
Mechanical Properties of Pore-Spanning Lipid Bilayers Probed by
Atomic Force Microscopy

Siegfried Steltenkamp,* Martin Michael Müller,y Markus Deserno,y Christian Hennesthal,z Claudia Steinem,z

and Andreas Janshoff*
*Institute of Physical Chemistry, University of Mainz, 55128 Mainz, Germany; yMax Planck Institute for Polymer Research, 55128 Mainz,
Germany; and zInstitute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany

ABSTRACT Wemeasure the elastic response of a free-standing lipid membrane to a local indentation by using an atomic force
microscope. Starting point is a planar gold-coated alumina substrate with a chemisorbed 3-mercaptopropionic acid monolayer
displaying circular pores of very well defined and tunable size, over which bilayers composed of N,N,-dimethyl-N,N,-
dioctadecylammonium bromide or 1,2-dioleoyl-3-trimethylammonium-propane chloride were spread. Centrally indenting these
‘‘nanodrums’’ with an atomic force microscope tip yields force-indentation curves, which we quantitatively analyze by solving the
corresponding shape equations of continuum curvature elasticity. Since the measured response depends in a known way on the
system geometry (pore size, tip radius) and onmaterial parameters (bendingmodulus, lateral tension), this opens the possibility to
monitor local elastic properties of lipid membranes in a well-controlled setting.

INTRODUCTION

Since the invention of the atomic force microscope (AFM) in

1986, the spatial analysis of soft biological samples has

become a major aim in cellular and molecular biophysics (1).

Besides mere visualization of surfaces, the AFM allows one

to explore mechanical properties at the nanoscale by means

of force-distance curves (2). The two ‘‘modes’’ in force

spectroscopy, pulling and indenting, allow one to study

force-induced conformational changes of individual macro-

molecules such as proteins, nucleic acids, and oligosaccha-

rides, and to map elastic properties of cells and membranes

with nanometer resolution (1,3,4).

However, quantitative contact mechanics of whole cells or

native membrane patches remains cumbersome from an ex-

perimental as well as theoretical point of view due to the

variable shape of the objects and the complex composition

(5,6). The theoretical treatment of the indentation of cells or

liposomes is usually based on common contact mechanics

according to Hertz or Sneddon, exhibiting only moderate

agreement with the measured force curves (1,7–11). Among

the few available attempts to model indentation of soft shells

with the AFM, Boulbitch recently presented a theory de-

scribing the deflection of a cell membrane subject to local

forces (12,13), whereas Wan et al. (14) provided an im-

proved model for the indentation of a microcapsule by an

AFM tip employing different boundary conditions than

Boulbitch and allowing for a change in surface tension. Yao

et al. (15) presented an elastic model but neglected the in-

fluence of bending.

The determination of mechanical parameters of mem-

branes requires appropriate model systems with defined

geometry and composition. Whereas liposomes are well

suited for micropipette aspiration experiments (16–19) and

solid supported bilayers are frequently used for determining

Young moduli (20), no suitable model system is available to

study the local bending of membranes with the AFM.

Although liposomes have been frequently used for this

purpose (5,21–23), the experiments are difficult to reproduce

due to variations in vesicle size, interference from adhesion

to the supporting surface, which produces severe deforma-

tion up to rupture, and inaccurate positioning of the tip. Solid

supported membranes, which are stable and easy to prepare,

have, however, the drawback of displaying an elastic re-

sponse that is intricately linked to the elastic properties of the

substrate they rest on (20).

Here we present, for the first time, to our knowledge,

a method to explore the local mechanical properties of lipid

membranes employing pore-spanning bilayers that were

recently introduced (24–27). Highly ordered porous alumina

with tunable pore size serves as the support to form pore-

spanning bilayers attached electrostatically to the function-

alized rims of the nanoporous surface. We were able to

directly measure the restoring forces of a nearly planar free-

standing lipid membrane covering a nanoscopic hole of

defined pore size, which is displaced by an AFM tip with a

defined normal force. With this technique, it is feasible to

infer elastic properties of lipid bilayers from only a few lipid

molecules (5,000–30,000 lipids), whereas micropipette suc-

tion experiments employing giant liposomes average over as

many as �108 lipids. To quantify the indentation experi-

ments, we provide the necessary theoretical framework that

describes the indentation of a pore-spanning bilayer with a

finite-sized tip.
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MATERIALS AND METHODS

Preparation of porous alumina

High purity aluminum foils (Goodfellow, Devon, PA; thickness: 0.5 mm)

were subject to a two-step anodization process yielding porous alumina with

defined pore geometry. The procedure is described elsewhere (see Supple-

mentary Material for detailed information) (24). Employing oxalic acid

yields pores exhibiting an average pore radius of (33 6 2) nm and a porosity

of (34 6 6)% (Fig. 1 A). Anodizing aluminum in phosphoric acid provides

larger pores with a mean radius of (90 6 10) nm and a porosity of (16 6 5)%

(Fig. 1 B).

Preparation of pore-suspending lipid bilayers

Planar pore-spanning bilayers were prepared according to the procedure

described previously (24). The gold surface was first functionalized with a

monolayer of 3-mercaptopropionic acid followed by an incubation for 4 h at

T ¼ 55�C with large unilamellar vesicles composed of either positively

charged N,N,-dimethyl-N,N,-dioctadecylammonium bromide (DODAB) or

1,2-dioleoyl-3-trimethylammonium-propane chloride (DOTAP) (0.5 mg/ml

in 10 mM Tris, pH 8.6). Large unilamellar vesicles were prepared by the

extrusion method using polycarbonate membranes with a mean pore di-

ameter of 1000 nm yielding vesicles with a mean diameter of (600 6 20) nm

as determined by dynamic light scattering.

Atomic force microscopy

Pore-spanning lipid bilayers on porous alumina were imaged in contact

mode in aqueous solution with a Dimension 3100 (Nanoscope IIIa1A/D

Controller, Veeco, Santa Barbara, CA) and an MFP-3D (Asylum Research,

Santa Barbara, CA) AFM using silicon nitride tips purchased from Olympus

(Olympus PSA 400, Olympus Biolever, AFFE, Mannheim, Germany) and

Veeco Instruments (NP-S) with nominal spring constants between 0.006 and

0.02 N m�1. All images were analyzed using the program SPIP (Scanning

Probe Image Processor, Image Metrology, Lyngby, Denmark). Tip radii

were characterized by transmission electron microscopy and spring con-

stants of the cantilevers were determined by the thermal noise method (2).

RESULTS AND DISCUSSION

The successful preparation of pore-spanning bilayers on

porous alumina substrates was confirmed by means of AFM

imaging as illustrated in Fig. 2. Two AFM images obtained

from contact mode imaging of a DODAB bilayer covering

the highly ordered porous alumina with pore radii of Rpore ¼
33 nm using a low (0.9 nN, Fig. 2 A) and high (2.7 nN, Fig. 2

B) load force are shown. Each individual pore can be

unambiguously assigned and we can clearly distinguish be-

tween membrane-covered and uncovered pores by topogra-

phy images. Fig. 2 A shows that all pores are covered with

the lipid bilayer except for three pores, which are labeled

with arrows. The uncovered pores can be used as a reference

to determine the maximum penetration depth of the AFM tip.

At larger forces (Fig. 2 B), the bilayer-covered pores re-

semble the uncovered porous substrate due to maximal in-

dentation of the membrane into the pores. The height

profiles shown in Fig. 2 C, measured along the line drawn in

Fig. 2, A and B, show that the variation of the load force

influences only the topography of the membrane-covered

pores, leaving the profile of the uncovered ones unchanged.

The broken symmetry of the bilayer-covered pore imaged at

low force (Fig. 2 C) is an artifact arising from the lateral

interaction of the tip with the bilayer. The shape depends on

the scan direction, which was from left to right as indicated

by an arrow.

Assuming a parabolic tip geometry, the maximum pene-

tration depth hmax
0 can be estimated to be hmax

0 ¼ R2
pore=2Rtip:

The pore radius Rpore and the tip radius Rtip can be assessed

independently from scanning electron microscopy images of

the substrate (Fig. 1) and transmission electron microscopy

images of the tip (see Supplementary Material).

The goal was now to quantify the elastic properties of

these addressable ‘‘nanodrums’’ by employing force spec-

troscopy at well-defined spots on the surface such as the cen-

ter of the pore. By performing a cycle of imaging and

monitoring force-indentation curves, we were able to control

and account for thermal drifts in the x,y plane. Typically, we

FIGURE 1 Scanning electron micrographs of highly ordered gold-coated

porous alumina used as the substrate for pore-spanning DODAB and

DOTAP bilayers. The average pore radius in A is (33 6 2) nm with an

overall porosity of (34 6 6)%, whereas in B an average pore radius of (90 6

5) nm and a porosity of (16 6 5)% is found.
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were capable of recording 10–20 force-indentation curves at

40 different pores repeatedly, providing good statistics.

Various force-distance curves are depicted in Figs. 3 and

4. All curves were obtained from the center of the pores at

T ¼ 20�C. Fig. 3 A shows trace (indentation) and retrace

(relaxation) curves taken on DODAB (curve 1) and DOTAP

bilayers (curve 2) covering pores with an average pore radius

of 90 nm (inset). We used two different cantilevers for the

indentation experiment to account for the different mem-

brane stiffness of the lipids in the gel and fluid phase. The

stiffer gel phase (DODAB) was measured with an Olympus

PSA 400 (nominal spring constant k� 0.02 N m�1) whereas

the softer DOTAP membrane was indented by an Olympus

Biolever (k � 0.006 N m�1) matching the corresponding

apparent spring constant of the pore-spanning bilayers (see

below). This way we could ensure highest possible sensitiv-

ity of our measurements. Strikingly, the indentation curves

exhibit a linear dependency of the restoring force on the

penetration depth for DODAB as well as for DOTAP mem-

branes over the full range. The mean slope, which we will

refer to as the apparent ‘‘spring constant’’ of the membrane,

depends strongly on the physical state of the bilayer. We

found a mean slope for DOTAP bilayers, which are in

the fluid phase, of �kk90 nm
DOTAP ¼ ð0:003960:0008ÞNm�1 and

�kk90 nm
DODAB ¼ ð0:01560:004ÞNm�1 for DODAB bilayers, which

are in the gel phase. Importantly, both trace and retrace

curves lie on top of each other except for the snap-on and

snap-off positions, illustrating that under these conditions we

are able to assess static, elastic properties, whereas dynam-

ical complications (such as viscous dissipation in the

membrane or the solvent) are absent. Further evidence for

this claim is that the measured apparent spring constant does

not depend on the speed of approach of the AFM tip, see Fig.

3 B. Virtually no dependency of the apparent ‘‘spring con-

stant’’ of the bilayer on the cantilever velocity was moni-

tored up to 60 mm s�1. For our measurements, we used speed

between 0.5 mm s�1 and 1.5 mm s�1. This result excludes

hydrodynamics as a possible source for additional restoring

forces, as well as conceivable complications resulting from

compressing the fluid inside the pores that might not per-

meate the membrane fast enough.

Adhesion due to electrostatic attraction between the neg-

atively charged silicon nitride tip and the positively charged

bilayer becomes clearly visible in the retraction curve as a

snap-off peak. Frequently, we not only observed such a peak

upon retraction of the tip, as displayed in the force-distance

curve obtained from a DODAB bilayer, but also tether for-

mation when retracting the tip from a DOTAP bilayer. Tether

formation is characterized mainly by a force plateau with a

value depending on membrane tension and bending rigidity,

which has been carefully investigated theoretically and ex-

perimentally (28–32). The maximum indentation depth of the

tip in the 90 nm pores differs since two different cantilevers

with different tip size and geometry were used (see Supple-

mentary Material).

Interestingly, in the case of the force-distance curve ob-

tained from a DOTAP bilayer (curve 2 in Fig. 3 A), a second

adhesion peak occurs after reaching the maximum penetra-

tion depth at 330 nm, which we tentatively attribute to ad-

hesion of the membrane to the inner pore wall.

Intuitively, the pore size should affect the restoring forces

of the membrane such that indentation experiences smaller

restoring forces for larger pores. Fig. 4, A and B, show force-

indentation curves of DODAB bilayers deposited on pores

FIGURE 2 Visualization of pore-spanning bilayers by

AFM (contact mode in aqueous solution). (A) Pores

covered by a DODAB bilayer imaged at low forces (0.9

nN). The arrows indicate uncovered pores. (B) Same

region imaged at larger forces (2.7 nN). (C) Height profiles

along the line shown in A, dashed line, and B, solid line,

imaged at two different forces using NP-S cantilevers.

Scan direction was from left to right as indicated by the

arrow.
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exhibiting a mean radius of 33 nm and 90 nm. The maximum

penetration of the tip is substantially reduced on smaller

pores as expected. More importantly, the average slope of the

curves denoted as the apparent ‘‘spring constant’’ is sig-

nificantly larger on the smaller pores. We found an average

‘‘spring constant’’ of the membrane covering the pores with

radii of 33 nm of �kk33 nm
DODAB ¼ ð0:02160:006ÞNm�1; which is

by a factor of 1.4 larger than that obtained on pores with a

radius of 90 nm.

The displacement from the center, i.e., the position, from

which the force-indentation curves are obtained, also influ-

ences the restoring force. In fact, one expects that the ap-

parent ‘‘spring constant’’ increases if the force-indentation

curve is taken closer to the pore rim. To quantify this effect,

we took force-indentation curves at different displacements

r away from the center of a DODAB-covered pore (Rpore ¼
90 nm). Fig. 5 shows that the measured force-indentation

slope increases substantially while positioning the tip closer

to the rim. These findings are in accordance with classical

thin plate theory (33).

A theoretical model that explains our observations for gel-

phase and fluid-phase membranes qualitatively and quanti-

tatively can be developed as follows: the system comprising

tip- and pore-spanning membrane is parameterized as shown

in Fig. 6. The pore is treated as a circle of radius Rpore,

whereas the parabolic AFM tip exhibits a curvature radius

Rtip at its apex. The situation is axisymmetric because the tip

indents the membrane in the center of the pore.

We model the membrane as a two-dimensional surface.

This is a valid approach, provided the lateral extension of the

pore-spanning bilayer is much greater than its thickness (;5

nm). Due to axisymmetry, the membrane shape can then be

described by specifying its height h as a function of the radial

distance r from the axis h ¼ hðrÞ: In the following, we con-

sider a static situation and calculate the force that corre-

sponds to a given indentation h0 ¼ �hð0Þ (see Fig. 6). In the

mesoscopic continuum theory, we want to use the well-

known Canham-Helfrich Hamiltonian (34–36):

H ¼
Z

dA s1
k

2
K2

� �
(1)

describes the membrane energy as a functional of its shape.

Here, s is the surface tension, k the bending rigidity,

K ¼ �= � ð=h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11ð=hÞ2

q
Þ twice the local mean curvature,

and dA the area element of the curved surface. To get the

force for a given indentation, the equilibrium membrane

shape has to be found, i.e., the one that minimizes H. This

variational problem requires us to solve the corresponding

(highly nonlinear) Euler-Lagrange equation, which (a suit-

able parameterization presupposed) can in principle be done

numerically. Let us, however, first consider the so-called

small gradient approximation of Eq. 1:

Hlin ¼ p

Z Rpore

0

dr r½kðDhÞ2
1sð=hÞ2�: (2)

This approximation assumes that the slope of the mem-

brane profile is everywhere small, such that it is permissible

to expand both terms in Eq. 1 up to lowest order in =h: It is

thus only valid for small indentations. The Euler-Lagrange

equation corresponding to the functional Eq. 2 is DðD�
l�2ÞhðrÞ ¼ 0; where the characteristic length scale l is

defined as l :¼
ffiffiffiffiffiffiffiffiffi
k=s

p
: Evidently, the general solution to

this linear differential equation is a linear combination of the

eigenfunctions of the Laplacian corresponding to the eigen-

values 0 and l�2: For axial symmetry it is therefore given by

hðrÞ ¼ h1 1 h2lnðr=lÞ1 h3I0ðr=lÞ1 h4K0ðr=lÞ; (3)

FIGURE 3 (A) Force-indentation curves taken in the center of a pore (inset)

with Rpore ¼ 90 nm (indentation (black) and retraction (light gray) of a

DODAB bilayer (1) using an Olympus PSA 400 cantilever with a nominal

spring constant of 0.02 N m�1; indentation (black) and retraction (gray) of a

DOTAP-bilayer (2) using an Olympus Biolever with a nominal spring constant

of 0.006 N m�1). The use of different cantilevers explains the difference in

maximal penetration depth. The arrow denotes the occurrence of DOTAP

tethers pulled from the surface. (B) Apparent ‘‘spring constant’’ k of a DODAB

bilayer spanning a pore with a radius of 90 nm as a function of the vertical

cantilever velocity. The dashed line represents the mean value of k. Each data

point represents the average of more than 10 force-indentation curves.
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where I0 and K0 are the modified Bessel functions of the first

and the second kind, respectively (37). The constants h1,. . .,
h4 have to be determined from the appropriate boundary con-

ditions: at the rim of the pore the membrane height function

has to be flat, h9ðRporeÞ ¼ 0; and equal to zero hðRporeÞ ¼ 0:
One finds three additional conditions at the equilibrium line

of contact, where r ¼ c. The profile of the tip and the mem-

brane have to touch smoothly: hðcÞ ¼ ðc2=2RtipÞ � h0 and

h9ðcÞ ¼ ðc=RtipÞ: Furthermore, the contact curvatures have

to balance according to h$ðcÞ ¼ ð1=RtipÞ (38). Note that

the first four boundary conditions can in fact be imple-

mented analytically into the height function (3). Unfortunately,

the last one, which determines c, becomes a complicated

transcendental equation and can thus only be solved using

numerics. For this reason, the final solution hðrÞ cannot be

stated explicitly. From the resulting height function, the force

F can be obtained in complete analogy to classical elasticity

theory (39) by integrating the flux of stress through a closed

contour g around the corresponding source of stress (i.e., the

tip in this case) (40–42):

F ¼ �eh � »
g

dsðlaf aÞ ¼ 2pRpore 3 k
@K

@r

����
r¼Rpore

;

a 2 f1; 2g: (4)

Here, f a is the surface stress tensor, la the outward pointing

unit normal of the line element ds of g; and eh is the unit

vector normal to the substrate. We chose a contour adapted

to the symmetry of the situation: the integral runs along the

rim of the pore where r ¼ Rpore: Using the height function to

calculate the derivative of the curvature at the rim yields the

force acting normal on the membrane.

The force obtained this way is only correct for small

indentations due to the small gradient approximation we

have used. To check the validity of this approach, we have

also calculated force-indentation curves in the nonlinear re-

gime using the exact Hamiltonian (1). This requires numer-

ical methods well beyond the ones needed for the small

gradient approximation. They rely on techniques that have

been used earlier for the study of vesicles (43–47) or tethers

(28,29,48). Details of how the nonlinear calculations were

done would go beyond the scope of this article but can be

found in a forthcoming publication (D. Norouzi, M. M.

Müller, and M. Deserno, unpublished). As we will see be-

low, the agreement between these calculations and the ex-

periment is significantly extended to larger indentations;

hence the general attempt to use a continuum elastic ansatz is

FIGURE 4 (A) Force-indentation curve of a DODAB bilayer taken in the

center of a pore (insets) with (1) Rpore ¼ 33 nm and (2) Rpore ¼ 90 nm. (B)

Magnification of figure A emphasizing the different slopes.

FIGURE 5 (A) Force-indentation curves of a pore-spanning DODAB

bilayer on pores with Rpore ¼ 90 nm taken at different positions starting from

the center (1) of the pore to the rim (4). (B) The average slope of more than

10 curves taken at each location as a function of the position r from the pore

center (1) to the rim (4). The error bars originate from several independent

force-indentation curves taken at the same spot.
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valid. Moreover, since for small indentations both theories

coincide, the linear one is perfectly sufficient to match the

asymptotic behavior of the force-distance curve. We will

thus restrict most of our discussion to the small gradient ap-

proximation. Using it for data analysis is also more ap-

propriate for practical fitting purposes, because it is by far

easier and faster to calculate the height function (3) from the

linear theory than to solve the exact shape equation num-

erically.

The shapes of the membrane in the fluid state indented by

a parabolic tip to reach different penetration depths h0 are

depicted in Fig. 7. The parameters chosen for the fluid sys-

tem are s ¼ 1.0 mN m�1, k ¼ 0.1�10�18 J. The contact

radius c increases visibly with increasing penetration depth

(arrows).
The impact of the tip size on the measured restoring force

at a penetration depth of 10 nm in the center of the pore is

illustrated in Fig. 7 B for membranes in the gel- and fluid-

state using the small gradient approximation. The result for

the fluid membrane is represented by a gray line (k ¼
0.1�10�18 J, s ¼ 1.0 mN m�1, Rpore ¼ 90 nm, h0 ¼ 10 nm)

and that for a membrane in the gel state by a solid black line

(k ¼ 1.0�10�18 J, s ¼ 5.0 mN m�1, Rpore ¼ 90 nm, h0 ¼ 10

nm). Increasing the tip radius has surprisingly little influence

on the restoring force of the membrane over a wide range.

Generally, the restoring force increases slightly with in-

creasing tip radius, as expected.

The pore radius, however, has a much stronger influence

on the restoring force as illustrated in Fig. 7 C. The force

necessary to indent the membrane to 10 nm increases

considerably by decreasing the pore size, especially in the

small pore regime (,50 nm). The indentation force becomes

insensitive to the pore radius for Rpore . 100 nm, which can

be explained by the fact that indentation becomes tension-

dominated for large length scales. However, one expects the

continuum approach to lose validity at smaller pore size

since the molecular nature of the bilayer becomes important

at smaller length scales. This might also explain our finding

that the spring constant of the DODAB-bilayer covering

FIGURE 6 Illustration of the parameters used for modeling a parabolic tip

poking into a membrane spanned over a hole of radius Rpore. c denotes the

axial distance of the contact point between membrane and tip, s the lateral

tension, Rtip the radius of curvature of the tip, h0 the penetration depth in the

pore center, F the normal force exerted by the tip, and h(r) the shape of the

membrane as a function of displacement from the center of the pore.

FIGURE 7 (A) Calculated membrane shape (small gradient approxima-

tion) as a function of maximum penetration depth (10 nm, 20 nm, 40 nm),

using the parameters Rtip ¼ 20 nm and Rpore ¼ 90 nm, assuming a fluid

membrane (sfluid ¼ 1.0 mN m�1, kfluid ¼ 0.1�10�18 J). The arrows indicate

the point c of detachment between tip and membrane. (B) Force F to

maintain a constant penetration depth h0 ¼ 10 nm as a function of the tip

radius Rtip using typical parameters for a membrane in the gel (black line)

and fluid phase (gray line); parameters: sgel ¼ 5.0 mN m�1, kgel ¼ 1.0�10�18

J, sfluid ¼ 1.0 mN m�1, kfluid ¼ 0.1�10�18 J, and Rpore ¼ 90 nm. (C) Force

F at h0 ¼ 10 nm as a function of the pore radius Rpore for a membrane in the

gel (black line) and fluid phase (gray line) using the following parameters:

Rtip ¼ 20 nm, sgel ¼ 5.0 mN m�1, kgel ¼ 1.0�10�18 J, kfluid ¼ 0.1�10�18 J,

and sfluid ¼ 1.0 mN m�1.
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pores exhibiting a mean radius of 33 nm is only by a factor of

1.4 larger than that obtained on pores with a radius of 90 nm

(Fig. 4). From our theory, we expect a factor of 2 (see Fig. 7

C). The deviation might be explained by the breakdown of

the continuum assumption of the bilayer covering small

pores and needs to be elucidated in the future. Therefore, we

restrict our modeling to the larger pores. The gray line

represents the calculation for a membrane in the fluid phase

with kfluid ¼ 0.1�10�18 J and a lateral tension of sfluid ¼ 1.0

mN m�1 accounting for the adhesion between the membrane

and the pore rim. The black line is the result of the

calculation for a bilayer in the gel phase (sgel ¼ 5 mN m�1,

kgel ¼ 1.0�10�18 J). A tip size of Rtip ¼ 20 nm was assumed

for both cases, and indentation was modeled in the center of

the pore. In general, larger forces are needed to displace a

membrane in the gel phase than a fluid membrane. To

elucidate the impact of s and k on the force-indentation

curves in more detail, we show parameter curves in Fig. 8

illustrating the situation for membranes with variable lateral

tension and bending modulus. The solid line represents the

parameters, which are in best accordance with the experi-

ments (see below). Interestingly, the apparent ‘‘spring con-

stant’’ of the membrane estimated from linear regression of

the calculated curves between 4 and 10 nm penetration depth

shows linear dependency on k and s as illustrated in Fig. 9.

From the discussion above, we infer that the logical con-

sequence is to adapt values of k and s in a physical mean-

ingful range to find best agreement between experimental

data and the corresponding model. Since the bending moduli

k for bilayers in the gel phase are in the range of (0.8–

1.2)�10�18 J and for membranes in the fluid phase depending

on the composition in the range of (0.1–0.6)�10�18 J, we set

k to distinct, typical values for the two systems and opti-

mized solely s. For DOTAP, a typical value of 1.0�10�19 J

was chosen, whereas for DODAB, a bending modulus of

1.0�10�18 J as also found for DPPC was assumed (5,16,50).

In the following paragraph, modeling of the experimental

curves using the small gradient approximation and the exact

numerical solution is described. Fig. 10 shows the results of

optimizing the lateral tension s to find best accordance be-

tween the experimental indentation curves of DODAB and

DOTAP on 90 nm pores employing the small gradient ap-

proximation as well as the exact numerical solution of the

shape equation. We found good accordance using the small

gradient approximation (black line 1) with the experimental

curve (gray line) down to an indentation depth of 50 nm for

both the membrane in the gel phase (Fig. 10 A) and in the

fluid phase (Fig. 10 B). Considerably better agreement be-

tween the model and the experimental curve was found for

the exact solution describing the force-indentation curve

correctly down to a penetration depth of 150 nm (black line
2). We consider the most likely cause for this deviation

between the two theoretical models to be a failure of the

linearization of the Monge parameterization. Even though

very frequently employed, its unphysical divergence of ten-

sion and bending energy at vertical slope leads to systematic

overestimations of energies and forces already at much

smaller slopes. The same has previously been found for the

problem of colloidal wrapping (51,52). However, at small

enough forces, both solutions coincide with each other, as

well as with the experimental curve. Hence, even though the

small gradient approximation fails to describe the entire

measurement, its asymptotic exactness at small forces can

be used to match the experimental data, if parameters are

FIGURE 8 (A) Calculated force-indentation plots

of a gel phase membrane with a bending modulus of

kgel ¼ 1.0�10�18 J and varied surface tension (s1. . .5

¼ 50 mN m�1; 10 mN m�1; 5.0 mN m�1; 1.0 mN

m�1; 0.5 mN m�1). (B) Force-indentation plot of a

membrane at fixed surface tension (sgel ¼ 5.0 mN

m�1) and variable bending modulus (k1. . .4 ¼
1.2�10�18 J; 1.0�10�18 J; 0.5�10�18 J; 0.1�10�18 J).

(C) Indentation of a fluid membrane (kfluid ¼
0.1�10�18 J) exhibiting variable surface tension

(s1. . .5 ¼ 5.0 mN m�1; 2.0 mN m�1; 1.0 mN m�1;

0.1 mN m�1; 0.05 mN m�1). (D) Indentation of a

membrane (sfluid ¼ 1.0 mN m�1) with various

bending moduli (k1. . .4 ¼ 0.5�10�18 J; 0.3�10�18 J;

0.1�10�18 J; 0.01�10�18 J). All curves were calculated

using the small gradient approximation.
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adjusted such as to fit the regime of small forces and not the

overall average shape. Deviation of the exact solution from

the experimental force-indentation curve at large penetra-

tions could be explained in terms of variable tip geometry

deviating from the idealized parabolic indenter (Fig. 10 B).

The mechanical parameters we obtained from optimizing

s to find best agreement between the model and the data are

physically very reasonable. Fluid membranes with low bend-

ing rigidity exhibit typically a rupture tension of (5–10) mN

m�1, whereas membranes in the gel state should exhibit a

considerably higher rupture tension (5). The stability of the

membrane can be assessed as follows: the area compression

modulus Ka relates to the bending modulus k and the thick-

ness of the bilayer tb according to Ka ¼ 24 k=t2b (5). The

surface tension of the membrane is s ¼ KaðA� A0Þ=A0;
with A the actual area and A0 the area at zero tension. Since

the critical lateral strain at lysis is ;2–5%, one can estimate

the rupture tension to be (20–55) mN m�1 for bilayers in the

gel phase and (2–5.5) mN m�1 for membranes in the fluid

phase. Our values found for s are well below the rupture

tension, thus stressing the fact that pore-spanning bilayers

are stable enough to be visualized and indented by atomic

force microscopy even if they are in the fluid state. This

renders our method a valuable tool to study membranes of

arbitrary composition as long as the surface tension is below

the critical value of rupture tension.

The results presented in this study agree qualitatively with

previous studies from Goldstein and co-workers (28) as well

as Derényi et al. (29), who investigated the tether formation

of membranes due to pulling with a point load force de-

scribing a transition from a linear regime. The authors found

that the force grows approximately proportional to the dis-

placement until tethers are formed. Further stretching does

result in a constant force. Here we obviously do not enter this

regime, which can be attributed not only to the limited pen-

etration depth but also to the finite size of the tip.

Closest to our approach are two recent studies of Boulbitch.

In the first one, he scrutinized the impact of a local force

on the membrane deflection with the outcome that fluid

membranes of the cell exhibit very small spring constants

FIGURE 9 Calculated apparent ‘‘spring constant’’ of the membrane, k, as

a function of bending modulus and surface tension in two different regimes

(kgel, kfluid) representing membranes in the fluid and in the gel phase. (A) k as

a function of bending modulus with either sfluid ¼ 1.0 mN m�1 or sgel ¼ 5.0

mN m�1. (B) k as a function of surface tension with either kfluid ¼ 0.1�10�18

J or kgel ¼ 1.0�10�18 J.

FIGURE 10 (A) Force-indentation curve of a membrane in the gel phase

(DODAB) covering a pore with a radius of Rpore ¼ 90 nm. 1 represents the

solution calculated using the small gradient approximation, whereas 2 shows

the exact solution. In both cases, the following parameters were used: Rtip ¼
20 nm, Rpore ¼ 90 nm, sgel ¼ 5.0 mN m�1, and kgel ¼ 1.0�10�18 J. (B) The

same parameters as in A, but this time for a DOTAP membrane, using the

following parameters: Rtip ¼ 20 nm, Rpore ¼ 90 nm, sfluid ¼ 1.0 mN m�1,

and kfluid ¼ 0.1�10�18 J.
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(km � 10�4 Nm�1) based on bending rigidity and hence

would be nearly invisible to AFM (12). The conclusion he

draws is that the restoring forces of cells are dominated by

the elasticity of the cytoskeleton and osmotic pressure of the

cell. In a second publication, Boulbitch (13) reported on the

enforced unbinding of a bead adhering to a membrane using

a similar approach to ours to determine the force exerted on

the membrane by a cylinder. Similar theoretical results treat-

ing the indentation of liposomes with more emphasis on stretch-

ing of the membrane were obtained by Wan and co-workers

(14).

We conclude that contributions from lateral tension and

bending rigidity govern the elastic response of pore-spanning

DODAB and DOTAP bilayers indented by an AFM tip. Both

membranes in the gel state as well as fluid state can be

investigated by our method, providing mechanical parame-

ters for either bending rigidity or lateral tension dominated

by adhesion to the substrate beyond the pore rim. The in-

dentation is fully reversible, i.e., no hysteresis occurs be-

tween indentation and retraction of the tip and the mechanical

parameters do not depend on the velocity of the cantilever.

We found that the membrane behaves as intuitively ex-

pected. The force to indent the membrane to a certain extent

increases with increasing tip size, decreasing pore size, larger

rigidity, and a position closer to the pore rim. To date, micro-

pipette suction experiments remain the most suitable tool

when it comes to measure the bending rigidity of mem-

branes, but at the cost of spatial resolution. AFM in con-

junction with membranes covering nanometer-sized pores

provides the necessary compromise to study membrane me-

chanics locally, restricted only by the pore size. It is con-

ceivable to use pore arrays in the future to study the impact of

composition and phase separation on the mechanical prop-

erties of membranes to map the domain structure of a mem-

brane mechanically.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.

We are very much indebted to Davood Norouzi, who helped carrying out

the numerical calculations, and Luigi Delle Site for critically reading of

the manuscript. A.J. gratefully acknowledges financial support from the

Bundesministerium für Bildung und Forschung.
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20. Krüger, S., D. Krüger, and A. Janshoff. 2004. SFM based rapid force
curve acquisition on supported lipid bilayers: experiments and sim-
ulations using pulsed force mode. Chem. Phys. Chem. 5:989–997.

21. Liang, X., G. Mao, and K. Y. S. Ng. 2004. Mechanical properties and
stability measurement of cholesterol-containing liposome on mica by
atomic force microscopy. J. Colloid Interface Sci. 278:53–62.

22. Liang, X., G. Mao, and K. Y. S. Ng. 2004. Probing small unilamellar
egg PC vesicles on mica surface by atomic force microscopy. Colloids
Surf. B: Biointerfaces. 34:41–51.

23. Pignataro, B., C. Steinem, H.-J. Galla, H. Fuchs, and A. Janshoff.
2000. Specific adhesion of vesicles monitored by scanning force
microscopy and quartz crystal microbalance. Biophys. J. 78:
487–498.

24. Hennesthal, C., J. Drexler, and C. Steinem. 2002. Membrane-
suspended nanocompartments based on ordered pores. Chem. Phys.
Chem. 10:885–889.

25. Drexler, J., and C. Steinem. 2003. Pore-suspending lipid bilayers on
porous alumina investigated by electrical impedance spectroscopy.
J. Phys. Chem. B. 107:11245–11254.

Nanodrums 225

Biophysical Journal 91(1) 217–226



26. Hennesthal, C., and C. Steinem. 2000. Pore-spanning lipid bilayers

visualized by scanning force microscopy. J. Am. Chem. Soc. 122:8085–

8086.
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