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ABSTRACT It has been a significant challenge to quantitatively study the dynamic intracellular processes in live cells. These
studies are essential for a thorough understanding of the underlying mechanisms regulating the signaling pathways and the
transitions between cell cycle stages. Our studies of Cdc20, an important mitotic checkpoint protein, throughout the cell cycle
demonstrate that fluorescence correlation spectroscopy is a powerful tool for in vivo quantitative studies of dynamic intracellular
processes. In this study, Cdc20 is found to be present primarily in a large complex (.1 Mda) during interphase with a diffusion
constant of 1.8 6 0.1 mm2/s and a concentration of 76 6 24 nM, consistent with its association with the APC/C. During mitosis,
however, a proportion of Cdc20 dissociates from APC/C at a rate of 12 pM/s into a soluble pool with a diffusion constant of 19.5
6 5.0 mm2/s, whose size is most consistent with free Cdc20. This free pool accumulates to 50% of total Cdc20 (;40 nM) during
chronic activation of the mitotic checkpoint but disappears during mitotic exit at a rate of 31 pM/s. The observed changes in the
biochemical assembly states of Cdc20 closely correlate to the known temporal pattern of the activity of APC/CCdc20 in mitosis.
Photon counting histograms reveal that both complexes contain only a single molecule of Cdc20. The underlying mechanisms
of the activities of APC/CCdc20 throughout the cell cycle are discussed in light of our experimental observations.

INTRODUCTION

Cell cycle progression requires the ordered accumulation and

destruction of specific proteins, including the mitotic cyclins

that in turn control the activity of their associated cyclin-

dependent kinases (CDKs) (1,2). The anaphase-promoting

complex/cyclosome (APC/C) is a large, multi-protein com-

plex whose E3-ubiquitin ligase activity is precisely regulated

to ensure the timely ubiquitin-mediated proteolysis of cy-

clins and other key cell cycle regulators. During mitosis, the

APC/C is responsible for the irreversible segregation of

replicated chromatids to each daughter cell. This action is

delayed by the mitotic checkpoint (also known as the spindle

assembly checkpoint) until all chromosomes are attached

to spindle microtubules at the kinetochores. Central to the

checkpoint are the unattached kinetochores which generate a

‘‘wait anaphase’’ signal to prevent premature exit of mitosis

(3–6). Cdc20 is an essential activator of the APC/C through

its action as a substrate-specific adaptor protein that allows

recognition of a destruction box containing proteins by

the APC/C for ubiquitination (7,8). Inhibiting the ability of

Cdc20 to facilitate APC/C’s recognition of substrates such as

cyclin B and securin is therefore the primary function of the

mitotic checkpoint. For this, unattached kinetochores gen-

erate one or more Cdc20 inhibitors that selectively block

Cdc20-stimulated APC/C action on these substrates. Pro-

posed Cdc20 inhibitors include phosphorylation of Cdc20

itself by the mitotic kinase Bub1 (9), direct binding by oligo-

merized Mad2 (10) or BubR1 (11), or a four component com-

plex (namedMCC, for mitotic checkpoint complex) comprising

BubR1, Mad2, Bub3, and Cdc20 (12).

Although significant progress has been made in under-

standing the mitotic checkpoint at the molecular level through

in vitro studies, much of the dynamic and kinetic information

in live cells that is crucial for developing a model for the

signaling pathway remains unknown. A key question is

whether Cdc20 serves as an essential, stoichiometric com-

ponent of the APC/C or as a kiss-and-run facilitator that

identifies substrates, brings them to the APC/C, and then re-

leases to begin another cycle of substrate binding and recruit-

ment (13). Lack of a clear dynamic picture of the interaction

between the two proteins has led to two controversial models

on how the mitotic checkpoint regulates APC/CCdc20. The

first model suggests that Cdc20 has a dynamic interaction

with the APC/C so that it allows Mad2, together with other

checkpoint proteins, to inhibit APC/C by sequestering its ac-

tivator Cdc20 (10,14). On the other hand, the second model

suggests that the previously proposed MCC, which contains

checkpoint proteins Mad2, BubR1, Cdc20, and Bub3, may

directly bind to and inhibit the APC/C, which has itself been

sensitized by unattached kinetochores (12,15). Similar ques-

tions also arise for APC/CCdc20 inhibition in interphase. Emi1

has been identified as an interphase inhibitor (16,17). How-

ever, it is not clear whether Emi1 binds and inhibits Cdc20

already associated with the APC/C or sequesters Cdc20 as it

dissociates from the APC/C (16).
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Understanding of the dynamic interactions between the

checkpoint proteins is important for establishing models that

explain the central question of the mitotic checkpoint, i.e.,

how the ‘‘wait anaphase’’ signal from a single unattached

kinetochore is transduced to halt the progression of the

mitosis (6,15,18). Definitive answers to these questions, like

many others arising from various cellular studies in cell bi-

ology, require quantitative understanding of the in vivo

dynamic intracellular processes in live cells. This poses

significant challenges to the traditional biochemical exper-

imental methods and requires noninvasive in vivo and real

time quantitative measurements of the molecular concentra-

tions, the molecular diffusions, and the rates of reactions of

protein-protein interactions in live cells.

Fluorescence correlation spectroscopy (FCS) is a powerful

tool for studying the molecular dynamics of diffusion, rates

of biochemical reactions, as well as absolute concentrations

with single-molecule sensitivity (19,20). Recent develop-

ments in FCS have demonstrated its potential as a new,

enabling technology that allows noninvasive real time quan-

titative measurements of individual molecules in living cells

(21–27). In this study, we demonstrate that we can quantita-

tively monitor the evolution of the Cdc20-related biochem-

ical reaction processes in live cells with FCS. Throughout the

entire cell cycle, we measured the temporal dissociation of a

small Cdc20-containing species from a large Cdc20-contain-

ing complex (APC/CCdc20), the diffusion constants and ab-

solute concentrations of each Cdc20-containing species at

various stages of the cell cycle, the real time rates of the

reaction between the two Cdc20-containing complexes, and

the temporal degradation of the small Cdc20 species at the

exit of the mitosis. The underlying mechanisms of the ac-

tivities of APC/CCdc20 throughout the cell cycle are also

discussed in light of our experimental observations.

MATERIALS AND METHODS

Constructs and cell lines

Cells and methods of cell culture used in these studies were from established

sublines of the rat kangaroo Potorous tridactylus, PTK2. PTK2 cells and

derived lines were cultured in MEM-Earle’s supplemented with 10% fetal

bovine serum, sodium pyruvate, penicillin, and streptomycin. Cell lines

stably expressing fluorescent protein fusions to human Cdc20 were gen-

erated by amphotropic retroviral infection (as described in Shah et al.(28)).

The cDNA for human Cdc20 was excised from a clone provided by Prof.

Peter Sorger (Massachusetts Institute of Technology, Cambridge, MA) and

ligated into the enhanced cyan fluorescent protein (ECFP)-C1. This fusion

cDNA was ligated into the SnaBI/EcoRI sites of pBABEpuro, a retroviral

vector.

The retroviral plasmid containing the fluorescent protein fusion was

cotransfected using the Fugene transfection reagent (Roche Pharmaceuti-

cals, Indianapolis, IN) into 293-GP cells (a human embryonic kidney cell

line harboring a portion of the Murine Moloney Leukemia Virus genome)

along with a VSV-G pseudotyping plasmid to generate amphotropic virus.

Forty-eight hours after transfection, the culture supernatant was collected,

filtered, and mixed with 8 mg/mL hexadimethrine bromide (Polybrene,

Sigma, St. Louis, MO), and 10% of the total filtrate was placed onto a

subconfluent culture (30–40%) of PTK2 cells in 35-mm dishes; 48 h after

infection, cells were split and replated in 10-cm dishes and subjected to

selection in 2 mg/mL puromycin for 14 days. High expressors (top 10%)

were cloned by fluorescence-activated cell sorting (FACSVantage, Becton

Dickinson, San Jose, CA). Cells were maintained as polyclonal lines, with

cells expressing varying levels of fluorescent protein fusion.

Instrumentation and measurements

Live cell images were taken on a modified Zeiss Axiovert inverted mi-

croscope using a 633 high numerical aperture (NA 1.4) Plan Apochromat

objective. Images were collected by a digital camera (C4742-95, Hama-

matsu, Hamamatsu City, Japan) and captured to a computer through the use

of AxioVision software (Carl Zeiss, Göttingen, Germany).

For flow cytometry analysis, cells from both control and ECFP-Cdc20

cell lines were fixed in 50% ethanol for 20 min on ice before treating with

RNase at a final concentration of 50 mg/ml. Propidium iodide was added to

the cell suspension at a final concentration of 50 mg/ml for 15 min for cell

cycle measurement on BD FACS (Becton, Dickinson and Co., Franklin

Lakes, NJ).

FCS with two-photon excitation was performed on a modified Zeiss

Axiovert invertedmicroscope using one of the camera ports for FCSdetection

(Fig. 1 A and (26)). Briefly, the collimated beam of a mode-locked tunable

Coherent (Palo Also, CA) Mira 900 Titanium-Sapphire laser with 76 MHz,

120 fs pulse width was coupled through a Zeiss 633 Plan Apochromat oil

immersion objective (NA ¼ 1.4). The fluorescence from ECFP has an

emission peak at 477 nm and was collected with a backscattering geometry

and passed through a blue interference filter (HQ480/100M, Chroma Tech,

Brattleboro, VT). Photon counts were detected with a GaAsP photomultiplier

tube (PMT) detector (H7421-40, Hamamatsu). The detector signal was

correlated online by a Flex5000/FAST correlator (correlator.com). In the

PCH experiments, a Flex02-12D digital correlator was used to record the

photon counts with a dwell time of 50ms and ameasurement time of 30 s. The

recorded photon counts were stored and then analyzed with LFD Globals

Unlimited software (Champaign, IL). A detailed description of the FCS

experimental apparatus can be found elsewhere (26).

PTK2 cells were seeded into 35-mm coverslip-bottommicrowells (MatTek,

Ashwell, MA) in Phenol red-free culture medium. The cells were allowed to

adhere overnight at 37�C in a 7.5% CO2 incubator. For nocodazole

experiments, cells were exposed to 300 nM nocodazole for 2–4 h. Cells in

mitosis were identified by phase contrast microscopy for FCSmeasurements.

During the FCS measurements, temperature on the sample stage was 30�C,
controlled by an Air Stream Incubator (Nicholson Precision Instruments,

Bethesda, MD). The laser intensity was 1.80 mW at the sample to avoid

bleaching and photodamage to the cells. Autocorrelation curves measured

from cells were averages of 3–4 successive measurements, each 60-s long.

As described in our previous study (26), to evaluate the effect of

photobleaching of diffusing ECFP to our recovered diffusion constants, we

conducted several FCS measurements in solution with a laser power varying

from 1.5 to 5 mW and obtained virtually identical autocorrelation curves.

FCS measurements were then performed within a small volume inside the

cytosol of a cell with a laser power varying from 1.5 to 2.4 mW. Again we

obtained identical autocorrelation curves. The results of the control

experiments indicate that there is no detectable photobleaching of diffusing

ECFP within the range of incident laser intensity in our experiments.

Data analysis

Any dynamic process that affects the emission of fluorescent molecules in a

solution causes fluctuations in the fluorescence signal F(t) that can be

characterized by a normalized autocorrelation function:

GðtÞ ¼ ÆdFð0ÞdFðtÞæ
ÆFðtÞæ2

; (1)
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where FÆtæ is the fluorescence obtained from the excitation volume at delay

time t, brackets denote ensemble average, and dF(t) ¼ F(t) � FÆtæ. The
fitting formula is the standard fit for the three-dimensional multi-component

diffusion:

GðtÞ ¼ +
i

1

Ni

11
t

td;i

� ��1

11
t

v
2
td:i

� ��1
2

; (2)

where Ni is the number of species i, td,i is the characteristic diffusion time

during which an ith species molecule resides in the excitation volume with

an axial (z0) to lateral (r0) dimension ratio v (¼ z0/r0), and td;I ¼ r20=8Di is

defined as the average lateral diffusion time under two-photon excitation for

an ith species molecule with diffusion coefficient Di through the excitation

volume. For a single diffusion species, the average number of moleculesN¼
g/G(0), with g of 0.076 (29). Thus the number of photons per molecule per

second h (i.e., molecular brightness) can be calculated from the average

detected fluorescence intensity with the average number of molecules in the

excitation volume. In the presence of the cellular background, the measured

correlation function amplitude must be scaled by ÆF(t)æ2/[ÆF(t)æ � ÆFBGæ]2,
where ÆFBGæ is the time-averaged background signal obtained from exper-

iments on nontransfected cells as a control (26,30).

To calculate the rates of changes in the concentration of measured spe-

cies within mitosis, we recorded the average time span that each phase takes

(Fig. 1 D). The rate of changes in concentration is calculated based on the

time span of the phases of interest and the corresponding changes in the

concentration.

In the case of multiple diffusion species, a photon-counting histogram

(PCH) is applied to recover the molecular brightness hi of each species (31).

This method analyzes the probability distribution of the photon counts that is

experimentally determined by the PCH, which has the sensitivity to resolve a

mixture of monomers and dimers. In practice, PCH represents the prob-

ability to detect k photons per sampling time. The probability p(k) to detect k

photons from a single diffusing molecule is a weighted average of Poisson

distributions, each with the mean value eI(r):

pðkÞ ¼
Z ½eIðrÞ�kexp½�eIðrÞ�

k!
qðrÞdr; (3)

where I(r) is the point spread function normalized at the origin and q(r) is the
probability to find the molecule at the position r. To generalize this equation
for N diffusing molecules, I(r) and q(r) must be replaced by +N

i¼1
IðrÞ, andQN

i¼1 qðrÞ, respectively, and the integration is performed over the 3N coor-

dinates of the molecules. Finally, to determine the PCH for an open two-

photon excitation volume with a fluctuating number of molecules inside,

p(k) is averaged with a Poisson distribution n(N) for the number of mol-

ecules:

FIGURE 1 (A) Experimental setup for two-photon FCS

measurements. (B) Flow cytometry cell cycle analysis of

the control PTK2 cells and ECFP-Cdc20 expressing

PTK2 cells. (C) ECFP-Cdc20 expressing PTK2 cell un-

dergoing mitosis. (D) Average lengths of each phase in

mitotic ECFP-Cdc20 expressing PTK2 cells versus that

in the control PTK2 cells.
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Y
ðkÞ ¼ +

N

N¼0

pðkÞnðNÞ: (4)

RESULTS

FCS measurements were conducted within the cytoplasm of

interphase and mitotic cells. FCS is able to resolve a mixture

of fluorescent species by differences in their diffusion con-

stant especially when the molecular mass between the two

species differs more than a factor of 5–8 (32). Therefore,

diffusion of the free ECFP-Cdc20 fusion (;85 kDa) is ex-

pected to be much faster than when it is bound to the APC/C

(;1,600 kDa). In addition, the molecular brightness h,

another important parameter of the ECFP-Cdc20 fusion, can

be determined by FCS and a related technique, PCH (24,31),

and allows the determination of the number of Cdc20 mol-

ecules per diffusing complex. The knowledge of this is im-

portant because, although Cdc20 has been found in the

APC/C immunoprecipitates, it has not been quantitatively

identified as a stoichiometric component in the APC/C

purifications (3).

Lines of PtK2 cells were generated using amphotropic

retroviruses to stably introduce a gene encoding ECFP fused

in frame with Cdc20. Consistent with previous observations,

ECFP-Cdc20 was localized to the cytoplasm and the cen-

trosome of interphase cells (33). As expected from the

intermolecular associations of other GFP-Cdc20 fusions that

have been shown to retain the functional associations with

endogenous partners (33,34), the resulting cells displayed

normal cell cycles, advancing through interphase and each

step in mitosis with timings that were indistinguishable from

the initial cells (Fig. 1, B–D).

Cdc20 is a component of a stable megadalton
complex in interphase

Thirteen interphase cells were followed, and FCS measure-

ments were sequentially made on each until it entered mito-

sis. Autocorrelation functions obtained from cells that entered

mitosis within 2 h after FCS measurements were considered

to be from cells in the G2 phase of the cell cycle. Other

autocorrelation functions obtained between 15 and 6 h before

the cells entered mitosis were considered from late G1, S

phase or early G2 phase cells, respectively. FCS measure-

ments were also conducted on cells known to be in early G1

since they were made in cells immediately after the ab-

scission of two daughter cells. In all of these interphase cells,

Cdc20 behavior could be well modeled by a single three-

dimensional diffusion species model. An average cytoplas-

mic concentration of 76 6 24 nM was recovered from this

analysis, similar to the 100-nM level measured with

quantitative immunoblotting for endogenous Cdc20 (11).

In addition, an average diffusion constant of 1.86 0.1 mm2/s

(Fig. 2) was also obtained which indicates that, in interphase

cells, most Cdc20 is stably associated with a large complex.

The intracellular diffusion constant of free ECFP (;30 kDa)

was determined to be 21mm2/s (26). Whereas other FCSmea-

surements have identified complexes in the million dalton

(MD) range to have a diffusion constant of 3.2 mm2/s (27),

the small 1.8 mm2/s diffusion constant for the ECFP-Cdc20

must indicate that throughout interphase most Cdc20 is

found in a large complex with a molecular mass in the range

of .1 MDa. Since the APC/C is a high molecular mass

complex composed of at least 11 subunits whose molecular

mass is estimated to be;1.5 MDa (12) and previous studies

have demonstrated that Cdc20 binds to interphase APC/C

both in vivo and in vitro (10,11), this large Cdc20-containing

complex observed in interphase is consistent with its asso-

ciation with a complex containing APC/C, which we will

hereinafter refer to as APC/CCdc20.

A smaller complex of Cdc20 accumulates early in
mitosis and is lost after telophase

FCS measurements were conducted on individual mitotic

cells (n ¼ 14) as mitosis progressed. The laser beam was

FIGURE 2 (A) ECFP-Cdc20 expressing PTK2 cell in early G1 phase. (B)
ECFP-Cdc20 expressing PTK2 cell in interphase. (C) The autocorrelation

functions from the FCS measurements on interphase cells (G2 and early G1

phase) are fitted with a single species model (bold solid lines), which reveals
that Cdc20 is a stable component of a large complex in interphase cells with

a diffusion constant of D ¼ 1.8 6 0.1 mm2/s.
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positioned at randomly selected locations in the cytoplasm

to avoid chromosomes. In prophase (Fig. 3 A) (before

nuclear envelop breakdown), the measured autocorrelation

functions were still well fitted by a single species model

with an identical diffusion constant to that of interphase

cells (;1.8 mm2/s) (Fig. 3 G), indicating most or all Cdc20

stays associated with a .1 MDa complex consistent with

APC/CCdc20. However, as mitosis proceeded beginning

with nuclear envelope breakdown (Fig. 3, B–E), the auto-

correlation functions exhibited a faster decay (Fig. 3 H),
indicating the emergence of a significantly faster diffusing

component.

The autocorrelation functions obtained between prophase

and cytokinesis could not be fitted with a single species

model. A two species model, however, provided an excellent

fit to the experimental evidence (Fig. 3 H), with the first

species (D1) with a diffusion constant of 19.5 6 5.0 mm2/s.

As before, a larger complex (D2) was also present with a

diffusion constant (1.7 6 0.2 mm2/s) indistinguishable

from the large APC/CCdc20 complex seen in interphase. The

abundance of the larger complex D2 decreased steadily from

prophase to metaphase and then remained at that level from

anaphase to cytokinesis (Fig. 4 A). The smaller complex, D1,

was essentially absent during interphase, but gradually in-

creased at a rate of 12 pM/s after nuclear envelope break-

down, reaching a maximum in late prometaphase, when it

was ;½ of total Cdc20 (Fig. 4, B and C).
Constant fluorescence intensity demonstrated that Cdc20

levels were stable from prophase until late prometaphase

(Fig. 4 D), indicating that the smaller D1 complex may result

from Cdc20 dissociating from the large APC/CCdc20 com-

plex. At late prometaphase/metaphase, however, the fluo-

rescence intensity of ECFP-Cdc20 decreased, reaching a

level by cytokinesis that was only half that in early mitosis

(Fig. 4D). This loss was not due to repetitive photobleaching
since fluorescence intensity recorded with a 2-s measure-

ment time (compared to 3–4 min for a FCS measurement) in

prophase followed by a second measurement at anaphase or

telophase revealed the same changes (data not shown). The

small complex D1 progressively decreased at a rate of 31

pM/s, becoming undetectable by cytokinesis (Fig. 4, B and

C), as manifested by the continuous loss of the fast decay

component in the autocorrelation functions until cytokinesis,

where the autocorrelation curves were again well fitted with

a single species model with a diffusion constant ;1.8 mm2/s

(Fig. 3, G and H). Previous real time imaging had reported

Cdc20 proteolysis during mitotic exit (33); our evidence

reveals that it is the small (D1) species that is exclusively lost

after anaphase onset.

To determine the abundances of the two Cdc20 complexes

during maximally activated mitotic checkpoint signaling,

microtubules in mitotic cells (n ¼ 4) were disassembled by

treatment with nocodazole for 2–4 h, a time sufficient for

complete APC/CCdc20-mediated degradation of cyclin A (2–4

times the length required for these cells to normally enter and

complete mitosis, as shown in Fig. 1 D). FCS measure-

ments on these cells revealed a significant amount (;25 nM)

of the APC/C-free D1 complex of Cdc20 (16 6 6 mm2/s)

(Fig. 4 B).

FIGURE 3 (A) ECFP-Cdc20 cell in prophase. (B) ECFP-Cdc20 cell in

prometaphase. (C) ECFP-Cdc20 cell in metaphase. (D) ECFP-Cdc20 cell

in anaphase. (E) ECFP-Cdc20 cell in telophase. (F) ECFP-Cdc20 cell in

cytokinesis. (G) The autocorrelation functions from the prophase and the

cytokinesis phases ofmitotic cells indicate that Cdc20 stays bound to the large

complex at the beginning and the end of the mitosis, respectively. (H) FCS

measurements demonstrate a prominent faster decay of the autocorrelation

functions from the onset of prometaphase as a result of the emergence of a

faster diffusion component. The autocorrelation functions need to be fitted

with a two species model with D1 (D¼ 19.56 5.1 mm2/s) and D2, the large

complex already observed in interphase (D¼ 1.76 0.2mm2/s). Starting from

the transition between late prometaphase and metaphase, the decay of the

autocorrelation functions reverses and continually slows down until cytoki-

nesis, where the autocorrelation functions can be adequately analyzed by a

single species model. The gray solid lines show a single species model fit for

prophase and cytokinesis, and the colored bold solid lines represent a two

species model for other phases in mitosis.
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Only one ECFP-Cdc20 exists in each
Cdc20-containing complex throughout the
cell cycle

Recent studies have demonstrated that analysis of the molec-

ular brightness h (number of photons emitted per molecule

per second) can identify the oligomerization state of proteins

(24,26,27). This is because a dimer appears twice as bright as

the monomer so that the molecular brightness of a dimer will

be twice that of a monomer.

The molecular brightness h of ECFP-Cdc20 in interphase

cells was determined to be 3500 6 400 cpsm, essentially

indistinguishable from our previous determination for mon-

omeric ECFP (3400 6 100 cpsm) (26). Since each Cdc20

protein is genetically tagged with one ECFP molecule, this

indicates that each large complex in interphase carries only

one ECFP-Cdc20.

For mitotic cells in which the autocorrelation functions

could only be fittedwith a two speciesmodel, the amplitude of

an autocorrelation curve G(0) does not have the simple re-

lationship to the number of diffusing molecules as it does in a

single species model (29). To recover the molecular bright-

ness of D1 and D2, we used a related technology-PCH (31).

PCH measurements were conducted first on nontransfected

control cells to evaluate the effects of autofluorescence of the

cells. PCH analysis yielded a molecular brightness of 270 6

30 cpsm and 76 2 autofluorescent molecules in the excitation

volume. The PCH measurements were then conducted on

ECFP-Cdc20 cells at each mitotic stage. For the determina-

tion of the molecular brightness of D1 and D2, autofluor-

escence was accounted for by including the autofluorescent

molecules in the PCH analysis using the average molecular

brightness and number of autofluorescent molecules obtained

from uninfected control cells. Although the proportions of the

large and small complexes vary significantly at different mi-

totic stages (Fig. 4, A and B), this analysis recovered a single
molecular brightness value of 3400 6 600 cpsm throughout

the mitosis (Fig. 5). Therefore, the transient small complex

(D1) and the APC/CCdc20 (D2) complex present throughout

the cell cycle contain a single molecule of Cdc20.

DISCUSSION

In this study, we demonstrated that FCS is an important tool

for quantitative investigations of in vivo dynamic intracel-

lular processes via the real time observation of the evolution

of the biochemical assembly states of Cdc20 throughout the

entire cell cycle. We found that Cdc20 is stoichiometrically

FIGURE 4 Concentration of Cdc20 complexes is calculated based on the

calibrated excitation volume of our system (26) and Ni obtained through the

analysis of autocorrelation functions with Eq. 2. (A) Concentration of large

Cdc20 complex (D2) across the cell cycle. (B) Concentration of small Cdc20

complex (D1) across the cell cycle. (C) The changes in the total concentration
ofCdc20 across the cell cycle. The solid line represents the temporal pattern of

APC/CCdc20 activities described in previous review (4). (D) The fluorescence

intensity was monitored during the FCSmeasurements. It shows that in early

mitosis the fluorescence intensity is stable, indicating a stable abundance of

Cdc20 in the cells. The decrease in the intensity from late prometaphase

reflects the degradation of Cdc20 during the mitotic exit.

FIGURE 5 PCH of mitotic ECFP-Cdc20 cells. The symbols represent the

experimental data; the solid line shows fits with a single component model,

indicating that there is a single molecular brightness for ECFP-Cdc20

regardless of the ECFP-Cdc20 complex.
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complexed to form APC/CCdc20 throughout interphase with a

diffusion constant of 1.86 0.1 mm2/s and a concentration of

76 6 24 nM. After mitotic entry, as much as half of all

Cdc20 is released into a much smaller complex (or com-

plexes) at a rate of 12 pM/s, which peaks at metaphase (;40

nM) before quantitative loss by telophase at a rate of 31 3

10�3 nM/s. This APC/C-free Cdc20 has a much faster

diffusion constant (19.56 5.0 mm2/s), consistent with either

free monomeric Cdc20 or a small Cdc20-containing com-

plex. Both APC/CCdc20 and the small Cdc20 species contain

only a single molecule of Cdc20. The emergence of the

smaller species cannot result from photodynamic flickering,

a phenomenon in which a faster decay component emerges

relative to molecular diffusion due to the proton displace-

ment inside the molecular structure, because ECFP does not

exhibit such proton-driven flickering (26). The quantitative

information of the dynamic behavior of the Cdc20 species

obtained in this study provides significant insights into the

underlying mechanisms regulating the activity of APC/

CCdc20 throughout the cell cycle.

Inhibition of interphase APC/CCdc20 complex

Our FCS measurements have demonstrated that interphase

Cdc20 is in a megadalton complex consistent to the APC/

CCdc20. Recent work has identified Emi1/Rcal as a protein that

inhibits APC/CCdc20 in interphase (16,17,35,36). However,

how Emi1 inhibits APC/CCdc20 in interphase is not well

understood. Fractionation experiments have shown separate

Emi1-Cdc20 and APC/CCdc20 complexes in egg extracts,

suggesting a model in which Cdc20 is sequestered away from

the APC/C by Emi1 (16). On the other hand, exogenously

added Emi1 can inhibit the APC/C already associated with

Cdc20 in mitotic egg extracts, leading to a direct inhibition

model (16). The molecular mass of free ECFP-Cdc20 and

ECFP-Cdc20-Emi1 is 85 kDa and 135 kDa, respectively,

whereas the mass of APC/C is ;1.5 MD. If the interaction

between Cdc20 and APC/C is dynamic to produce a

significant steady-state concentration of Cdc20 unbound to

APC/C, a much faster and smaller component should have

been detected in our analysis of the autocorrelation functions

in view of the significant difference in mass between APC/

CCdc20 and free Cdc20 or Cdc20-Emi1. Our evidence in

interphase indicates that most of the Cdc20 is associated with

APC/C to form APC/CCdc20 in interphase. Considering the

possibility that small Cdc20 complexes could be present in

interphase at concentrations below the detection limit of FCS,

we conclude that Emi1 acting primarily by directly inhibiting

the APC/C already associated with Cdc20 should be the

predominant mechanism of the inhibition of APC/CCdc20.

Mitotic exit switching from APC/CCdc20

to APC/CCdh1

It is accepted that Cdc20 is degraded through APC/CCdh1

ubiquitination at the end of mitosis and thereby APC/CCdc20

is inactivated (37–39). However, details related to this

mechanism regulating the switch from APC/CCdc20 to APC/

CCdh1 are still not entirely clear (5). For example, biochem-

ical analysis has revealed that a considerable amount of

Cdc20 survives this mitotic degradation and enters the next

round of the cell cycle (10,40). Our data demonstrate the

degradation of the Cdc20 not bound to APC/C at the end of

mitosis, indicating that APC/CCdh1 apparently targets only

the APC/C-free Cdc20 at mitotic exit.

Implications for the regulation of APC/CCdc20

in mitosis

The temporal pattern of APC/CCdc20 activity has been well

established (4,5,41) (also shown in Fig. 4 C). APC/CCdc20 is

activated at the onset of prometaphase when it initiates the

degradation of cyclin A (42–44) and Nek2A (45). Its activity

reaches a maximum, plateauing between late prometaphase

and anaphase. Its activity is then gradually reduced, becom-

ing inactivated at the end of mitosis. To this, our data dem-

onstrate the emergence of APC/C-free Cdc20 at the onset of

prometaphase, yielding a maximization quantity during late

prometaphase and metaphase before its disappearance at the

end of mitosis. The presence and the disappearance of this

APC/C-free Cdc20 are closely correlated with the temporal

pattern of the APC/CCdc20 activity in mitosis (Fig. 4, B and

C). This raises the possibility that this APC-free Cdc20 plays
a critical role in the regulation of APC/CCdc20 activity.

A central question in mitosis is whether Cdc20 serves as a

substrate recruiter while being an essential, stoichiometric

component of the APC/C or as a kiss-and-run facilitator that

identifies substrates, brings them back to the APC/C, and

then releases to begin another cycle of substrate binding and

recruitment (13). The concurrence of the appearance of APC/

C-free Cdc20 and the activation of APC/CCdc20 suggests

that, after the rapid phosphorylation and degradation of Emi1

early in mitosis, this small Cdc20 complex is released from

the APC/C for the recruitment of cyclin A for its ubiqui-

tination by APC/C and subsequent degradation.

A second key unresolved issue in mitosis is how APC/

CCdc20 is inactivated for securin and cyclin B recognition by

actively signaling the mitotic checkpoint when all the while

cyclin A is being ubiquitinated. Two competing models have

been proposed, namely, sequestration of Cdc20 and direct

inhibition of Cdc20 already bound to APC/C (10,12,14,15).

Appearance of the small Cdc20 component when the mitotic

checkpoint is maximally active is consistent with the re-

cruiter for substrates to the APC/C, due to the dynamic

interaction. Our data indicate that the small Cdc20 is neither

sequestered from the APC/C nor bound to the APC/C as its

stoichiometric component, even when the mitotic checkpoint

is maximally signaling. Future studies are needed to elu-

cidate the detailed mechanisms of interaction between check-

point proteins. This will require a combination of approaches,

including FCS dual-color cross correlation spectroscopy as
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an essential complement to the more frequently used

methods focused on biochemistry and molecular biology.
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