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ABSTRACT To describe the macroscopic behavior of many ion channels, at a minimum a four-state kinetic scheme is needed
to provide for three processes: a delay in activation development, the activation process, and inactivation. I present here an
analytical solution for a fully generalized four-state kinetic scheme in which every state can transit to every other state and any
initial conditions can be specified. The solution describes the time courses of the probabilities of occupancy of each state during
a step change in the rate constants of the scheme and includes closed-form expressions for the relaxation time constants and
steady-state probabilities of occupancy as functions of the rate constants. Solutions for several relevant special cases are also
included along with demonstrations that the general solution yields the correct behavior for several reduced or special cases
where the result is independently known.

INTRODUCTION

Kinetic models are often used to simulate the behavior of

both ligand and voltage-gated ion channels. A solution for a

two-state kinetic scheme as applied to ion channels was

presented in the classic analysis of Hodgkin and Huxley (1).

Solutions for fully generalized (i.e., six-rate-constant) three-

state schemes have also been presented (e.g., 2). However, to

describe the macroscopic behavior of many Na, Ca, and K

channels a minimum of four states, or the equivalent pro-

duced by some arrangement of subunits, is needed, providing

then for three processes: a delay in activation development, an

activation process, and inactivation.

A solution for a four-state scheme of sufficient complexity

to account for the experimental behavior of ion channels (for

example, including inactivation from closed states (3)) does

not seem to have been presented. Analytical solutions for

four, or any number of states, have been provided (4), but

only for the special case that just forward transitions are

allowed (i.e., the left-most state can only transit to the second

from the left, which can only transit to the third from the left,

etc.). This family of solutions is further restricted to the

single fixed initial condition that only the left-most state is

occupied at time (t) ¼ 0. This special case appropriately

described the physical situation being analyzed, sequential

irreversible ligand binding, but is not sufficient to simulate

the range of behaviors of gated ion channels. A useful

analysis showing how to extract values for the rate constants

from single channel lifetime distributions for certain four-

and even five- and six-state schemes has been provided (5),

but this analysis does not yield the full array of information

pursued here, and moreover is also restricted to certain

special cases.

I present here an analytical solution for a general four-state

kinetic scheme. The solution is fully generalized in that

every state can transit to every other state, and any initial

conditions are allowed. Solutions for several special or

reduced cases of interest for gated ion channels are, then,

readily obtained from the general solution. All solutions are

for the condition that the values of one or more rate constants

change instantaneously to a new value at t ¼ 0 owing, for

example, to a step change in membrane potential or a sudden

change in ligand concentration. The time courses of the

probabilities of occupancy of each of the four states during

the step are specified, and closed-form explicit expressions

for each of the three relaxation time constants as functions of

the rate constants of the scheme are presented.

RESULTS AND DISCUSSION

A fully generalized four-state scheme

Scheme 1

The generalized scheme is presented in Scheme 1. The states

are named to emphasize the application of this scheme to

voltage-gated ion channels. However, nothing in this anal-

ysis specifies the functional nature of any state or restricts the

treatment to ion channels.
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Scheme 1 is described by the four coupled first-order

differential equations,

d½C2�
dt

¼ �ðk21 1 k2O 1 k2INÞ½C2�1 k12½C1�1 kO2½O�1 kIN2½I�

(1)

d½C1�
dt

¼ �ðk12 1 k1O 1 k1INÞ½C1�1 k21½C2�1 kO1½O�1 kIN1½I�

(2)

d½O�
dt

¼ �ðkO1 1 kO2 1 kOINÞ½O�1 k2O½C2�1 k1O½C1�1 kINO½I�

(3)

d½I�
dt

¼�ðkIN21kIN11kINOÞ½I�1k2IN½C2�1k1IN½C1�1kOIN½O�;

(4)

where [C2], [C1], [O], and [I] are the concentrations or

membrane densities of states closed2, closed1, open, and
inactivated, respectively. The densities of all the states sum
to a constant, N, i.e.,

½C2�ðtÞ1 ½C1�ðtÞ1 ½O�ðtÞ1 ½I�ðtÞ ¼ N: (5)

Because of Eq. 5, one of the variables and one of the Eqs.

1–4 is redundant. Eliminating [C2] and dividing through by

N, we have

dX

dt
¼ �K1X1K2Y1K3Z1K4; (6)

dY

dt
¼ �K5Y1K6X1K7Z1K8; (7)

dZ

dt
¼ �K9Z1K10X1K11Y1K12; (8)

where X, Y, and Z are the probabilities of occupancy of states

closed1, open, and inactivated, respectively. The probability
of occupancy of closed2 is W. The Ki terms are given by

K1 ¼ k12 1 k1O 1 k1IN 1 k21 (9)

K2 ¼ kO1 � k21 (10)

K3 ¼ kIN1 � k21 (11)

K4 ¼ k21 (12)

K5 ¼ kO1 1 kO2 1 kOIN 1 k2O (13)

K6 ¼ k1O � k2O (14)

K7 ¼ kINO � k2O (15)

K8 ¼ k2O (16)

K9 ¼ kIN2 1 kIN1 1 kINO 1 k2IN (17)

K10 ¼ k1IN � k2IN (18)

K11 ¼ kOIN � k2IN (19)

K12 ¼ k2IN: (20)

Equations 6–8 may be combined into a single third-order

differential equation in either X, Y, or Z. Choosing the prob-

ability of occupancy of the open, conducting state

d
3
Y

dt3
1a

d
2
Y

dt2
1b

dY

dt
1 gY1 d ¼ 0; (21)

where

a ¼ K1 1K5 1K9 (22)

b ¼ K1K9 1K1K5 1K5K9 � ðK2K6 1K3K10 1K7K11Þ
(23)

g ¼ K1K5K9 � ðK1K7K11 1K2K6K9 1K2K7K10

1K3K6K11 1K3K5K10Þ (24)

d ¼ K3K8K10 � ðK1K7K12 1K1K8K9 1K4K7K10

1K4K6K9 1K3K6K12Þ: (25)

In the steady state ðd3Y=dt3Þ; ðd2Y=dt2Þ; and ðdY=dtÞ are
all zero, and Eq. 21 becomes

gYðNÞ ¼ �d; (26)

where

Proceeding similarly, we also have

YðNÞ ¼ K1K7K12 1K1K8K9 1K4K7K10 1K4K6K9 1K3K6K12 � K3K8K10

g
: (27)

ZðNÞ ¼ K1K8K11 1K1K5K12 1K2K8K10 1K4K5K10 1K4K6K11 � K2K6K12

g
; (29)

XðNÞ ¼ K2K7K12 1K3K5K12 1K2K8K9 1K4K5K9 1K3K8K11 � K4K7K11

g
; (28)
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and

WðNÞ ¼ 1� XðNÞ � YðNÞ � ZðNÞ: (30)

Combining Eqs. 21 and 26, the equationwewant to solve is

d
3
Y

dt
3 1a

d
2
Y

dt
2 1b

dY

dt
1 gðY � YðNÞÞ ¼ 0: (31)

For the three constants a, b, and g, there always exist

three other constants a, b, and c that will satisfy the relations

a ¼ a1 b1 c; (32)

b ¼ ab1 ac1 bc; (33)

g ¼ abc: (34)

It is shown below (Eq. 36) that a, b, and c are the eigen-
values. Combining Eqs. 31–34, we have

d
3
Y

dt3
1ða1b1cÞd

2
Y

dt2
1ðab1ac1bcÞdY

dt

1abcðY�YðNÞÞ ¼ 0: (35)

A solution for Eq. 35, obtained using elementary methods,

for the condition that the transition rate constants, kij, change
instantaneously at t ¼ 0, is given by

where ðd2Y=dt2Þð0Þ; ðdY=dtÞð0Þ; and Y(0) are the values at

t ¼ 0,

d
2
Y

dt
2 ð0Þ ¼�K5

dY

dt
ð0Þ1K6

dX

dt
ð0Þ1K7

dZ

dt
ð0Þ (37)

and ðdX=dtÞð0Þ; ðdY=dtÞð0Þ; and ðdZ=dtÞð0Þ are given by

Eqs. 6–8 evaluated at t ¼ 0. Expressions corresponding to

Eq. 37 for X and Z are similarly obtained by differentiating

Eqs. 6 and 8 and evaluating at t¼ 0. That Eq. 36 is a solution

for Eq. 35 may be shown by differentiating.

Solving the algebraic Eqs. 32–34 simultaneously for a, b,
and c, we have

a¼a=31ðu1uÞ; (38)

b¼ a=3�ððu1uÞ=2Þ1ð�3Þ1=2ððu�uÞ=2Þ; (39)

c¼ a=3�ððu1uÞ=2Þ� ð�3Þ1=2ððu�uÞ=2Þ; (40)

where

u¼ ð�B=21ðB2
=41A

3
=27Þ1=2Þ1=3; (41)

u¼ ð�B=2�ðB2
=41A

3
=27Þ1=2Þ1=3; (42)

and

A¼b�ða2
=3Þ; (43)

B¼�1=27ð2a3�9ab127g): (44)

Equations 38–44 together with Eqs. 22–24 and Eqs. 9–20

provide closed-form expressions for the relaxation time

constants 1/a, 1/b, and 1/c as functions of the rate constants,
kij. Direct substitution shows that Eqs. 38–44 are, in fact, a

solution for Eqs. 32–34.

Solutions forW(t), X(t), and Z(t) are identical in form to Eq.

36with identical values for the time constants 1/a, 1/b, and 1/c.
Solutions for these other three variables differ only in the values

for the steady-state occupancies of these states as specified by

Eqs. 27–30 and in the weights given to the initial state oc-

cupancies,X(0),Y(0), and Z(0), as specified byEqs. 6–8.When

X(t), Y(t), and Z(t) have been defined,W(t) is also known.

Some special cases of a four-state scheme

No closed2-open pathway

For many voltage-gated ion channels there is a delay in the

development of activation. This means that the closed2-open

pathway cannot be used to any appreciable extent for these

channels. For voltage-gated channels, then, a more relevant

model would be as in Scheme 1 but with k2O ¼ kO2 ¼ 0.

For this and the other special cases of a four-state scheme

considered in this section, Eqs. 21–44 are identical to those

for the fully generalized scheme. The only differences are in

the definitions of the Ki terms (Eqs. 9–20), and all special

case results are obtained just by substituting appropriately

for the kij terms in Eqs. 9–20. The steady-state occupancies

are now given by (writing directly in the kij terms for this

somewhat simpler scheme)

XðNÞ ¼ ½ðkIN21kIN1ÞðkO1k211kOINk21Þ1kINOkO1ðk211k2INÞ
1kIN1k2INðkO11kOINÞ�=g; (45)

YðNÞ ¼ ½ðk211k2INÞðk1INkINO1kIN1k1OÞ1kINOk2INðk121k1OÞ
1k21k1OðkIN21kINOÞ�=g; (46)

ZðNÞ ¼ ½ðk121k1INÞðkO1k2IN1kOINk2INÞ1k1OkOINðk211k2INÞ
1k21k1INðkO11kOINÞ�=g; (47)

WðNÞ ¼ ½ðkO11kOINÞðkIN1k121k1INkIN2Þ1kO1k12ðkIN21kINOÞ
1kOINkIN2ðk121k1OÞ�=g; (48)

with

YðtÞ ¼ YðNÞ�

d
2
Y

dt
2 ð0Þ1ðb1cÞdY

dt
ð0Þ1bcðYð0Þ�YðNÞÞ

ða� cÞðb�aÞ expð�atÞ�

d
2
Y

dt
2 ð0Þ1ða1cÞdY

dt
ð0Þ1acðYð0Þ�YðNÞÞ

ðc�bÞðb�aÞ expð�btÞ

�

d
2
Y

dt
2 ð0Þ1ða1bÞdY

dt
ð0Þ1abðYð0Þ�YðNÞÞ

ðc�bÞða� cÞ expð�ctÞ; (36)
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No closed2-open pathway and identical closed to
inactivated rate constants for both closed1 and closed2

In a study of Na channel inactivation from closed states (3), it

was found that the rate constants governing the transitions

from closed to inactivated states have approximately the

same value for all closed states (but differ from that for open

to inactivated). Incorporating this finding into Scheme 1, we

set k2IN ¼ k1IN in addition to the k2O ¼ kO2 ¼ 0 condition.

There are now just nine rate constants as compared to the

twelve of the fully generalized scheme.

In this case, Eqs. 22–24 become

a ¼ k12 1 k1O 1 k21 1 kO1 1 kOIN 1 kIN2 1 kIN1 1 kINO 1 2k1IN;

(50)

Steady-state occupancies are given by

XðNÞ ¼ ½k1INkO1ðkINO 1 kIN1Þ1 k21kO1ðkIN2 1 kIN1 1 kINOÞ
1 k21kOINðkIN2 1 kIN1Þ1 k1INkIN1kOIN�=g; (53)

YðNÞ ¼ ½kINOk1INðk12 1 k1O 1 k1IN 1 k21Þ1 k21k1OðkIN2 1 kIN1

1 kINOÞ1 k1Ok1INkIN1�=g; (54)

ZðNÞ ¼ ½k1INkOINðk12 1 k1O 1 k1IN 1 k21Þ1 k1INkO1ðk12 1 k1IN

1 k21Þ1 k21k1OkOIN�=g; (55)

WðNÞ ¼ ½ðkO1 1 kOINÞðkIN1k12 1 k1INkIN2Þ
1 kO1k12ðkIN2 1 kINOÞ1 kOINkIN2ðk12 1 k1OÞ�=g: (56)

No closed2-open pathway, identical closed to inactivated rate
constants for both closed1 and closed2 and an absorbing
inactivated state

For Na channels there is typically a range of potentials over

which inactivation goes to completion. This behavior can be

incorporated as well by setting kINO ¼ kIN1 ¼ kIN2 ¼ 0. For

this case,

a ¼ k12 1 k1O 1 k21 1 kO1 1 kOIN 1 2k1IN; (57)

b ¼ k1INða� k1INÞ1 kOINðk12 1 k1O 1 k21Þ1 kO1ðk12 1 k21Þ
1 k1INðkO1 1 kOINÞ1 k1Ok21; (58)

g¼
k1IN½ðkOIN1kO1Þðk1IN1k211k12Þ�1kOINðk21k1O1k1INk1OÞ;

(59)

with W(N) ¼ X(N) ¼ Y(N) ¼ 0, and Z(N) ¼ 1.

Reduction to simpler schemes

The expressions describing the behavior of a generalized

four-state scheme are fairly complex. It might be helpful,

then, to examine some cases for which the solution is already

known and show that the known, correct expressions are, in

fact, obtained when the appropriate conditions are applied to

the complex equations of the general four-state case. Three

such cases with known results are treated: a two-state

scheme, a fully generalized three-state scheme, and a four-

state scheme in which only forward transitions are allowed

(4) as described in the Introduction.

A two-state scheme

Scheme 2

For the two states of Scheme 2, from Eqs. 9–20 and 22–24,

b ¼ g ¼ 0 and

a ¼ k1O 1 kO1: (60)

Substituting in Eqs. 38 and 41–44 yields a ¼ a. From the

general solution, Eq. 36, noting that for just two states

g ¼ ðkIN2 1 kIN1 1 kINOÞðkO1k12 1 k21kO1 1 k21k1OÞ1 ðk12 1 k1O 1 k1INÞðkOINkIN2 1 k2INkOIN 1 k2INkINOÞ
1 ðkO1 1 kOIN 1 k1OÞk2INkIN1 1 ðkO1 1 kOIN 1 kINOÞk21k1IN 1 ðkIN2 1 k2INÞkO1k1IN 1 ðk12 1 k21ÞkOINkIN1
1 ðkINO 1 k12Þk2INkO1 1 ðkIN2 1 k1OÞk21kOIN: (49)

b ¼ k1INða� k1INÞ1 ðkIN2 1 kINO 1 kOINÞðk12 1 k1O 1 k21Þ1 ðkO1 1 kOINÞðkIN2 1 kIN1Þ
1 ðkIN1 1 kO1Þðk12 1 k21Þ1 k1Oðk21 1 kIN1Þ1 kINOðkO1 1 k1INÞ1 k1INðkO1 1 kOINÞ; (51)

g ¼ ðkIN2 1 kIN1 1 kINOÞðkO1k12 1 k21kO1 1 k21k1OÞ1 k1IN½ðkOIN 1 kINO 1 kO1Þðk1IN 1 k21 1 k12Þ1 ðk1O 1 kO1ÞðkINO 1 kIN1Þ
1 kIN2ðkO1 1 kOINÞ�1 kOIN½kIN1ðk12 1 k21Þ1 k21ðkIN2 1 k1OÞ1 kIN2ðk12 1 k1OÞ1 k1INðk1O 1 kIN1Þ�: (52)
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dY

dt
1aðY � YðNÞÞ ¼ 0 (61)

and

d
2
Y

dt
2 1a

dY

dt
¼ 0; (62)

the coefficients on exp(�bt) and exp(�ct) vanish whatever

the values of b and c. Now, from Eqs. 39–44, b¼ c¼ 0. Sub-

stituting in the remaining terms of Eq. 36 yields

YðtÞ ¼ YðNÞ1 ðYð0Þ � YðNÞÞexpð�t=tÞ; (63)

where YðNÞ ¼ k1O=ðk1O1kO1Þ and t ¼ 1=ðk1O1kO1Þ, the
expected result.

A generalized three-state scheme

Scheme 3

For a general three-state scheme, from Eqs. 9–20 and

22–24,

a ¼ k1O 1 k1IN 1 kO1 1 kOIN 1 kIN1 1 kINO (64)

b ¼ k1OkIN1 1 k1OkINO 1 k1OkOIN 1 k1INkINO 1 k1INkO1

1 k1INkOIN 1 kIN1kOIN 1 kIN1kO1 1 kO1kINO (65)

and g ¼ 0.

Eq. 38 can be written as

ða� a=3Þ3 ¼ u
3
1 3u

2u1 3uu2
1u3

: (66)

Combining Eqs. 66, 41, 42, and 38 and noting that

3u2u ¼ �Au and 3uu2 ¼ �Au; we have

ða� a=3Þ3 ¼ �B� Aða� a=3Þ: (67)

Combining Eqs. 67, 43, and 44 (with g ¼ 0) yields

ða� a=3Þ3 ¼ �ab1 aa
2
=3� a

3
=27; (68)

which is satisfied by a ¼ 0. This is not an unexpected result.

Summing Eqs. 39 and 40 from the general four-state

solution,

b1 c ¼ 2a=3� ðu1uÞ: (69)

However, from the general three-state solution (2),

b1 c ¼ a: (70)

Therefore, for three states, ðu1uÞ ¼ �a=3 and a ¼ 0.

Evaluating the general four-state solution Eq. 36 with

a ¼ 0, and noting that for three states (2)

d
2
Y

dt
2 1 ðb1 cÞdY

dt
1 bcðY � YðNÞÞ ¼ 0; (71)

Eq. 36 becomes

YðtÞ ¼

YðNÞ� dY

dt
ð0Þ1cðYð0Þ�YðNÞÞ

� �
=ðb� cÞ

� �
expð�btÞ

1
dY

dt
ð0Þ1bðYð0Þ�YðNÞÞ

� �
=ðb� cÞ

� �
expð�ctÞ; (72)

again, just as expected (2).

To evaluate b and c, note that Eq. 39 can be written as

ðb� a=2Þ3 ¼ �3=8ð�3Þ1=2ðu3
1Aðu� uÞ � u3Þ: (73)

Combining Eqs. 73 and 41–44 and noting g ¼ 0 for three

states yields

ðb� a=2Þðb2 � ab1 3=4bÞ ¼ �b=4ða2
=4� bÞ1=2: (74)

From the general solution for a three-state scheme (2), we

have

b ¼ ðk1O 1 kO1 1 kOIN 1 kINO 1 kIN1 1 k1INÞ=2
1 ½ððk1O 1 kO1 1 kOIN � kINO � kIN1 � k1INÞ=2Þ2

1 ðkINO � k1OÞðkOIN � k1INÞ�1=2 (75)

and

c ¼ ðk1O 1 kO1 1 kOIN 1 kINO 1 kIN1 1 k1INÞ=2
� ½ððk1O 1 kO1 1 kOIN � kINO � kIN1 � k1INÞ=2Þ2

1 ðkINO � k1OÞðkOIN � k1INÞ�1=2: (76)

By substituting from Eqs. 64 and 65 it can be seen

that the expression under the radical sign in Eq. 75 is just

(a2/4–b)1/2. The remaining term on the right-hand side of

Eqs. 75 and 76 is a/2. Hence, Eq. 75 can be written as

b� a=2 ¼ ða2
=4� bÞ1=2; (77)

and Eq. 74 becomes

b
2 � ab1b ¼ 0; (78)

with the roots

b ¼ a=21 ða2
=4� bÞ1=2 (79)

and

c ¼ a=2� ða2
=4� bÞ1=2: (80)

Equations 79 and 80 are just Eqs. 75 and 76. The general

four-state solution, then, reduces exactly to the known

Analysis of a Four-State Kinetic Scheme 177

Biophysical Journal 91(1) 173–178



solution for a three-state scheme just by appropriately setting

some of the rate constants to zero.

A four-state scheme with only forward transitions

Scheme 4

From Eqs. 9–20 and 22–24

a ¼ k21 1 k1O 1 kOIN; (81)

b ¼ k21k1O 1 k21kOIN 1 k1OkOIN; (82)

g ¼ k21k1OkOIN: (83)

Proceeding as outlined for a general three-state scheme,

Eq. 38 becomes

ða� a=3Þ3 ¼ �ab1 aa
2
=3� a

3
=271 g: (84)

Writing Eq. 84 in terms of the rate constants as specified in

Eqs. 81–83, it is seen that Eq. 84 is satisfied by setting a
equal to any of the three rate constants. We select a ¼ k21.
Again, proceeding as outlined for a general three-state

scheme, Eq. 39 becomes

ðb� ðða� k21Þ=2ÞÞ½ðb� ðða� k21Þ=2ÞÞ2 1 3=4ðb� a
2
=3Þ�

¼ �3=4ð�3Þ1=2ðb2
=41A

3
=27Þ1=2: (85)

Combining Eqs. 85, 43, and 44 and again writing in terms

of the rate constants as specified in Eqs. 81–83, Eq. 85 can

be shown to be satisfied with either b ¼ k1O or b ¼ kOIN.
Selecting b ¼ k1O, it is readily shown that Eq. 40 is satisfied

by c ¼ kOIN.
The solution for Scheme 4 presented in Blaustein (4) is re-

stricted to the initial condition that W(0) ¼ 1. Hence, ðdX=dtÞ
ð0Þ ¼ k21; ðdY=dtÞð0Þ ¼ ðdZ=dtÞð0Þ ¼ 0; and ðd2Y=dt2Þ
ð0Þ ¼ k1Ok21: Equation 36 becomes

YðtÞ ¼ �½ðk1Ok21Þ=ððk21 � kOINÞðk1O � k21ÞÞ�expð�k21tÞ
� ½ðk1Ok21Þ=ððkOIN � k1OÞðk1O � k21ÞÞ�expð�k1OtÞ
� ½ðk1Ok21Þ=ððkOIN � k1OÞðk21 � kOINÞÞ�expð�kOINtÞ;

(86)

which is exactly the solution for the corresponding state

of this special case of a four-state scheme presented in

Blaustein (4). A solution for Scheme 4 but now with any

initial conditions is given by

where

d
2
Y

dt
2 ð0Þ ¼ �kOIN

dY

dt
ð0Þ1 k1O

dX

dt
ð0Þ (88)

dX

dt
ð0Þ ¼ �ðk21 1 k1OÞXð0Þ � k21Yð0Þ � k21Zð0Þ1 k21 (89)

dY

dt
ð0Þ ¼ �kOINYð0Þ1 k1OXð0Þ: (90)

With Eqs. 87–90, Scheme 4 can now be evaluated for any

number of sequential step changes in rate constants or effec-

tive rate constants with each step of any desired duration.
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