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ABSTRACT

Prediction of splice site selection and efficiency from
sequence inspection is of fundamental interest (testing
the current knowledge of requisite sequence features)
and practical importance (genome annotation, design
of mutant or transgenic organisms). In plants, the
dominant variables affecting splice site selection and
efficiency include the degree of matching to the
extended splice site consensus and the local gradient
of U- and G+C-composition (introns being U-rich and
exons G+C-rich). We present a novel method for splice
site prediction, which was particularly trained for
maize and Arabidopsis thaliana . The method extends
our previous algorithm based on logitlinear models by
considering three variables simultaneously: intrinsic
splice site strength, local optimality and fit with respect
to the overall splice pattern prediction. We show that
the method considerably improves prediction specificity
without compromising the high degree of sensitivity
required in gene prediction algorithms. Applications to
gene identification are illustrated for Arabidopsis  and
suggest that successful methods must combine scoring
for splice sites, coding potential and similarity with
potential homologs in non-trivial ways. A WWW
version of the SplicePredictor program is available at
http:/gnomic.stanford.edu/ ∼volker/SplicePredictor.html/

INTRODUCTION

Accurate prediction of splice sites in pre-mRNA is prerequisite to
reliable algorithms for the identification of split genes by
sequence inspection (for recent reviews see 1–4). Success and
failure of prediction also reflect how well the sequence requirements
for faithful and efficient splicing are understood. Plants share the
pattern of base preferences at the 5′ and 3′ splice sites observed
for vertebrates and Saccharomyces cerevisiae (5,6). In addition,
plant splice sites typically occur at junctions of exonic G+C-rich
sequences with intronic U-rich sequences (7–11). Current
methods to predict plant splice sites are based on recognition of

these features (12,13). The neural network method of Hebsgaard
et al. (NetPlantGene, 12) also evaluates coding potential at the
predicted exonic side of a splice site candidate (see also method
of Solovyev et al., 14). Consideration of coding potential is
clearly useful from a practical standpoint for the purpose of
identifying sites that are consistent with the assembly of an open
reading frame (ORF) in the predicted mRNA. A fundamental
concern may be that explicit biochemical recognition of the triplet
code is probably not involved in the nuclear splicing reactions but
is confined to the level of translation (although some mechanisms
exist to tag mRNAs with premature translation termination
codons for rapid degradation; 15,16). Scoring for typical codon
bias may also mislead splice site prediction in some cases of novel
genes with atypical codon usage (1). For these reasons it seems
worthwhile to also study methods which do not rely on measures
of coding potential.

Here we extend the method of Kleffe et al. (13) which is
applicable also to sites in untranslated portions of the pre-mRNA.
As with other methods, this method scores the quality of isolated
potential sites relative to average features derived from training
sets of known sites of the same type. To predict pre-mRNA
processing events, however, it is more appropriate to evaluate
splice site candidates in the context of other potential splice site
partners (17). For example, a high quality donor site paired with
a high quality acceptor site occurring downstream in the sequence
at a distance corresponding to the typical intron length should be
predicted with higher confidence than if it occurred in a segment
devoid of good acceptor site candidates. We present a novel
method of splice site prediction based on these considerations.
Our method differs from global methods (most recently reviewed
in 1) which evaluate complete genes by combining splice site
prediction, evaluation of coding potential and similarity to known
gene products into entire gene predictions. We seek to improve
splice site prediction per se and therefore confine to a moderate
sequence neighbourhood of a potential splice site that could be of
direct importance for its recognition by splicing factors. NetPlant-
Gene (12) considers similarly sized neigbourhoods of potential
splice sites but uses coding information.
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Each potential site is assigned three scores: (i) a P-value
measuring intrinsic splice site quality, (ii) a ρ-value measuring
local optimality of the site and (iii) a γ-value measuring the
contribution of the site to the predicted overall splicing pattern in the
context of the flanking sequence segments. The P-value is calculated
as previously described (13). In otherwise constant context, sites
with increased P-value are predicted to result in more efficient
splicing. A high correlation of P-values with experimentally
measured splicing efficiencies has been demonstrated (18). Here we
show that inclusion of the ρ- and γ-values significantly improves
the specificity of splice site prediction.

MATERIALS AND METHODS

Gene collections

Genomic sequences from Zea mays and Arabidopsis thaliana
were taken from our previously compiled non-redundant databases
(13). For maize, the database contains 46 genes comprising a total
of 250 exons and 204 introns. For Arabidopsis, the database
contains 131 genes with a total of 709 exons and 578 introns. The
databases include 16 pairs of highly similar genes conserved
between maize and Arabidopsis (>40% identity on the amino acid
level).

Calculation of P-values

P-values are calculated according to the logitlinear splice site
models introduced in (13). These models assign to any GU
(potential donor site) and AG (potential acceptor site) in a
sequence a score between 0 and 1 based on three local sequence
properties: (i) XU, the contrast in U composition, measured as %
U in the 50 bases upstream of the GU (or AG) minus % U in the
50 bases downstream; (ii) XGC, the contrast in G+C composition,
measured as % G+C in the 50 bases upstream of the GU (or AG)
minus % G+C in the 50 bases downstream; and (iii) splice site
quality, measured as a sum of position and base-specific weights
such that high scores reflect base choices generally consistent
with the most frequent (consensus) bases in each position.
Specifically, the score of a given site is calculated as:
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and δib is 1 if the base in position i is b, and 0 otherwise.
Summation extends over nine positions for potential donor sites
and over 15 positions for potential acceptor sites. The parameters
α, δ, µ and lib were derived as maximum likelihood estimators
from training sets of known sites and non-sites (13,18). This
model does not consider the small fraction (<1%) of known splice
sites lacking the GU or AG consensus (19).

Calculation of ρ-values

The ρ-value of a given splice site indicates the extent to which the
site occurs in a favorable sequence context. Favorable sequence
context would include first, the availability of an appropriately
spaced complementary splice site such that this pair of sites
defines a potential intron and second, absence of nearby sites of
the same type with higher P-values which could favorably

Figure 1. Calculation of ρ-values. (Top) The ρ-value of the donor site at
position d is calculated as the weighted product of its P-value times the P-value
of its maximally scoring potential complementary acceptor site at a. The weight
is calculated as described in the text by comparison with alternative
donor/acceptor site pairs. The alternative pairs of sites are determined stepwise
as follows. First, the maximally scoring acceptor site complement for the donor
site at d is determined in the sequence interval d + 60 to d + 600 or to r � 60
if there is a donor site at r > d + 60 with P-value greater that the P-value of the
donor site at d (thick-lined box). Here, 60 is taken as the minimal and 600 as
the maximal allowed intron length. The bound r + 60 is invoked in the case of
a higher scoring donor site at r because any acceptor site to the right of this
would favorably pair with this site compared to the site at d and could form an
intron downstream of an intron starting at d. Alternative donor sites to the site
at d are then searched for in the bounds a – 600 to a, where the lower bound is
adjusted to l – 60 if there is an acceptor site at l < d with higher P-value than
the site at a (in this case, any donor site to the left of l – 60 would favorably pair
with the acceptor site at l; thin-lined box). The positions of five alternative donor
sites are illustrated in the figure by the smaller font Ds. (Bottom) The ρ-value
of the acceptor site at position a is calculated as the weighted product of its
P-value times the P-value of its maximally scoring potential complementary
donor site at d. The complementary donor site is restricted to the bounds a – 600
to a – 60 or l – 60 to a – 60 if there is an acceptor site at l < a – 60 with P-value
greater than the P-value of the site at a (thick lined box). Alternative acceptor
sites are then searched for in the bounds of d to at most d + 600
(r + 60 if a higher scoring donor site occurs at r > a, thin-lined box). The positions
of alternative acceptor sites are illustrated in the figure by smaller font As.

compete with the given site for splicing factors. Numerically, ρ
is calculated as follows (Fig. 1; see Table 1 for specific examples).
Let d be the location of a donor site with P-value PD

d. First, the
downstream sequence is searched for the highest scoring acceptor
site, occurring say at position a with score PA

a. The search extends
from d + 60 (60 taken as the minimal allowable intron length) to
either r + 60, if there is a donor site at r > d + 60 with score
PD

r  > PD
d, or to d + 600. The first downstream limit obtains

because, in this case, acceptor sites further downstream than r +
60 would pair better with the donor site at r. The second
downstream limit effectively sets the maximal size of potential
introns considered to 600 bases. These size restrictions include
>95% of all known plant introns (11,19). The sites d and a define
an initial intron that is compared with a number of alternative
introns obtained in the following way.

Alternative donor sites are identified upstream of a. The search
extends to l – 60, if there is an acceptor site at position l < d with
score PA

l  > PA
a, or to a – 600, whichever is larger. Then, donor sites

within the given limits occurring to the left of d are either paired
with the acceptor site at a or, if such exists, with a higher scoring
acceptor site between d and d + 60. Donor sites occurring between
a – 60 and a are paired with their maximal acceptors between 60
and at most 600 bases downstream.

The limits for positions of alternative sites are as prescribed to
exclude from consideration most sites that could form maximally
scoring upstream or downstream introns without precluding use
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of the site at d in a different intron (Fig. 1). Assume that within
these limits there are n alternative donor sites (including the site
at d) with P-values PD

k  and associated acceptor sites with P-values
PA

k, k = 1, 2, ..., n. Then,

� �
PD

d PA
a

� n
k � 1 PD

k PA
k

P D
d PA

a 3

The calculation of ρ for a given acceptor site is done in a similar
way by first searching for the maximal scoring donor site
upstream, and then tallying alternative donor/acceptor site pairs
within limits defined analogously to the above for given donor
sites. If the given site does not possess a complementary site in the
prescribed limits, then ρ is set to 0. Thus, ρ is a value between 0
and 1, and high values of ρ obtain in the case of a donor/acceptor
site pair with high P-values in a region devoid of high scoring
alternative sites.

Calculation of γ-values

The ρ-value measures how well a given potential splice site can
be paired up to form a potential intron. However, it is possible that
the actual splicing pattern precludes splicing at that given site
because usage of other site pairings is favored such that the given
site is internal to an exon or intron. The γ-value reflects how well
the given splice site fits in the locally predicted splicing pattern.
For the given site in a sequence, look at the preceding N predicted
sites (irrespective of whether these sites are donor or acceptor
sites) and at the succeeding N predicted sites. Here we have used
N = 7 (or smaller for sites at the beginning and end of the analyzed
sequence). Denoting acceptor sites by A and donor sites by D, the
pattern of predicted sites is a string of As and Ds of length 2N + 1.
The predicted sites are either correctly predicted or represent false
sites within exons or introns (intergenic regions are assigned to
either exons or introns for the purpose of this calculation). Let E
and I denote exon and intron, respectively. Then all possible
parsings of the sequence segment are obtained by the following
string re-writing rules: (i) an A is either retained or replaced by
E or I; (ii) a D is either retained or replaced by E or I; and (iii) the
re-writing must not produce adjacent letter combinations other
than AD, AE, DA, DI, ED, EE, IA or II. Replacement rules (i) and
(ii) apply if the particular site is considered a false prediction
within exon or intron. Rule (iii) assures that the resulting string
represents a legitimate parse: donors are followed by intron
sequence up to the next acceptor, acceptors are followed by exon
sequence up to the next donor. Assign to each possible such parse
a score defined as the sum of the P-values of all the constituent Ds
and As. Find the maximal score of all parses restricted, first to parses
that predict the given site to be a true splice site (i.e. the central letter
of the parse string is either A or D) and second, to parses that predict
the given site to be within exon or intron (i.e. the central letter of the
parse string is either E or I). γ is defined as the difference of the
first minus the second of these scores, or zero, if the difference is
negative. Thus, if the given site is in a context that suggests
preferred usage of nearby sites as splicing partners to the
exclusion of the given site, its γ-value will be zero. Otherwise it
will be a positive value ≤2; high values of γ would strongly
suggest actual usage of the site. Examples are given in Table 1.

Table 1. Splice site prediction in part of the maize Adh1-1F genomic
sequence (GenBank accession no. X04050) 

Examples of ρ-value calculations. (i) Acceptor site at 3527. No potential
donor site is found in the limits 3408 (60 bases to the left of the higher scoring
acceptor site at 3468) to 3527 – 60. Thus, by definition, ρ = 0. (ii) Donor site
at 3531. The maximally scoring acceptor site in the limits 3531 + 60 to 3714
+ 60 occurs at 3754. Alternative donor sites in the bounds 3754 – 600 to 3754
occur at 3229, 3560 and 3714. The first two sites also pair with the acceptor site
at 3754, while the 3714 site pairs with the acceptor site at 3804 (not the site at 4064
which pairs more favorably with the donor site at 3967). By equation 3, ρ = (0.291
× 0.972)2/(0.291 × 0.972 + 0.008 × 0.972 + 0.342 × 0.972 + 0.831 × 0.031) =
0.123. (iii) Acceptor site at 3754. The maximally scoring donor site complement
occurs at 3560 with P-value 0.342. Alternative acceptor sites are found at
positions 3617, 3737, 3769 and 3804 (sites further downstream are favorably
paired to the donor site at 3967 and thus do not enter the calculations). Matching
these sites with their respective most favourable donor sites leads to:
ρ = (0.972 × 0.342)2/(0.972 × 0.342 + 0.904 × 0.750 + 0.015 × 0.342 + 0.191
× 0.342 + 0.031 × 0.831) = 0.100. Example of γ-value calculations: (i) donor site
at 3531. The maximal scoring assignment of donor (D) and acceptor (A) sites and
exonic (E) and intronic (I) sites is shown in the last column with score: 0.008
+ 0.720 + 0.291 + 0.904 + 0.831 + 0.031 = 2.785. Under the hypothesis that
this site is not used, the maximal scoring parse is DIIIAEE-E-DIIIAAEE with
score 2.042. Thus, γ = 2.785 – 2.043 = 0.742. (ii) Acceptor site at 3754. In this
case, the maximal assignment indicates 3754 as within-intron. The maximal
scoring parse displayed in the last column has score 3.833, greater than the
score 3.090 of the best assignment IAEDIII-A-EEEDAEE involving 3754 as
a true acceptor site. Thus, γ = 0. In this case, usage of 3754 as an acceptor site
would preclude usage of 3714 as a donor site and leads to the less favorable overall
splicing pattern. Note that in the entire sequence segment analyzed, the true splice
sites all have γ > 0 and the false sites all have γ = 0. By P-value alone, the false
sites 3560 and 3754 would be preferred over the nearby true sites.

RESULTS

Evaluation of local optimality can improve splice site
prediction

Table 1 gives a specific example of improved splice site
prediction based on the ρ- and γ-values in addition to the P-values.
Prediction using the P-values alone as described by Kleffe et al.
(13) indicates eight potential donor sites and 17 potential acceptor
sites in the genomic sequence of maize Adh1-F from the fifth
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Table 2. Sensitivity and specificity of splice site recognition

The 46 maize genes were scanned for splice sites between the known initiation and
stop codons. Sites were accepted at the minimal P-values attained by the true
splice sites as described previously (13). Thus identified were 201 true and
512 false donor sites and 204 true and 1359 false acceptor sites. For the γ column,
only comparable sites flanked on each side by at least seven other potential
sites were included (155 true and 379 false donors, 157 true and 954 false
acceptors). Sensitivity and specificity are defined as SN = TP/(TP + FN) and
SP = TP/(TP + FP), respectively, where TP is the number of true positives,
FN is the number of false negatives (i.e. true sites missed) and FP is the
number of false positives. The criterion was to accept a site as true if its value
is at least the value given in the columns ‘min’. For example, accepting all
acceptor sites with ρ ≥ 0.031 gave 80% sensitivity and 72% specificity. n/a:
any γ > 0 gave <95% acceptor site sensitivity.

intron until the translation stop codon. Ten of the 15 false sites
have ρ-values of zero, indicating that these sites are locally
incompatible with higher scoring alternatives. The γ-values are
zero for all but the 10 true sites. In particular, based on the
P-values alone, the false donor site at 3560 and the false acceptor
site at 3754 would be problematic as both score better than the
neighboring true sites. In contrast, the overall splicing pattern as
measured by γ suggests the correct sites. In detail, usage of the
high scoring donor site at 3714 would preclude usage of the
nearby acceptor site at 3754, then the acceptor site at 3617 would
be locally optimal and would be paired with the donor site at
3531, rather than with the higher scoring site at 3560, which is
excluded as being too close.

Distribution of splice site scores

To show the extent of possible improvement in splice site
prediction accuracy using the ρ- and γ-values, the values were
calculated for all potential sites (true and false) in the maize data
set predicted by the previous method at 100% sensitivity based on
P-values only (13). The results are summarized in Table 2 in
terms of prediction sensitivity and specificity relative to this set
of sites. It is seen that, at sensitivity levels between 80 and 95%,
prediction based on ρ- or γ-values would give increased
specificity compared to prediction based on P-values. For
example, at 80% sensitivity, specificity for both donor and
acceptor site prediction could be improved to ∼80% using the
γ-values compared to ∼65% using the P-values. Complementary
results are shown in Table 3. For high levels of specificity,
decision rules for splice site prediction based on the ρ- or γ-values
show increased sensitivity levels compared to the corresponding
numbers for tests based on the P-values. Thus, the context
information measured by ρ and γ appears helpful in reducing the
numbers of false positive predictions.

Table 3. Specificity and sensitivity of splice site recognition

The data were derived from the 46 maize genes as described in the legend
to Table 2. Abbreviations are as in Table 2.

Empirical rules for splice site prediction

The three scores calculated for a splice site are positively
correlated: a site with high P-value is likely to be locally optimal
and to fit in the locally maximal splicing pattern leading to high
ρ- and γ-values, respectively. It is possible for only one or the
other score to be high. Examples of sites with high P-value but
γ = 0 were discussed in the legend to Table 1. Similarly, a site with
small P-value may have a relatively high γ-value if the site is the
optimal partner of a high scoring complementary site (e.g. site
3804 in Table 1). We therefore propose to evaluate splice sites on
the basis of all three variables. A variety of statistical techniques
could be used to derive simple multivariate functions that
discriminate between true and false sites in the training set,
including the logitlinear models, neural networks, and discriminant
analysis used in previous approaches based on other variables
(12–14). These techniques would only optimize the average
accuracy of prediction and the relative weighting of the three
variables would be difficult to interpret biologically. We therefore
pursued a more empirical approach.

Our new SplicePredictor program prints out for each site the P-,
ρ- and γ-value as well as the optimal parse associated with the
γ-value. To assess quickly the overall quality of a site we
implemented a * grading system: the values of P, ρ and γ are
labeled 5*, 4*, 3* or 2* if they match or exceed the threshold
values for 90, 80, 65 and 50% prediction specificity on the
training set, 1* otherwise (see Table 3 for the threshold values for
maize). The sum of the *-values (σ, attaining values between 3*
and 15*) serves as a simple combined measure. σ0* is assigned
to sites scoring below the P-value threshold that selects the sites
displayed in the SplicePredictor output. The extreme cases in the
σ*-system separate true and false predictions dramatically. For
example, for the maize set, the ratio of true to false sites is 1/150
for σ3* donors and 2/722 for σ3* acceptors, compared to 60/2 for
σ15* donors and 67/1 for σ15* acceptors. Combining different
σ-values, we classify sites as follows:

σ3* – 4* doubtful (specificity <3%)
σ5* – 7* uncertain (specificity 10–20%)
σ8* – 10* possible (specificity 35–45%)
σ11* – 13* likely (specificity 60–80%)
σ14* – 15* highly likely (specificity >85%)
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Table 4. Improved specificity of splice site prediction using the multi
variate σ* scoring system

Sites were evaluated in the coding regions of the non-redundant gene sets
described in (13) extended by 500 bases preceding and succeeding the start
and stop codons, respectively. Sites with insufficient context for γ-value
determination were excluded as in Table 2. Performance values are cumulative;
for example, there were 148 true maize donor sites with σ* value at least 11*.
TP, true positives, FP, false positives; SN, sensitivity; SP, specificity based
on the σ* predictions; P-SP, specificity based on P-value predictions at the
same sensitivity level.

(specificity calculated non-cumulatively within the indicated
σ*-value class only; e.g. about 10–20% of σ5* – 7* sites are true
sites rather than false positives). Table 4 shows the improved
cumulative specificity for the σ*-system compared to prediction
based on P-values alone. The inclusion of the ρ- and γ-values is
seen to yield gains in specificity of up to 15%, particularly for the
medium scoring site classes.

Conundrums and limitations: poorly scoring true splice
sites and highly scoring false splice sites

The overall performance of SplicePredictor appears satisfactory
given its statistical nature, the simplicity of the underlying model,
and the lack of knowledge about the precise features and
mechanisms of splice site recognition in vivo. It should be
instructive to investigate more closely the instances where model
predictions and annotated splicing patterns appear at variance.
For our purposes, ‘true’ splice sites were initially defined as sites
reported in the literature and GenBank annotation based on
experimental evidence. The predicted gene products were
checked for absence of internal stop codons, and GenBank entries
with unclear annotation were not used (20). Discrepancies
between model predictions and the annotated splicing patterns
may arise from a variety of reasons. For example, it is possible
that high scoring alternative splice sites are indeed used in a minor
fraction of transcripts. Processing of some pre-mRNAs may
involve specific splicing factors that positively select one site
over another or mask alternative sites. More likely is failure of the
prediction algorithm because of its oversimplicity. Detailed
examination of all cases would clearly be beyond our capacities.
But we hope that theoretical predictions of splice sites will
become a common tool in the hands of biologists to analyze and
interpret their experimental results; confirmed shortcomings of
current models will point to necessary refinements in the models.

These issues are illustrated in Figure 2 with two specific
examples. Analysis of the maize Aux311 gene, encoding an

auxin-binding protein, reveals the occurrence of high scoring
alternative sites within the exceptionally long first and last introns
(1612 and 1525 bases, respectively). The first intron contains a
σ13* acceptor site at position 1251. The model cannot explain
why this site is apparently not used in conjunction with the native
donor site at 1010. If it were, the native acceptor site at 2621
would still have reasonably scoring possible donor site partners
at locations 1353, 1987, 2180 and 2276. Similarly, the fourth
intron would be predicted to contain an exon at 3922–4094,
flanked by a σ14* acceptor site and a σ12* donor site. The
auxin-binding proteins in maize are encoded by a multigene
family, the known members of which conserve the number and
length of the exons but differ considerably in intron lengths (21).
It is possible that the differences in introns and alternative splicing
patterns may play a role in differential expression of these genes.
One use of SplicePredictor may be to suggest suitable probes for
the detection of alternatively spliced transcripts in RNase
protection experiments.

Inspection of splice site scores in the maize waxy locus suggests
the possibility of alternative transcripts lacking exons 7 and 8
because the acceptor sites of introns 6 and 7 are very low scoring.
All other introns are well defined by high scoring sites (including
the first intron in the 5′ untranslated part of the pre-mRNA).
Experimentally, no alternatively spliced cDNAs have been
reported for the wildtype waxy gene, but exon skipping occurred
in mutants containing retrotransposon insertions into introns (22):
wx-Stonor (insertion into intron 5) gave rise to some transcripts
linking exon 5 to either exon 8, 9 or 12; wx-B5 (insertion into
intron 2) displayed transcripts linking exon 1 to exons 3 or 4; and
wx-G (insertion into intron 8) had transcripts linking exons 6 or
7 to either 9 or 12. The apparent local effect of the retrotransposon
insertions may be related to alterations in the sequence of splicing
events during pre-mRNA processing (22). The accumulation of
incompletely spliced transcripts in plant tissues has been reported
for a number of plant genes and probably reflects inefficient
normal splicing (23).

Prediction of introns in untranslated pre-mRNA

Our gene collections contained three occurrences in maize and
several in Arabidopis of introns within 5′ or 3′ untranslated
segments of the pre-mRNA. We were interested in the scores of
splice site prediction methods for these introns, anticipating
failure of methods that rely much on evaluation of coding
potential. For maize, the waxy first intron has donor and acceptor
sites in the σ9* class (Fig. 2), the shrunken-2 first intron has σ13
and 15* sites, and the sucrose synthetase first intron has σ4* sites.
The data for Arabidopsis are displayed in Table 5. It is evident that
these sites are predicted well with the general model, suggesting
that there are no special rules governing intron recognition in
non-coding pre-mRNA. In particular, the typical base compositional
contrast seems to be generally conserved also for comparisons of
exons and introns in untranslated regions. With the exception of
the 3′ intron in alternatively spliced transcripts of ATRPB1, all
listed Arabidopsis sites also appear in the NetPlantGene prediction
lists. This attests to the rather clever ability of the trained neural
networks to weigh different features appropriately in such a way
that the lack of a strong coding signal apparently does not prevent
site prediction (12). The GENSCAN algorithm (24), on the other
hand, does not incorporate prediction of introns in non-coding
regions. GENSCAN output for the given GenBank files includes
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Figure 2. Splice site prediction for the maize Aux311 gene encoding an auxin-binding protein (GenBank ZMAUX311) and the maize waxy locus (GenBank
ZMWAXY). Exons are indicated by the numbered boxes. The location of the translation start and stop codons are labeled ATG and STP respectively. The locations
of predicted donor sites are indicated by arrows pointing to the right and the locations of predicted acceptor sites are indicated by arrows pointing to the left. The length
of an arrow is proportional to the σ* score. The dashed lines correspond to the thresholds σ5* and σ11*. Predicted splice sites scoring less than σ5* were omitted for
clarity, with the exception of the true acceptor sites in waxy introns 6 and 7.

Table 5. Splice site prediction in untranslated segments of A.thaliana genes

Positions are given relative to the GenBank files indicated in the LOCUS column. The 3′ site in ATPOSF21 is given as 2175
in the GenBank annotation based on cDNA data; also listed is a predicted site at 2134, scoring much better than 2175. The intron
in ATRPB1 occurs in alternatively spliced transcripts. See GenBank for references.

some of the splice sites in the untranslated regions as part of
wrongly predicted coding exons (data not shown).

Applications to Arabidopsis genes

Using our database of 131 non-redundant Arabidopsis genes we
derived data corresponding to Tables 2 and 3 for Arabidopsis as
a model dicot (data not shown). The contributions of the ρ- and
γ-values to reduce false positive prediction rates were found to be
of similar magnitude as those reported for the maize data (Table 4).
The *-system threshold values specific to Arabidopsis are
incorporated into the SplicePredictor program and are invoked by
the appropriate command line species choice.

Splice site clusters identify potential genes

For both the maize and the Arabidopsis training sets, σ14–15*
splice sites are highly likely to be true sites (>85% specificity in
transcribed regions). Furthermore, >50% of the true splice sites
in the training sets are in this score class. These numbers suggest
that clusters of high scoring predicted splice sites would likely
correspond to split genes. Assume a gene with four exons. Taking
a length of 300 bases for each exon and intron (>80% of maize
and Arabidopsis exons and introns are at most 300 bases; 11,19),
the splice sites would occur within a 1500 base segment
comprising all three introns and the two interior exons. We would
expect three of the six splice sites to be in the σ14–15* score class
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Figure 3. Clusters of predicted splice sites in the A.thaliana contig BAC T7123 (106 973 bases; GenBank accession no. U89959). The locations of predicted donor
sites are indicated by arrows pointing to the right on the + strand and to the left on the – strand and the locations of predicted acceptor sites are indicated by arrows
pointing to the left on the + strand and to the right on the – strand (i.e. on each strand, predicted splice sites are pointing into potential introns). Only highly likely sites
(σ ≥ 14*) are shown. Clusters on the + strand are indicated by boxes above the line, and clusters on the – strand are indicated by boxes below the line. The area of
a box is proportional to the number of sites in the corresponding sequence segment. Continuous regions of overlapping clusters are labeled W1–W9 on the + strand
and C1–C9 on the – strand.

and maybe one additional false site. Thus, a criterion of four or
more σ14–15* splice sites within a sequence segment of at most
1500 bases is taken to define a splice site cluster.

The SplicePredictor program optionally prints all splice site
clusters satisfying the above (or another, user-defined) criterion.
Overlapping clusters are merged unless the start site of the
downstream cluster is within the last 750 bases of the upstream
cluster and the endpoints of the two clusters are different. For this
definition, splice site clusters are identified in 75 of 80
Arabidopsis genes with at least four exons searched in the region
of 500 bases upstream of the start codon to 500 bases downstream
of the stop codon. As a control, when the same sequence segments
were searched on the complementary strand, only one cluster was
identified. This number may not be representative for intergenic
regions.

To test the use of splice site clusters for gene identification we
applied the SplicePredictor program with a σ14* threshold to the
BAC T7I23 Arabidopsis contig (106 973 bases of genomic DNA;
GenBank accession no. U89959). On each strand, nine continuous
regions of splice site clusters were identified (Fig. 3). There are
no overlaps between clusters on opposite strands. The clusters
may serve as a rough segmentation of the genomic sequence into
potential transcription units. In general, our GeneGenerator
program (25) may be used to produce a number of alternative
gene predictions in a tentative transcription unit. In many cases,
these predictions can be adjusted and confirmed by comparison
with existing protein and cDNA databases, for example with a
combination of the BLAST (26) and PROCRUSTES (27)
programs. For the T7I23 contig, we found the highest scoring
potential split gene in each of the splice site cluster segments (the
boundaries of each segment were extended by about 2000 bases
beyond the ends of the identified cluster, giving limits which
should in most cases include the entire gene). The predicted
translation products were then compared against the databases

using the BEAUTY database search server (28). The gene
predictions were refined by further processing the segments in the
order determined by the highest scoring database similarities.
This ‘divide and conquer’ strategy seeks to establish first the
genes for which there is the most evidence (i.e. database
similarities that may include previous determination of the
particular gene, either as genomic DNA or cDNA, or of homologs
in other species). The established predictions then reduce the
boundaries for further gene searches.

The predictions for the central region of the T7I23 contig
encompassing splice site clusters C2 to W6 of Figure 3 are
displayed in Table 6. The displayed region is bounded by the well
established genes encoding the ara-5 and CER1-like/CER1
proteins in clusters C2 and W5/W6, respectively. The second
predicted gene in C2 is confirmed beyond doubt by very strong
similarity to other mago nashi proteins. The other gene predictions
are more tentative. However, several exons are strongly suggested
by sequence similarity. Sequence alignments supporting the Table 6
predictions are available on the WWW page http:/gnomic.
stanford.edu/∼volker/Arabidopsis/BAC-T7I23/BAC-T7I23.html/
Other exons are predicted with confidence as a result of excellent
splice site scores. In particular, the displayed assignments include
all but three of the σ14* and 15* sites on the predicted coding
strands in this region (note however, that no genes were predicted
for splice site clusters C3 and C4 on the opposite strand).

A stochastic gene assembly program (Exdomino, V.Brendel
and J.Kleffe, unpublished) was used to find the best gene
structures incorporating all strongly predicted exons and splice
sites. Current programs for gene and splice site prediction failed
to identify several of the exons that are strongly suggested by
sequence similarity. For example, GENSCAN (24) identifies only
the first two exons of the mago nashi gene, and given sufficient
sequence context the program links these exons to exons 3–8 of
the preceding ara-5 gene. Similarly, GENSCAN combines exons
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Table 6. Gene prediction for the central region of the A.thaliana contig BAC T7I23

Potential genes were initially identified in the extended splice site cluster regions 55000–48000 (C2), 53000–62000 (W4),
68000–62000 (C3), 64000–70000 (W5), 73000–68000 (C4) and 70000–74000 (W6). Sites labeled with dots in columns three and
four are also predicted by the GENSCAN program (24). Sites labeled with dots in columns five and six are also predicted by the
NetPlantGene program (12); two dots indicate the designation H for highly probable sites according to this program. %idty refers
to the percent amino acid identity with a corresponding segment of the same length in one of the target proteins listed in the last col-
umn. Alternative gene structure predictions were resolved by maximizing similarity to the target proteins and usage of high-scoring
splice sites as explained in the text.
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17 and 18 of the W4.1 gene of Table 6 with most of the two exon
W4.2 gene into one predicted gene, but does not involve any of
the other exons. The Exdomino prediction for the C-terminal
exons of the W.1 gene was driven to include the high scoring
splice sites defining the putative exons 17–19. In this case, the
different possibilities are not clearly resolved by similarity to
other sequences, and in general the initial and terminal exons are
most difficult to predict due to a lack of adequate models for
intergenic regions (1,2). This presents a particular problem in
species like Arabidopsis for which genes are typically closely
spaced.

The value of using sequence similarity for improved predictions
were clearly demonstrated by Gelfand et al. (27) with their
PROCRUSTES algorithm for spliced alignment. For the potential
genes of Table 6 and indicated protein targets, the PROCRUSTES
program (default settings) gave concordant results for mago nashi
and the W4.4 gene. For the W4.1 gene, the global spliced
alignment failed to indicate significant similarity, whereas the
local alignment identified exons 7, 8, 12 and 14.

DISCUSSION

Our understanding of genome organization is challenged by the
current limits of predicting gene structure and expression from
sequence inspection. Thus, the elucidation of sequence features
contributing to accurate and efficient pre-mRNA splicing is of
fundamental interest. Moreover, these issues are also of great
practical importance for genome projects (sequence annotation)
and genetic engineering (design of mutants and transgenic
organisms). In plants, cryptically spliced transcripts produce
truncated and mutant proteins and reduce protein expression,
whereas inclusion of an accurately spliced intron enhances
protein expression compared to intronless transcription units
(29–31). Little is known, however, about the quantitative aspects
of intron enhancement and how to maximize active protein by
modulating intron structure.

Prediction of splice sites in plant pre-mRNA by our or other
methods includes false positives (high scoring sites that occur
within annotated exons and introns) and false negatives (true sites
that are missed). Besides the limitations inherent in the statistical
methods, there are other complicating factors which contribute to
such results. Alternative splicing may validate some of the
apparently false positive predictions, and some of the false
negatives may include inefficient sites (32–34). Tissue- or gene
family-specific regulation of pre-mRNA processing may be
obscured in pooling all sequences for training of statistical splice
site prediction methods. Alternative processing may also result
from changes in physiological state, e.g. regulated lack of splicing
of the maize Bz2 intron after cadmium exposure (35).

A difficulty in the design of successful algorithms for the
prediction of splice sites from sequence inspection is the inclusion
and proper weighting of the multiple contributing variables to in
vivo recognition of a particular site. The neural network approach
of Hebsgaard et al. (12) for splice site prediction in Arabidopsis
provides an elegant solution to this problem. We have pursued an
alternative and complementary approach that extends the previously
described logitlinear models (13). The key element of the
extensions is the vector representation of splice site scores
incorporating three elements: intrinsic splice site quality (P-value),
local optimality (ρ-value) and fit with respect to locally predicted
exon/intron structure (γ-value). The additional variables can in

many cases correctly classify potential sites that would be
confused on the basis of P-values alone (detailed example
discussed in Table 1). In particular, true sites with low scores in
all three components are highly exceptional, whereas high scores
in all components produce very reliable predictions (Table 4).

The importance of reducing the uncertainty in gene prediction
schemes is readily appreciated when one is trying to annotate a
really novel sequence. Even if a program claims a success rate of,
say, 70% correctly identified exons in a training set, for a novel
gene prediction of, for example, a gene with eight exons this
would leave an expected 8-choose-2 to 8-choose-3 possible
combinations for exactly which two or three of the eight predicted
exons may be wrong! Any exons or introns that can be assumed
with great confidence would reduce these combinatorial possibilities
considerably. Potential exons and introns flanked by highly
reliable splice site predictions would be the obvious candidates
for definite inclusion into entire gene structure predictions. On the
other hand, gene prediction algorithms cannot afford to overlook
any potential splice sites because of the risk of missing correct
assemblies of genomic segments into ORFs. Our proposed
solution retains a relatively large set of potential splice sites based
on minimal P-value requirements, but further differentiates sites
within this set based on the described context variables.

The annotation of a typical Arabidopsis genomic DNA contig
in Table 6 illustrates these considerations. Strong support for the
displayed gene predictions comes from the combination of splice
site prediction, evaluation of coding potential, cDNA matching
and similarity to potential homologs. Methods that rely entirely
or mostly on only part of the different types of support are clearly
not successful. For example, similarity to a target protein provides
confirmation for some weak or possibly even non-consensus
splice sites. Conversely, there are also examples of strongly
predicted splice sites and introns that define exons with no
significant similarity to the target proteins. Such exons may,
however, be parts of an entire predicted gene product that displays
overall significant similarity to a target protein (e.g. exons 5, 6 and
10 of the W4.1 gene in Table 6), and simply represent less conserved
segments of homologous proteins. We are currently developing a
flexible algorithm (Exdomino) for the prediction of alternative gene
structures satisfying any specific constraints, e.g. inclusion of
particular splice sites, exons or introns. Identification of suitable
constraints, at present, seems to require expert input and can only
partly be solved by programming.

Program availability

The databases and the SplicePredictor program, which implements
our current algorithm for splice site prediction in plant genes, are
available electronically from either V. Brendel (volker@gnomic.
stanford.edu ) or J. Kleffe (jkleffe@euler.grumed.fu-berlin.de ).
SplicePredictor is also implemented as a Web service at
http://gnomic.stanford.edu/ ∼volker/SplicePredictor.html
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