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ABSTRACT these featured 2,13). The neural network method of Hebsgaard

et al (NetPlantGenel?2) also evaluates coding potential at the
predicted exonic side of a splice site candidate (see also method
of Solovyevet al, 14). Consideration of coding potential is
clearly useful from a practical standpoint for the purpose of
identifying sites that are consistent with the assembly of an open
reading frame (ORF) in the predicted mRNA. A fundamental
concern may be that explicit biochemical recognition of the triplet

Prediction of splice site selection and efficiency from
sequence inspection is of fundamental interest (testing
the current knowledge of requisite sequence features)
and practical importance (genome annotation, design
of mutant or transgenic organisms). In plants, the
dominant variables affecting splice site selection and
efficiency include the degree of matching to the

extended splice site consensus and the local gradient _code is_ probably not involved in the nuclear splicing reactions_ but
of U- and G+C-composition (introns being U-rich and is gonflned to the level of.translatlon (although some mechan!sms
exons G+C_rich)_ We present a novel method for Splice exist to tag mRNAS W|th premature .tl’anS|atI0n. termination
site prediction, which was particularly trained for codons for rapid degradation?,16). Scoring for typical codon
maize and Arabidopsis thaliana . The method extends bias may also mislead splice site prediction in some cases of novel
our previous algorithm based on logitlinear models by genes with atypical codon usagg. (For these reasons it seems
considering three variables simultaneously: intrinsic worthwhile to also study methods which do not rely on measures
splice site strength, local optimality and fit with respect of coding potential.
to the overall splice pattern prediction. We show that Here we extend the method of Klefé al (13) which is
the method considerably improves prediction specificity applicable also to sites in untranslated portions of the pre-mRNA.
without compromising the high degree of sensitivity As with other methods, this method scores the quality of isolated
required in gene prediction algorithms. Applications to potential sites relative to average features derived from training
gene identification are illustrated for ~ Arabidopsis and sets of known sites of the same type. To predict pre-mRNA
suggest that successful methods must combine scoring processing events, however, it is more appropriate to evaluate
for splice sites, coding potential and similarity with splice site candidates in the context of other potential splice site
potential homologs in non-trivial ways. A WWW partners {7). For example, a high quality donor site paired with
version of the SplicePredictor program is available at a high quality acceptor site occurring downstream in the sequence
http:/gnomic.stanford.edu/  Svolker/SplicePredictor.html/ at a distance corresponding to the typical intron length should be
predicted with higher confidence than if it occurred in a segment
INTRODUCTION devoid of good acceptor site candidates. We present a novel

Accurate prediction of splice sites in pre-mRNA is prerequisite tg?ethod of splice site prediction based on these considerations.
reliable algorithms for the identification of split genes byOur method differs from global methods (most recently reviewed
sequence inspection (for recent reviews se. Success and in 1) which evaluate complete genes by combining splice site
failure of prediction also reflect how well the sequence requiremerigediction, evaluation of coding potential and similarity to known
for faithful and efficient splicing are understood. Plants share tHgene products into entire gene predictions. We seek to improve
pattern of base preferences at tharfl 3 splice sites observed splice site predictioper seand therefore confine to a moderate
for vertebrates anSaccharomyces cerevisi¢g6). In addition, —Sequence neighbourhood of a potential splice site that could be of
plant splice sites typically occur at junctions of exonic G+C-riclalirectimportance for its recognition by splicing factors. NetPlant-
sequences with intronic U-rich sequencé&sl{). Current Gene {2) considers similarly sized neigbourhoods of potential
methods to predict plant splice sites are based on recognitiongplice sites but uses coding information.
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Each potential site is assigned three scores: @rvalue —
measuring intrinsic splice site quality, (ii)pavalue measuring !
local optimality of the site and (iii) gvalue measuring the } DA D D D b DA D
contribution of the site to the predicted overall splicing pattern in thé =-600 160 1 d_d+60 a Tt r+60 d-+600
context of the flanking sequence segmentsPRaue is calculated
as previously described J). In otherwise constant context, sites
with increasedP-value are predicted to result in more efficient
splicing. A high correlation ofP-values with experimentally ’

measured splicing efficiencies has been demonsttsiedere we

|
. ; C : ADaA A A A D ‘
show that inclusion of the- andy-values significantly improves  —=mr——%—T—3 —5 o T80 4600
the specificity of splice site prediction.
MATERIALS AND METHODS Figure 1. Calculation ofp-values. Top) The p-value of the donor site at
. position d is calculated as the weighted product &Fitalue times th&-value
Gene collections of its maximally scoring potential complementary acceptor siteTédte weight

. . . . is calculated as described in the text by comparison with alternative
Genomic sequences frodea maysand Arabidopsis thaliana  donor/acceptor site pairs. The alternative pairs of sites are determined stepwise
were taken from our previously compiled non-redundant databases follows. First, the maximally scoring acceptor site complement for the donor
(13). For maize, the database contains 46 genes comprising a tof%% atd is dgtermmid in ;l;e+sggu¢tr;]c§ mtled/al 60ttodt ; ?8% or Itcr +f ?r?

. : ; if there is a donor site & withP-value greater that tievalue of the
of ZSQ exons and 20.4 introns. FArab|dopS|s the database donor site atl (thick-lined box). Here, 60 is taken as the minimal and 600 as
contains 131 genes with a total of 709 exons and 578 introns. Thg maximal allowed intron length. The boune 60 is invoked in the case of
databases include 16 pairs of highly similar genes conservethigher scoring donor site mbecause any acceptor site to the right of this

between maize arabidopsig>40% identity on the amino acid would favorably pair with this site compared to the sittand could form an
level) intron downstream of an intron startingdafAlternative donor sites to the site

atd are then searched for in the bouads600 toa, where the lower bound is
) adjusted td — 60 if there is an acceptor sitd atd with higherP-value than
Calculation of P-values the site af (in this case, any donor site to the left-660 would favorably pair
. - . . with the acceptor site Bthin-lined box). The positions of five alternative donor
P-values are calculated according to the logitlinear splice Sitgites are illustrated in the figure by the smaller font Bettom) Thep-value

models introduced in1@). These models assign to any GU of the acceptor site at positianis calculated as the weighted product of its
(potential donor site) and AG (potential acceptor site) in gP-value times thé>-value of its maximally scoring potential complementary

r site atl. The complementary donor site is restricted to the ban@©0
sequence a score between 0 and 1 based on three local Sequ%qgg 60 orl — 60 toa— 60 if there is an acceptor sitd ata — 60 withP-value

prpperties: (iXu, the contrast in U composition, measurEd as Yyreater than the-value of the site a (thick lined box). Alternative acceptor
U in the 50 bases upstream of the GU (or AG) minus % U in theites are then searched for in the boundsdofo at mostd + 600

50 bases downstream; (i} c, the contrast in G+C composition, (r +60if a higher scoring donor site occurs:ag, thin-lined box). The positions
measured as % G+C in the 50 bases upstream of the GU (or A@)alternatlve acceptor sites are illustrated in the figure by smaller font As.
minus % G+C in the 50 bases downstream; and (iii) splice site

quality, measured as a sum of position and base-specific weiglsmpete with the given site for splicing factors. Numerically,
such that high scores reflect base choices generally consist@¢alculated as follows (Fidj; see Tablé for specific examples).
with the most frequent (consensus) bases in each positiqret d be the location of a donor site witavalueP?. First, the

Specifically, the score of a given site is calculated as: downstream sequence is searched for the highest scoring acceptol
exp@) site, occurring say at positiawith scoré?4. The search extends
P = 1 + exp@) 1 fromd+60 (60 taken as the minimal allowable intron length) to

h eitherr + 60, if there is a donor site at> d + 60 with score
where Pp > PD, or tod + 600. The first downstream limit obtains
0=q+3X, + fL L = Sal. 2 because, in this case, acceptor sites further downstream-than

X+ ac Z‘z o 60 would pair better with the donor site rat The second
downstream limit effectively sets the maximal size of potential

and gy is 1 if the base in positionis b, and 0 otherwise. (gitrons considered to 600 bases. These size restrictions include
é

Summation extends over nine positions for potential donor sit . ; :
and over 15 positions for potential acceptor sites. The parametarz> 22 Of all known plant introns.(,19). The sitesl anda define
a, 8, u andly, were derived as maximum likelihood estimator an initial intron that is compared with a number of alternative

from training sets of known sites and non-sité318). This introns obtained in the following way.

model does not consider the small fraction (<1%) of known splice\trnative donor sites are identified upstreara.dihe search
sites lacking the GU or AG consensii)( extends td — 60, if there is an acceptor site at positierd with

scoreP4> P4, or toa— 600, whichever is larger. Then, donor sites
within the given limits occurring to the left dfare either paired
with the acceptor site ator, if such exists, with a higher scoring
Thep-value of a given splice site indicates the extent to which thecceptor site betweemndd + 60. Donor sites occurring between
site occurs in a favorable sequence context. Favorable sequeace60 anch are paired with their maximal acceptors between 60
context would include first, the availability of an appropriatelyand at most 600 bases downstream.

spaced complementary splice site such that this pair of sitesThe limits for positions of alternative sites are as prescribed to
defines a potential intron and second, absence of nearby siteer€lude from consideration most sites that could form maximally
the same type with highdp-values which could favorably scoring upstream or downstream introns without precluding use

Calculation of p-values
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of the site atl in a different intron (Figl). Assume that within  Table 1.Splice site prediction in part of the maize Adh1-1F genomic
these limits there amrealternative donor sites (including the site sedquence (GenBank accession no. X04050)
atd) with P-valuesP and associated acceptor sites Withalues

PQ, k= 1, 2, R Then, Position site classification P P ¥ parse
2955 donor intron 5 start  0.855  0.316  1.090  AEDIAEE-D-AEEDIIA
P D P A 3048 acceptor  intron 5 end 0235 0.03¢ 0.101 EDIAEED-A-EEDITAE
da DDA 3055 acceptor  within exon 0.134  0.011  0.000 DIAEEDA-E-EDIIAEE
P i — Pd Pa 3 3058 acceptor  within exon 0.002 0.000 0.000 IAEEDAE-E-DIIIIIA
z r-1P E Pﬁ 3125 donor intron 6 start  0.750  0.386  0.742  AEEDAEE-D-IIITTAE
3176 acceptor  within intron ~ 0.002  0.000 0.000  IADAEED-I-IIITAEE
3229 donor within intron ~ 0.008  0.000 0.000  ADAEEDI-I-IIIAEED

i i H i H imi 3262 acceptor  within intron  0.191  0.009  0.000 DAEEDII-I-IIAEEED
The calculation op for a given acceptor site is done in a similar mecentor  within intron 0.095  0.000 0,000  ARBDTII_I_TAEEDIA

way by first searching for the maximal scoring donor Sit€ 53  acceptor withinintron 0.002 0000 0000 AEDITII-I-AEEDIAD

upstream, and then tallying alternative donor/acceptor site pairs % acceptor intronGend 0720 0320 0580  ADIILLI-A-EEDIADI
L. .. R . 3472 acceptor  within exon 0.003 0.000 0.000 DIIIIIA-E-EDIADII
within limits defined analogously to the above for given donor 3537 acceptor  withinexon ~ 0.003  0.000 0.000 ADIIIAE-E-DIADIIT
I I I itei 3531 donor intron 7 start  0.291  0.123  0.742 DIIIAEE-D-IADIIIA
Sltes' If the g.lv.en Slte d(.)es nOt possess a.complementary SIte in theﬁ}560 donor within intron 0.342 0.171 0.000 IIIAEED-I-ADIIIAD
prescribed limits, thep is set to 0. Thug is a value between 0 3617  acceptor imtron7end 0904 0198 0.742 ITAEEDI-A-DITIAED
and 1, and high values pfobtain in the case of a donor/acceptor ~ 3714 donor  intron8start 0831  0.002 0742 IAEEDIA-D-IIIAEDA
. . . . . . . . . 3737 acceptor  within intron ~ 0.015  0.000 0.000 AEEDIAD-I-IIAEDAE
site pair with highP-values in a region devoid of high SCOrng  sm4  acceptor  withinintron 0972 0100 0.000  AEDIADI-I~IAEDAEE

alternatlve Sltes 3769 acceptor  within intron ~ 0.191  0.010  0.000  ADIADII-I-AEDAEEE
3804 acceptor  intron 8 end 0.031 0.002 0.742 DIADIII-A-EDAEEED
3826 donor within exon 0.030 0.000 0.000 IADIIIA-E-DAEEEDI
3967 donor intron 9 start  0.905 0.403 0.875  ADIIIAE-D-AEEEEED

4064 acceptor  intron 9 end 0.868 0.720 0.799  IIAEEED-A-EEEEEED
. 4096 acceptor  within exon 0.005 0.000 0.000 IAEEEDA-E-EEEEEDI
Calculation of y-values .

The p_va|ue measures how well a given potentia' Sp"ce site Carlf.xamples ofp-value calculations. (i) Acceptor site at 3527. No potential
be paired up to forma potential intron. However. itis possible tha@onor site is found in the limits 3408 (60 bases to the left of the higher scoring

o s : -, acceptor site at 3468) to 3527 — 60. Thus, by definifign0. (ii) Donor site
the actual splicing pattern precludes splicing at that given Sltgt 3531. The maximally scoring acceptor site in the limits 3531 + 60 to 3714

b.e C"?‘“.Se usage of other site .pamngs is favored such that the g'V?'%o occurs at 3754. Alternative donor sites in the bounds 3754 — 600 to 3754
site 'S. 'ntema,l to a,n e>_<0n or intron. Tv"ealue refIECtS_ hOW well occur at 3229, 3560 and 3714. The first two sites also pair with the acceptor site
the given splice site fits in the locally predicted splicing pattern.a; 3754, while the 3714 site pairs with the acceptor site at 3804 (not the site at 4064
For the given site in a sequence, look at the precébtiimgdicted  which pairs more favorably with the donor site at 3967). By equaion (0.291

sites (irrespective of whether these sites are donor or acceptei0.972%/(0.291x 0.972 + 0.00& 0.972 + 0.34x 0.972 + 0.83% 0.031) =

sites) and at the succeedM@redicted sites. Here we have used 0.123. (i) Acceptor site at 3754. The maximally scoring donor site complement
N =7 (or smaller for sites at the beginning and end of the analyzegtcurs at 3560 witlP-value 0.342. Alternative acceptor sites are found at
sequence). Denoting acceptor sites by A and donor sites by D, tﬁesitions 3617, 3737, 3769 and 3804 (sites further downstream arg favorably
pattern of predicted sitesis a string of As and Ds of |er1§ljl‘h P paired to the donor site at 3967 and thus do not enter the calculbdiatet)ing

: : : : se sites with their respective most favourable donor sites leads to:
The predicted sites are either correctly predicted or represent falgb: (0.972¢ 0.3429/(0.972 0.342 + 0.904 0.750 + 0,015 0.342 + 0,191

Sl.tes within exons or introns (mtergenlc reg.lons are Q.SSIgned t 0.342 + 0.03% 0.831) = 0.100. Example givalue calculations: (i) donor site

either exons or introns for the purpose O_f this CaICUIatlon)' Le_t Eolt 3531. The maximal scoring assignment of donor (D) and acceptor (A) sites and

and II denote exon and intron, reSpeCtNeIY- Then all poss'b'%xonic (E) and intronic (1) sites is shown in the last column with score: 0.008

parsings of the sequence segment are obtained by the following.720 + 0.291 + 0.904 + 0.831 + 0.031 = 2.785. Under the hypothesis that

string re-writing rules: (i) an A is either retained or replaced bythis site is not used, the maximal scoring parse is DIIIAEE-E-DIIIAAEE with

E or I; (i) a D is either retained or replaced by E or |; and (iii) thescore 2.042. Thug= 2.785 —2.043 = 0.742. (ii) Acceptor site at 3754. In this

re-writing must not produce adjacent letter combinations othegase, the maximal assignment indicates 3754 as within-intron. The maximal

than AD, AE, DA, DI, ED, EE, IAor . Replacement rules (|) and scoring parse displayed in the last column has score 3.833, greater than the

(ii) apply if the particular site is considered a false predictionscore 3.090 ofth_e best assignmer_lt IAEDIII-A-EEEDAEE involving 3754a_s

within exon or intron. Rule (jii) assures that the resulting string? & 3cceplor site. Thysz 0. In this case, usage of 3754 as an acceplor site
legitimate parse: donors are followed b il’ltl’OWO.UI.d preclude usage 0f3_714 as a'donor site and leads to the less favorable ove_rall

represents a leg P y plicing pattern. Note that in the entire sequence segment analyzed, the true splice

sequence up to the next acceptor, e_lcceptors are foII_owed by EXGfks all havg > 0 and the false sites all haye 0. ByP-value alone, the false

sequence up to the next donor. Assign to each possible such paks&; 3560 and 3754 would be preferred over the nearby true sites.

a score defined as the sum of Frealues of all the constituent Ds

and As. Find the maximal score of all parses restricted, first to parses

that predict the given site to be a true splice site (i.e. the central letter

of the parse string is either A or D) and second, to parses that preagtSULTS

the given_site_to b_e within exon or in_tron (i.e. the c_entral letter of the, a1uation of local optimality can improve splice site

parse string is either E or §).is defined as the difference of the o it

. . _ ) prediction

first minus the second of these scores, or zero, if the difference is

negative. Thus, if the given site is in a context that suggestable 1 gives a specific example of improved splice site

preferred usage of nearby sites as splicing partners to tpeediction based on tipeandy-values in addition to tHe-values.

exclusion of the given site, itsvalue will be zero. Otherwise it Prediction using th@-values alone as described by Klefteal

will be a positive value<2; high values ofy would strongly  (13) indicates eight potential donor sites and 17 potential acceptor

suggest actual usage of the site. Examples are given inITablesites in the genomic sequence of maahl-Ffrom the fifth
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Table 2.Sensitivity and specificity of splice site recognition Table 3. Specificity and sensitivity of splice site recognition
SN P p 5 SP P p ¥
min SP min sp min SP min SN min SN min SN
Donor sites Donor sites
0.95 0.058 0.46 0.003 0.54 0.022 0.57 0.90 0.760 0.49 0.174 0.59 0.600 0.63
0.90 0.133 0.58 0.013 0.67 0.107 0.67 0.80 0.520 0.68 0.054 0.75 0.300 0.83
0.80 0.273 0.66 0.044 0.77 0.346 0.82 0.65 0.240 0.81 0.010 0.91 0.085 0.92
0.50 0.075 0.94 0.002 0.97 0.001 0.96

Acceptor sites
Acceptor sites

0.95 0.049 0.39 0.001 0.40 n/a

0.90 0.119 0.50 0.010 0.60 0.002 0.52 0.90 0.710 0.51 0.148 0.57 0.570 0.54

0.80 0.253 0.65 0.031 0.72 0.162 0.79 0.80 0.500 0.63 0.063 0.71 0.192 0.79
0.65 0.250 0.81 0.015 0.87 0.071 0.84
0.50 0.110 0.91 0.003 0.95 0.001 0.92

The 46 maize genes were scanned for splice sites between the known initiation and

stop codons. Sites were accepted at the mirfvallues attained by the true

splice sites as described previously (13). Thus identified were 201 true an

512 false donor sites and 204 true and 1359 false acceptor sitesymiuhen,

only comparable sites flanked on each side by at least seven other potential

sites were included (155 true and 379 false donors, 157 true and 954 false

accepors). Sensitivity and specificity are definedsté= TP/(TP + FN) and

SP=TP/(TP + FP), respectively, whergP is the number of true positives,  Empirical rules for splice site prediction

FN is the number of false negatives (i.e. true sites missedf@nsd the

number of false positives. The criterion was to accept a site as true ifits valud' he three scores calculated for a splice site are positively

is at least the value given in the columns ‘min’. For example, accepting allcorrelated: a site with higP-value is likely to be locally optimal

acceptor sites witp = 0.031 gave 80% sensitivity and 72% specificity. n/a: gnd to fit in the |oca||y maximal Sp|icing pattern |eading to h|gh

anyy > 0 gave <95% acceptor site sensitivity. p- andy-values, respectively. It is possible for only one or the
other score to be high. Examples of sites with Ifgralue but

. . . . y=0were discussed in the legend to Tab&imilarly, a site with

wtron untlll the trfanslano.n ds_top;_ codt?]n.t -I;ﬁn of th.? 15 falsle S'tlf!}s%naIIP-value may have a relatively higivalue if the site is the

nave p—v?gjles (')th ﬁ?r?{ Indicating i a t'ese St esl are locallypntimal partner of a high scoring complementary site (e.g. site

incompatible with higher scoring alternatives. ‘Jaealues are 3804 in Tabldl). We therefore propose to evaluate splice sites on

zero for all but the 10 true sites. In particular, based on t . - ; e X
P-values alone, the false donor site at 3560 and the false accer;,}ge basis of all three variables. A variety of statistical techniques
t

d The data were derived from the 46 maize genes as described in the legend
to Table 2. Abbreviations are as in Table 2.

. . Qlid be used to derive simple multivariate functions that
site at 3754 would be problematic as both score better than iKcriminate between true and false sites in the training set,

neighboring true sites. In contrast, the overall splicing pattern ﬂ’?cluding the logitlinear models, neural networks, and discriminant

measured by suggests the correct sites. In detail, usage of thg <" sed in previous approaches based on other variables
high scoring donor site at 3714 would preclude usage of t _17). These techniques would only optimize the average

nearby acceptor site at 3754, then the acceptor site at 3617 wo uracy of prediction and the relative weighting of the three

be locally optimal and would be paired with the donor site : o . ; .

3531, rather than with the higher scoring site at 3560, which Eﬁ?;? elzsgv r%lélgeb:n?;)fif;%glt ?plgﬁg;%rﬁt biologically. We therefore

excluded as being too close. Our new SplicePredictor program prints out for each site-the
o . p- andy-value as well as the optimal parse associated with the

Distribution of splice site scores y-value. To assess quickly the overall quality of a site we

To show the extent of possible improvement in splice Sit%nplemen}ed*a * grading system: the valuef3qb andy are
prediction accuracy using thge andy-values, the values were labeled 5% 4% 3* or 2* if they gnatch or exceed the threshold
calculated for all potential sites (true and false) in the maize dayglues for 99; 80, 65 and 50% prediction specificity on the
set predicted by the previous method at 100% sensitivity based bining set, 1* otherwise (see TaBir the threshold values for
P-values only {3). The results are summarized in TaBlin malze).*The sum of the *-values, @ttaining values between 3
terms of prediction sensitivity and specificity relative to this sefnd 15*) serves as a simple combined meas@reis assigned

of sites. It is seen that, at sensitivity levels between 80 and 9588, Sites scoring below tievalue threshold that selects the sites
prediction based orp- or y-values would give increased displayed in the SplicePredictor output. The extreme cases in the
specificity compared to prediction based Brvalues. For O -SyStém separate true and false predictions dramatically. For
example, at 80% sensitivity, specificity for both donor angxample, for the maize set, the ratio of true to false sites is 1/150
acceptor site prediction could be improved BD% using the Tor 03* donors and 2/722 far3* acceptors, compared to 60/2 for
y-values compared 5% using th®-values. Complementary 91°* donors and 67/1 farl5* acceptors. Combining different
results are shown in Tabé For high levels of specificity, O-vValues, we classify sites as follows:

decision rules for splice site prediction based optloey-values  03* — 4* doubtful (specificity <3%)
show increased sensitivity levels compared to the correspondiog* — 7* uncertain (specificity 10—20%)
numbers for tests based on tRevalues. Thus, the context o8* — 10* possible (specificity 35—-45%)
information measured lyyandy appears helpful in reducing the c11* — 13*  likely (specificity 60—-80%)

numbers of false positive predictions. 014* — 15*  highly likely  (specificity >85%)
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Table 4.Improved specificity of splice site prediction using the multi auxin-binding protein, reveals the occurrence of high scoring
variatec* scoring system alternative sites within the exceptionally long first and last introns
— e (1612 and 1525 bases, respectively). The first intron contains a
aize rabidopsis * H e H
" TP FP SN SP PSP TP FP SN &P P.SP 013* acceptor site at position 1251. The model cannot explain
why this site is apparently not used in conjunction with the native
?gm sar,esw_ s o oss oss w3 45 065 080 087 donor site at 1010. If it were, the native acceptor site at 2621
1% 48 %5 07T 086 071 460 121 082 079 073 would s_tlll have reasonably scoring possible _do_nor site partners
g* 177 85 092 0.68 055 509 293 091 0.63 0.53 at locations 1353, 1987, 2180 and 2276. Similarly, the fourth
5% 190 226 0.99 046 0.31 540 667 097 045 0.34 i i 1 .
= 102 531 100 026 098 Ss 3 100 01r 0u8 intron would be *predlcted to contain an*exon at 3922-4094,
flanked by aocl4* acceptor site and @l2* donor site. The
lA4c*ccptor sit‘ge; s o 095 osr o 21 050 0sr 00 auxin-binding proteins in maize are encoded by a multigene
11 135 30 079 082 076 19 & 0r5 083 079 family, the known members of which conserve the number and
8* 166 80 0.86 0.67 055 487 265 0.87 065 0.6 length of the exons but differ considerably in intron lengitik (
5 187 217 0.96 046 0.36 537 695 0.96 044 044 Itis possible that the differences in introns and alternative splicing
3* 194 1433 1.00 0.12 0.13 561 4720 1.00 0.11 0.12

patterns may play a role in differential expression of these genes.
Sites were evaluated in the coding regions of the non-redundant gene se! ne use of SpllcePredlctor may be to suggest suitable probes for

described in (13) extended by 500 bases preceding and succeeding the stie de,teCt'on O,f alternatively spliced ftranscripts in RNase
and stop codons, respectively. Sites with insufficient contexy-f@iue protection experiments.

determination were excluded as in Table 2. Performance values are cumulative; INspection of splice site scores in the maragylocus suggests

for example, there were 148 true maize donor sitesatialue at least 11*.  the possibility of alternative transcripts lacking exons 7 and 8
TR true positivesFP, false positivesSN sensitivity;SP specificity based ~ because the acceptor sites of introns 6 and 7 are very low scoring.
on theg* predictions;P-SP specificity based oR-value predictions atthe Al other introns are well defined by high scoring sites (including
same sensitivity level. the first intron in the Suntranslated part of the pre-mRNA).
Experimentally, no alternatively spliced cDNAs have been
reported for the wildtypevaxygene, but exon skipping occurred

in mutants containing retrotransposon insertions into int&)s (
wx-Stonor(insertion into intron 5) gave rise to some transcripts
linking exon 5 to either exon 8, 9 or 28x-B5 (insertion into
intron 2) displayed transcripts linking exon 1 to exons 3 or 4; and
wx-G (insertion into intron 8) had transcripts linking exons 6 or
dto either 9 or 12. The apparent local effect of the retrotransposon
insertions may be related to alterations in the sequence of splicing
events during pre-mRNA processir#). The accumulation of
incompletely spliced transcripts in plant tissues has been reported

Conundrums and limitations: poorly scoring true splice for a number of plant genes and probably reflects inefficient
sites and highly scoring false splice sites normal splicing 23).

(specificity calculated non-cumulatively within the indicated
o*-value class only; e.g. about 10—-20%05 — 7* sites are true
sites rather than false positives). Tatllshows the improved
cumulative specificity for the*-system compared to prediction
based orP-values alone. The inclusion of theandy-values is
seen to yield gains in specificity of up to 15%, particularly for th
medium scoring site classes.

The overall performance of SplicePredichppears satisfactory
given its statistical nature, the simplicity of the underlying modelprediction of introns in untranslated pre-mRNA
and the lack of knowledge about the precise features and
mechanisms of splice site recognition vivo. It should be Our gene collections contained three occurrences in maize and
instructive to investigate more closely the instances where modsveral inArabidopis of introns within 5 or 3 untranslated
predictions and annotated splicing patterns appear at variansegments of the pre-mRNA. We were interested in the scores of
For our purposes, ‘true’ splice sites were initially defined as sitesplice site prediction methods for these introns, anticipating
reported in the literature and GenBank annotation based f€alure of methods that rely much on evaluation of coding
experimental evidence. The predicted gene products wepstential. For maize, theaxyfirst intron has donor and acceptor
checked for absence of internal stop codons, and GenBank entséss in they9* class (Fig2), theshrunken-Zirst intron has13
with unclear annotation were not use#0)( Discrepancies and 15* sites, and the sucrose synthetase first intraiages.
between model predictions and the annotated splicing patterfbe data foArabidopsisare displayed in Tabte It is evident that
may arise from a variety of reasons. For example, it is possibileese sites are predicted well with the general model, suggesting
that high scoring alternative splice sites are indeed used in a miribat there are no special rules governing intron recognition in
fraction of transcripts. Processing of some pre-mRNAs magon-coding pre-mRNA. In particular, the typical base compositional
involve specific splicing factors that positively select one siteontrast seems to be generally conserved also for comparisons of
over another or mask alternative sites. More likely is failure of thexons and introns in untranslated regions. With the exception of
prediction algorithm because of its oversimplicity. Detailedhe 3 intron in alternatively spliced transcripts of ATRPB1, all
examination of all cases would clearly be beyond our capacitidisted Arabidopsissites also appear in the NetPlantGene prediction
But we hope that theoretical predictions of splice sites willists. This attests to the rather clever ability of the trained neural
become a common tool in the hands of biologists to analyze andtworks to weigh different features appropriately in such a way
interpret their experimental results; confirmed shortcomings dhat the lack of a strong coding signal apparently does not prevent
current models will point to necessary refinements in the modelsite prediction{2). The GENSCAN algorithn2@), on the other
These issues are illustrated in Fig@&ewith two specific  hand, does not incorporate prediction of introns in non-coding
examples. Analysis of the maizZeux311 gene, encoding an regions. GENSCAN output for the given GenBank files includes
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Figure 2. Splice site prediction for the maiZaix311gene encoding an auxin-binding protein (GenBank ZMAUX311) and the mvaizglocus (GenBank
ZMWAXY). Exons are indicated by the numbered boxes. The location of the translation start and stop codons are labeledIRTi@spettively. The locations
of predicted donor sites are indicated by arrows pointing to the right and the locations of predicted acceptor siteedisyiadioas pointing to the left. The length
of an arrow is proportional to tle score. The dashed lines correspond to the threstibtdandc11*. Predicted splice sites scoring less ta&hwere omitted for
clarity, with the exception of the true acceptor sites in waxy introns 6 and 7.

Table 5.Splice site prediction in untranslated segmeni&.tifalianagenes

LOCUS donor site acceptor site

pos P L Xy Xgo o* pos P L Xy Xgo of
Introns in the 5’ untranslated region
ATANT 218 0.962 -3.52 -0.14 014 15 675 0.821 -523 022 -0.12 15
ATH3G 692 0.916 -3.63 -0.18 0.06 15 1100 0.976 -6.27 0.22 -0.20 15
ATHETR1A 366 0.935 -0.87 -0.18 0.12 15 734 0.627 -5.12 0.08 004 14
ATHPHYTOA 2001 0.664 -3.91 -0.06 0.04 14 2922 0971 -8.27 0.38 -020 12

Introns in the 3’ untranslated region

ATHATSAL 3205 0.070 -7.22 0.02 010 6 3298 0.967 -3.85 026 0.08 15
ATPOSF21 2049 0980 0.10 -0.24 0.10 15 2175 0.008 -9.32 0.00 0.06 3

2134 0.817 -5.66 0.18 -0.18 15
ATRPCLIG 2128 0.885 -4.50 -0.12 0.14 15 2375 0.674 -6.51 0.16 -0.02 13
ATRPBI1 7671 0.235 -542 -0.08 0.00 8 7758 0.035 -8.49 0.06 0.06 5

Positions are given relative to the GenBank files indicated in the LOCUS column. Jiteei8 ATPOSF21 is given as 2175
in the GenBank annotation based on cDNA data; also listed is a predicted site at 2134, scoring much better than 2175. The intro
in ATRPBL1 occurs in alternatively spliced transcripts. See GenBank for references.

some of the splice sites in the untranslated regions as part$flice site clusters identify potential genes

wrongly predicted coding exons (data not shown). . _ L .
For both the maize and tieabidopsistraining setsg14-15

splice sites are highly likely to be true sites (>85% specificity in
transcribed regions). Furthermore, >50% of the true splice sites
Using our database of 131 non-redundsmabidopsisgenes we in the training sets are in this score class. These numbers sugges
derived data corresponding to Takifesnd3 for Arabidopsisas  that clusters of high scoring predicted splice sites would likely

a model dicot (data not shown). The contributions opthend  correspond to split genes. Assume a gene with four exons. Taking
y-values to reduce false positive prediction rates were found to Bdength of 300 bases for each exon and intron (>80% of maize
of similar magnitude as those reported for the maize data @)able andArabidopsisexons and introns are at most 300 bakks9),

The *-system threshold values specific Amabidopsisare the splice sites would occur within a 1500 base segment
incorporated into the SplicePredictor program and are invoked lspmprising all three introns and the two interior exons. We would
the appropriate command line species choice. expect three of the six splice sites to be iroth&-15* score class

Applications to Arabidopsisgenes
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Figure 3. Clusters of predicted splice sites in fh¢halianacontig BAC T7123 (106 973 bases; GenBank accession no. U89959). The locations of predicted donor
sites are indicated by arrows pointing to the right on the + strand and to the left on the — strand and the locatiotesicdiqreplior sites are indicated by arrows
pointing to the left on the + strand and to the right on the — strand (i.e. on each strand, predicted splice sites améopuitéinial introns). Only highly likely sites

(o = 14*) are shown. Clusters on the + strand are indicated by boxes above the line, and clusters on the — strand are lidieateeldy the line. The area of

a box is proportional to the number of sites in the corresponding sequence segment. Continuous regions of overlappireg lahmsiEdsV1-W9 on the + strand

and C1-C9 on the — strand.

and maybe one additional false site. Thus, a criterion of four aising the BEAUTY database search sens).(The gene
morea14-15* splice sites within a sequence segment of at mogtedictions were refined by further processing the segments in the
1500 bases is taken to define a splice site cluster. order determined by the highest scoring database similarities.
The SplicePredictor program optionally prints all splice site€This ‘divide and conquer’ strategy seeks to establish first the
clusters satisfying the above (or another, user-defined) criteriogenes for which there is the most evidence (i.e. database
Overlapping clusters are merged unless the start site of thimilarities that may include previous determination of the
downstream cluster is within the last 750 bases of the upstregrarticular gene, either as genomic DNA or cDNA, or of homologs
cluster and the endpoints of the two clusters are different. For this other species). The established predictions then reduce the
definition, splice site clusters are identified in 75 of 80boundaries for further gene searches.
Arabidopsisgenes with at least four exons searched in the regionThe predictions for the central region of the T7123 contig
of 500 bases upstream of the start codon to 500 bases downstregmrompassing splice site clusters C2 to W6 of FiGueze
of the stop codon. As a control, when the same sequence segmeligplayed in Tablé. The displayed region is bounded by the well
were searched on the complementary strand, only one cluster veasablished genes encoding the-5 and CER1-like/CER1
identified. This number may not be representative for intergenjmroteins in clusters C2 and W5/W86, respectively. The second
regions. predicted gene in C2 is confirmed beyond doubt by very strong
To test the use of splice site clusters for gene identification wamilarity to othemmago nashproteins. The other gene predictions
applied the SplicePredictor program wittild* threshold to the  are more tentative. However, several exons are strongly suggested
BAC T7I23Arabidopsi$ontig (106 973 bases of genomic DNA,; by sequence similarity. Sequence alignments supporting theSTable
GenBank accession no. U89959). On each strand, nine continuguedictions are available on the WWW page http:/gnomic.
regions of splice site clusters were identified (BjgThere are  stanford.ediikolker/Arabidopsis/BAC-T7123/BAC-T7123.html/
no overlaps between clusters on opposite strands. The clust®ther exons are predicted with confidence as a result of excellent
may serve as a rough segmentation of the genomic sequence sjtice site scores. In particular, the displayed assignments include
potential transcription units. In general, our GeneGeneratall but three of the@14* and 15* sites on the predicted coding
program 25) may be used to produce a number of alternativetrands in this region (note however, that no genes were predicted
gene predictions in a tentative transcription unit. In many casesr splice site clusters C3 and C4 on the opposite strand).
these predictions can be adjusted and confirmed by comparisod stochastic gene assembly prograaxdoming V.Brendel
with existing protein and cDNA databases, for example with and J.Kleffe, unpublished) was used to find the best gene
combination of the BLAST 26) and PROCRUSTES2{) structures incorporating all strongly predicted exons and splice
programs. For the T7123 contig, we found the highest scoringjtes. Current programs for gene and splice site prediction failed
potential split gene in each of the splice site cluster segments (tioeidentify several of the exons that arersly suggested by
boundaries of each segment were extended by about 2000 basgience similarity. For example, GENSCAN)(identifies only
beyond the ends of the identified cluster, giving limits whichthe first two exons of thmago nashgene, and given sufficient
should in most cases include the entire gene). The predictedquence context the program links these exons to exons 3-8 of
translation products were then compared against the databatesprecedingra-5gene. Similarly, GENSCAN combines exons
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Table 6.Gene prediction for the central region of théhalianacontig BAC T7123

Cluster Gene prediction ¥ %idty Identity/Evidence/Comments
exon  from to 3 5 :

C2.1 1 52176 52163 - 14 . 100 ara-5, small GTP-binding protein (GenBank
2 52055 51983 0. 14. 96  Accession D01027); high similarity to the
3 51896 . 51849. 10. 12. 100 mRNA of a pea homolog (GenBank D12549)
4 51758 . 51711. 12. 9. 100
5 51623 . 51552. 11.. 13. 100
6 51474. 51319. 8. 15.. 100
7 51216 . b51113. 7. 15.. 100
8 50834 . b50738. 15. - 100

C2.2 1 54789 . 54574 . - 13 . 74 mago nashi; high similarity to a Drosophila
2 54335. 54159. 7. 5. 75 homolog
3 53914 53835 14 . - 95

W4.1 1 55015 55057 - 15 .. - significant similarity to the hypothetical proteins
2 55145 55230 12. 15.. 50 ZC513.5 of C. elegans ((;GenBank U53155
3 55300 55341 0 8. 36 and yeast YNRO30w (GenBank Z71645)
4 55453 55498 10 . 5. 87
5 55618 55704 15 . 10 . -
6 35818 55873 10. 15 -
7 56036 56153 3 13 44
8 56281 56339 12. 14 32
9 56449 56520 3 4 38
10 56635 56698 11 15 . -
11 56803 56906 7 0 44
12 57109 57180 3 11 . 50
13 57291 57377 15 9 59
14 57468 57535 6 . 9 64

15 57709 57777 7. 9 -
16 57981 58018 11 . 9. -
17 58110 . 58209 . 10. 15 -
18 58461 . 58526. 14 . 14. -
19 58796 58799 15 . - -

59167 59526 . - 15 .. 20 significant similarity to the predicted Ardbidopsis protein

W4.2 1
2 59607 . 60821 . 15.. - 29 F8A5.28 (GenBank AC002292) and other sequences;
cDNA: exon 2 (ATTS1091, ATTS1259, ATTS1092)
W4.3 1 61191. 61281 . - 4. - similarity to yeast proteins COX17 (GenBank L75948) and
2 61565. 61641. 13 . 9 56 hypothetical yeast protein YHR6 (GenBank 731704);
2 61724 61771 14 .. - - cDNA: exons 1-3 (AA712564)
W4.4 1 62310 62646 . - 5. 29  high similarity to another putative Arabidopsis gene on
2 62848. 63178. 10. 12. 69 chromosome 5 (GenBank AB008268) 20662-22033; exon 2 is
3 63271. 63391. 15.. 9 32  49% identical to the central part of yeast YORF197w
4 63468  63683. 3 15 .. 28 (GenBank Z75105); cDNA: exon 1 (H76651)
5 63755 63814 15 . - 58
W5 1 65542 66058 . - 15 . 97 CERI-like protein; GenBank ATHCER1L19, ATCERIL,
2 66130. 66349. 15. 15. 94 and ATHCERI1LB; the 67349 acceptor site
3 66433. 66823. 14 . 13.. 100  scores below minimal threshold; the program
4 67131 . 67226 . 8. 15.. 100 predicts the site 67406 instead
5 67350. 67550. 0. 15.. 100
6 67636. 67908. 15.. 13.. 100
7 68011 68184 12 . - 100
W6 1 69206 69265 - 15 . 100 CERI1, maize glI homolog; GenBank ATU40489 and
2 69375 69598 0 13 . 100 ATHCERI; the 69374 acceptor site scores below the default
3 69685 69917 6. 12. 100  threshold; the program predicts a different first
4 70063 70282. 11 . 15. 100  exon, 69312-69598
5 70902 71277 12 . 7. 99
6 T71372. 71479 7. 6. 100
7 71579. 71779, 11. 15. 100
8 71914 . 72021. 14 . 15.. 100
9 72123 72296. 15 . 15.. 98
10 72369 . 72542 10 . - 96

Potential genes were initially identified in the extended splice site cluster regions 55000-48000 (C2), 53000-62000 (W4),
68000-62000 (C3), 64000—70000 (W5), 73000—-68000 (C4) and 70000-74000 (W6). Sites labeled with dots in columns three and
four are also predicted by the GENSCAN program (24). Sites labeled with dots in columns five and six are also predicted by the
NetPlantGene program (12); two dots indicate the designation H for highly probable sites according to this program. %idty refer
to the percent amino acid identity with a corresponding segment of the same length in one of the target proteins liagstdafthe

umn. Alternative gene structure predictions were resolved by maximizing similarity to the target proteins and usage ahigigh-sco
splice sites as explained in the text.
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17 and 18 of the W4.1 gene of Tableith most of the two exon many cases correctly classify potential sites that would be
WA4.2 gene into one predicted gene, but does not involve any ofnfused on the basis ¢¥-values alone (detailed example
the other exons. ThExdominoprediction for the C-terminal discussed in Tabl&). In particular, true sites with low scores in
exons of the W.1 gene was driven to include the high scoriragl three components are highly exceptional, whereas high scores
splice sites defining the putative exons 17-19. In this case, tireall components produce very reliable predictions (Tdple
different possibilities are not clearly resolved by similarity to The importance of reducing the uncertainty in gene prediction
other sequences, and in general the initial and terminal exons aohemes is readily appreciated when one is trying to annotate a
most difficult to predict due to a lack of adequate models foreally novel sequence. Even if a program claims a success rate of,
intergenic regions1(2). This presents a particular problem insay, 70% correctly identified exons in a training set, for a novel
species likeArabidopsisfor which genes are typically closely gene prediction of, for example, a gene with eight exons this
spaced. would leave an expected 8-choose-2 to 8-choose-3 possible
The value of using sequence similarity for improved predictionsombinations for exactly which two or three of the eight predicted
were clearly demonstrated by Gelfaatlal (27) with their  exons may be wrong! Any exons or introns that can be assumed
PROCRUSTES algorithm for spliced alignment. For the potentialith great confidence would reduce these combinatorial possibilities
genes of Tabléand indicated protein targets, the PROCRUSTESonsiderably. Potential exons and introns flanked by highly
program (default settings) gave concordant resultedgio nashi  reliable splice site predictions would be the obvious candidates
and the W4.4 gene. For the W4.1 gene, the global splicddr definite inclusion into entire gene structure predictions. On the
alignment failed to indicate significant similarity, whereas theother hand, gene prediction algorithms cannot afford to overlook
local alignment identified exons 7, 8, 12 and 14. any potential splice sites because of the risk of missing correct
assemblies of genomic segments into ORFs. Our proposed
solution retains a relatively large set of potential splice sites based
on minimalP-value requirements, but further differentiates sites
; PP ithin this set based on the described context variables.
Our understanding of genome organization is challenged by t he annotation of a typicairabidopsisgenomic DNA contig

current limits of predicting gene structure and expression from . . -
sequence inspection. Thus, the elucidation of sequence featdr%g—ablees illustrates these considerations. Strong support for the

contributing to accurate and efficient pre-mRNA splicing is ofdisplayed gene predictions comes from the combination of splice

fundamental interest. Moreover, these issues are also of gré4E Prediction, evaluation of coding potential, CONA matching
practical importance for genome projects (sequence annotati d similarity to potential hor_nologs. Methods that rely entirely
and genetic engineering (design of mutants and transgerfiEMOStly on only partof the different types of support are clearly
organisms). In plants, cryptically spliced transcripts Ioroducgots_ucce.ssful. Forexample,3|mllar|tyt_o atarget protein provides
truncated and mutant proteins and reduce protein expressiginfirmation for some weak or possibly even non-consensus
whereas inclusion of an accurately spliced intron enhanc&8lice Sites. Conversely, there are also examples of strongly

protein expression compared to intronless transcription unifgedicted splice sites and introns that define exons with no
%gnmcant similarity to the target proteins. Such exons may,

DISCUSSION

(29-31). Little is known, however, about the quantitative aspec X i .
of intron enhancement and how to maximize active protein byPWeVver, be parts of an entire predicted gene product that displays
modulating intron structure verall significant similarity to a target protein (e.g. exons 5, 6 and
Prediction of splice sites in plant pre-mRNA by our or otherl0 Of the W4.1 gene in Tali# and simply represent less conserved
gments of homologous proteins. We are currently developing a

methods includes false positives (high scoring sites that occ il alaorith domind for th diction of alternati
within annotated exons and introns) and false negatives (true si lole aigorithm EX oming for e prediction of alternative gene
juctures satisfying any specific constraints, e.g. inclusion of

that are missed). Besides the limitations inherent in the statisti X . . : ) .

methods, there are other complicating factors which contribute Rgticular splice sites, exons or introns. Identification of suitable

such results. Alternative splicing may validate some of thgonstraints, at present, seems to require expert input and can only

apparently false positive predictions, and some of the fald¥rtly be solved by programming.

negatives may include inefficient siteé&{34). Tissue- or gene

family-specific regulation of pre-mRNA processing may be

obscured in pooling all sequences for training of statistical spliderogram availability

site prediction methods. Alternative processing may also result

from changes in physiological state, e.g. regulated lack of splicinghe databases and the SplicePredictor program, which implements

of the maizeBz2intron after cadmium exposures). our current algorithm for splice site prediction in plant genes, are
A difficulty in the design of successful algorithms for theavailable electronically from either V. Brendel (volker@gnomic.

prediction of splice sites from sequence inspection is the inclusigganford.edu ) or J. Kleffe (jkleffe@euler.grumed.fu-berlin.de ).

and proper weighting of the multiple contributing variableigto SplicePredictor is also implemented as a Web service at

vivorecognition of a particular site. The neural network approachttp://gnomic.stanford.ed{#olker/SplicePredictor.html

of Hebsgaaret al (12) for splice site prediction iArabidopsis

provides an elegant solution to this problem. We have pursued an

alternative and complementary approach that extends the previou

described logitlinear modelsl). The key element of the E%KNOWLEDGEMENTS

extensions is the vector representation of splice site scores ) n ) ,

incorporating three elements: intrinsic splice site quaityajue), The aL_J'ghors W|s_h to thank Prof. \ﬁ_rglma Walbot for dlscus_5|ons

local optimality p-value) and fit with respect to locally predicted @nd critical reading of the manuscript. V.B. was supported in part

exonfintron structureyfvalue). The additional variables can in Py NIH grant 5R01HG00335-10.
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