build better Markovian state models: predicting the folding rate and mech-
anism of a tryptophan zipper beta hairpin. J. Chem. Phys. 121:415–425.

52. Wolfram Research. 2003. Mathematica. Wolfram Research, Cham-
paign, IL.

24 Snow et al.

Biophysical Journal 91(1) 14–24


