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Pseudomonas aeruginosa is inherently resistant to most conventional antibiotics. The mechanism of resis-
tance of this bacterium is mainly associated with the low permeability of its outer membrane to these agents.
We sought to assess the bactericidal efficacy of liposome-entrapped aminoglycosides against resistant clinical
strains of P. aeruginosa and to define the mechanism of liposome-bacterium interactions. Aminoglycosides were
incorporated into liposomes, and the bactericidal efficacies of both free and liposomal drugs were evaluated.
To define the mechanism of liposome-bacterium interactions, transmission electron microscopy (TEM), flow
cytometry, lipid mixing assay, and immunocytochemistry were employed. Encapsulation of aminoglycosides
into liposomes significantly increased their antibacterial activity against the resistant strains used in this study
(MICs of >32 versus <8 �g/ml). TEM observations showed that liposomes interact intimately with the outer
membrane of P. aeruginosa, leading to the membrane deformation. The flow cytometry and lipid mixing assays
confirmed liposome-bacterial membrane fusion, which increased as a function of incubation time. The max-
imum fusion rate was 54.3% � 1.5% for an antibiotic-sensitive strain of P. aeruginosa and 57.8% � 1.9% for a
drug-resistant strain. The fusion between liposomes and P. aeruginosa significantly enhanced the antibiotics’
penetration into the bacterial cells (3.2 � 2.3 versus 24.2 � 6.2 gold particles/bacterium, P < 0.001). Our data
suggest that liposome-entrapped antibiotics could successfully resolve infections caused by antibiotic-resistant
P. aeruginosa through an enhanced mechanism of drug entry into the bacterial cells.

Cystic fibrosis (CF) is the most common inherited lethal
genetic disorder in Caucasian populations. CF is the result of
mutations in the cystic fibrosis transmembrane conductance
regulator gene leading to a series of cellular dysfunctions (21).
Although many organs are affected, the colonization of the
lungs and recurrent infections with Pseudomonas aeruginosa
are the major cause of morbidity and mortality in CF patients
(13). In addition, as an opportunistic microbe, P. aeruginosa
causes acute pneumonia in individuals with underdeveloped or
impaired immune defense systems (7, 34, 39).

P. aeruginosa exhibits several antibiotic resistance mecha-
nisms including enzymatic inactivation of drugs, target site
alteration, and antibiotic efflux systems (11, 12, 30, 31, 35).
However, the low outer-membrane permeability of P. aerugi-
nosa is the major factor contributing to antibiotic resistance
(10, 11, 18, 30). Reports indicate that as many as 90% of P.
aeruginosa strains isolated from CF patient lungs are multidrug
resistant with low outer-membrane permeability (37, 43). Fur-
thermore, P. aeruginosa in CF patient lungs undergoes a phe-
notypic change from nonmucoid to mucoid and adopts a bio-
film mode of growth that is more resistant to antibiotics (20,
39, 41).

Pseudomonal lung infections are commonly treated with
aminoglycosides alone or in combination with �-lactams (5,

14). Aminoglycosides are potent antibiotics that inhibit protein
synthesis by binding to the bacterial ribosomes (19). Some of
the major problems associated with aminoglycosides, however,
include serious ototoxicity and nephrotoxicity as well as the
emergence of low-permeability drug-resistant P. aeruginosa
strains (4, 30, 32).

A delivery system that reduces the drugs’ toxicity while in-
creasing their therapeutic index is of great interest, and lipo-
somes can provide these benefits. Liposomes are colloidal ves-
icles ranging from a few nanometers to several micrometers in
diameter (1, 16). Hydrophilic drugs such as aminoglycosides
can be entrapped in aqueous compartments of liposomes,
whereas hydrophobic drugs are incorporated in their lipid bi-
layers (17).

The objectives of this study were (i) to investigate the anti-
bacterial activity of liposome-entrapped aminoglycosides (ami-
kacin, gentamicin, and tobramycin), (ii) to assess their bacte-
ricidal efficacy by performing killing curve assays, and (iii) to
investigate their mechanism of action.

MATERIALS AND METHODS

Chemicals. Amikacin, gentamicin, and tobramycin were obtained from Fisher
Scientific (Ottawa, Ontario, Canada). 1,2-Dipalmitoyl-sn-glycero-3-phosphocho-
line (DPPC) was from Northern Lipids (Vancouver, British Columbia, Canada).
Cholesterol, Triton X-100, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-
(7-nitro-2-1,3-benzoxadiazol-4-yl) (NBD-PE), 1,2-dioleoyl-sn-glycero-3-phos-
phoethanolamine-N-(lissamine rhodamine B sulfonyl) (Rh-PE), and glutaralde-
hyde solution grade 1 were purchased from Sigma-Aldrich Canada Ltd.
(Oakville, Ontario, Canada). All other chemicals were obtained from Fisher
Scientific.
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Organisms. Nonmucoid strains (PA-1 and PA-48912-2) and mucoid strains
(PA-48912-1 and PA-48913) of P. aeruginosa used in this study were isolated
from sputum of CF patients with pulmonary infections at the Memorial Hospital
(Sudbury, Ontario, Canada) and were maintained as described elsewhere (29).
PA-48912-2 and PA-48913 were resistant to all aminoglycosides, with MICs
ranging from 32 to 1,024 �g/ml. Although we do not know the mechanism of
antibiotic resistance in these isolates, we infer that membrane impermeability is
the culprit because their probe results were negative for all 14 aminoglycoside
resistance genes by the DNA hybridization technique.

We also used laboratory strains of Staphylococcus aureus (ATCC 29213) and
P. aeruginosa (ATCC 27853 and ATCC 10145) as test organisms as well as
reference strains as quality control measures.

Preparation of liposomes. Liposomes composed of DPPC and cholesterol
(Northern Lipids, Vancouver, British Columbia, Canada) in a molar ratio of 2:1
(lipid to cholesterol) were prepared by a dehydration-rehydration method as
previously reported (23).

Antimicrobial susceptibility testing. The MICs of free and liposomal antibi-
otics for all strains were determined by the broth dilution technique as recom-
mended by CLSI (formerly NCCLS) (26). Briefly, serial dilutions of free- or
liposome-encapsulated antibiotics (1,024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, and
0.5 �g/ml) in Mueller-Hinton broth were prepared. Bacterial suspensions were
then added to each tube to achieve a final inoculum of 5 � 105 bacteria/ml. The
lowest concentrations of antibiotic formulations that inhibited the visible bac-
terial growth were determined after 24 h. Two separate experiments in triplicate
were performed for each formulation, and the procedure was validated by the
quality control strains S. aureus and P. aeruginosa.

Time-kill method. Killing curve assays were performed as previously described
(28). Briefly, overnight cultures of P. aeruginosa in a final inoculum of 5 � 105/ml
were incubated with either free- or liposome-encapsulated antibiotics at one,
two, and four times their respective MICs. Control tubes contained no antibiot-
ics. The tubes were then incubated at 37°C for 2, 4, 6, and 24 h. At the end of
each time period, serial dilutions were prepared and the CFU on triplicate
Muller-Hinton agar plates were determined.

Analysis of liposome-bacterium interactions. (i) Microscopic method. Trans-
mission electron microscopy (TEM) was utilized to monitor interactions between
liposomes and bacteria. Briefly, overnight cultures (1.5 � 108 bacteria/ml) of the
clinical isolates as well as the laboratory strain of P. aeruginosa were mixed with
liposomes without antibiotic for 1 h at 37°C with agitation. Samples of bacterial
suspensions on Formvar-coated copper grids were examined using the Hitachi
HD-2000 transmission electron microscope.

(ii) Flow cytometry assays. We chose a highly resistant clinical strain (PA-
48912-2) and a sensitive laboratory strain (ATCC 10145) of P. aeruginosa to
investigate the framework of liposome-bacterium interactions. Liposomes were
labeled with a biological membrane probe, PKH2-GL (PKH2-GL labeling kit;
Sigma, St. Louis, MO), as previously described (33). Briefly, PKH2-GL at a final
concentration of 4 � 10�6 M was added to empty liposome suspensions in an
isosmotic labeling vehicle. The reaction was stopped with bovine serum albumin,
and the pellet was then washed twice before assessment of the liposomal labeling
efficiency by fluorescence-activated cell sorting (FACS). Aliquots of overnight
bacterial cultures in phosphate-buffered saline (PBS) were then incubated with
either labeled liposomes, free PKH2-GL (positive control), or PBS alone (neg-
ative control). The mixtures (4 � 10�6 M) were incubated at 37°C with agitation,
and samples were taken after 0.5-, 1-, 6-, and 10-h intervals. The aliquots were
centrifuged through a sucrose cushion (21), washed twice, and fixed with 1%
paraformaldehyde. Triplicate samples were then analyzed with an Epics Elite
flow cytometer (Becton Dickinson, Mississauga, Canada).

(iii) Lipid mixing assay. Integration of liposomes into bacterial membranes
was assessed by the lipid mixing assay, which is based on the extent of resonance
energy transfer between two fluorophores. We utilized NBD-PE or Rh-PE as the
energy donor or acceptor, respectively (40). The labeled empty liposomes were
mixed with bacterial suspensions (1.5 � 108 bacteria/ml) at 37°C with agitation.
At different time intervals of 0.5, 1, 3, and 6 h, the aliquots (75 �l) were mixed
with equal volumes of HEPES buffer and the fluorescence intensity was deter-
mined at 510 and 590 nm under steady-state excitation at 485 nm (NBD-PE
maximum excitation level) using Fluostar Optima (BMG Labtech, Germany).
Following each measurement, vesicles were disrupted with Triton X-100 to
eliminate energy transfer, which allowed us to determine the NBD-PE and
Rh-PE concentrations by their post-direct-excitation emission intensity. We cal-
culated the percentage of liposomal fusion of three independent experiments as
follows: fusion � (Ft � Fo)/(Ffinal � Fo), where Ft is the fluorescence intensity at
each time point and Fo and Ffinal are the initial and final fluorescence intensities
after vesicle disruption, respectively.

Antibiotic penetration assessment. We utilized the immunogold technique to
assess liposomal antibiotic penetration into the bacterial cells (33). Briefly, the
antibiotic-resistant clinical strain of P. aeruginosa (PA-48912-2) was mixed with
free or liposomal tobramycin at a final concentration of 128 �g/ml (two times the
MIC of free tobramycin). PBS was used as a negative control. Samples were
taken after 0, 2, 4, and 6 h of incubation at 37°C and centrifuged to remove the
nonpenetrating drugs. The pellets were then prefixed in glutaraldehyde (0.5%),
washed twice after 30 min at room temperature, and resuspended in PBS. For
embedding in Spurr resin, samples were washed with 0.1 M cacodylate buffer
(pH 7.4) and the pellets were encapsulated in 2% Bacto Agar and cut into 1-mm
cubes. Several pieces of each sample were embedded in gelatin capsules filled
with Spurr resin (epoxy resin) and polymerized overnight at 60°C. Ultrathin
sections (70 to 90 nm) were then collected onto uncoated 300-mesh nickel grids
and previewed under a Philips 400T transmission electron microscope. Selected
samples were then prepared for immunogold labeling using monoclonal antibody
to tobramycin (Cedarlane, Hornby, Ontario, Canada) and colloidal gold (10 nm)
coupled to protein A/G (Sigma-Aldrich, Oakville, Ontario, Canada) (3). Control
samples contained PBS instead of antitobramycin antibody. Samples were ana-
lyzed using a JEOL STEM (2011) transmission electron microscope, and images
were captured with a Gatan Ultrascan digital camera.

Data analysis. Bacterial counts in killing curves are expressed as the mean
CFU � standard deviation obtained from triplicate plates per dilution. The data
from the lipid mixing assay are expressed as means � standard errors of the
means of three independent experiments. Comparisons were made by paired
Student’s t test, and the P � 0.05 values were considered significant. Analysis of
variance with the two-tailed Dunnett posttest analysis was used for multiple
comparisons within and between the groups.

RESULTS

Antimicrobial activity of free and liposomal aminoglyco-
sides. We used small vesicles with a mean diameter of 210 � 25
nm and an aminoglycoside entrapment efficiency of 28.20% �
1.15% in this project. The MICs of free and liposomal amino-
glycosides against nonmucoid and mucoid strains of P. aerugi-
nosa isolates are significantly (P � 0.05) lower than those of
the corresponding free antibiotics (Table 1). For instance, PA-
48912-2, a nonmucoid strain, was highly resistant to amikacin
(MIC, 256 �g/ml) and tobramycin (MIC, 64 �g/ml) but sensi-
tive (MIC, �8 �g/ml) to the aforementioned antibiotics en-
capsulated in liposomes. Likewise, the highly resistant mucoid
strain PA-48913 (MIC, �256 �g/ml) was sensitive to liposomal
amikacin (MIC, 8 �g/ml) but intermediate to liposomal gen-
tamicin and tobramycin (MIC, 8 �g/ml). The MICs for quality
control laboratory strains were within the acceptable limits
established by CLSI (formerly NCCLS) (27). The liposomes
containing PBS had no antibacterial activity. Likewise, the

TABLE 1. Antimicrobial activities of free and liposomal
aminoglycosides against one laboratory strain and

four clinical strains of P. aeruginosaa

P. aeruginosa
strain

MIC (�g/ml)

F-AMK L-AMK F-GEN L-GEN F-TOB L-TOB

ATCC 10145 8 4 4 2 2 1
PA-1 16 4 16 2 4 4
PA-48912-2 256 8 32 4 64 2
PA-48912-1 4 2 32 0.5 1 0.5
PA-48913 512 8 256 8 1,024 8

a MICs were determined by utilizing a standard broth dilution technique
(CLSI document M7-A6). Twofold dilution series of free (F) and liposomal (L)
amikacin (AMK), gentamicin (GEN), and tobramycin (TOB) were prepared in
a broth medium and were mixed with bacterial suspension to achieve a final
inoculum of 5 � 105 bacteria/ml. The MICs were determined as the lowest
concentration of the antibiotics that inhibited visible bacterial growth.
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combination of empty liposomes with free drug had no additive
effect on the antibacterial activity of these aminoglycosides.

Time-killing study. To confirm the MIC data and to evaluate
the ability of liposomal aminoglycosides to eliminate P. aerugi-
nosa, we performed killing curve assays on one laboratory
strain (ATCC 10145) and three clinical isolates of P. aerugi-
nosa. Figure 1a to d represents the killing curves of pseudo-
monal strains by free or liposomal aminoglycosides at one, two,
or four times the MICs. Liposomal antibiotics were signifi-
cantly (P � 0.05) more effective in stopping the nonmucoid P.
aeruginosa than the corresponding free drugs. For instance,
liposomal amikacin and gentamicin at twice the MIC com-
pletely halted bacterial growth in 24 h. Although free drugs at
twice the MIC had an initial bacterial killing power, they failed
to eliminate bacterial growth. At four times the MIC, however,
both liposomal and free drugs completely eradicated this strain
in 2 and 4 h, respectively (Fig. 1a). The laboratory strain
incubated with free tobramycin at one and two times the MIC
demonstrated an initial drop in CFU after 6 h, but it regrew to
its initial concentration after 24 h, while liposomal tobramycin
at the MIC completely eradicated the bacteria in 6 h. At four
times the MIC, both liposomal and free forms of tobramycin
eliminated the laboratory strain of P. aeruginosa in 2 and 4 h,
respectively (data not shown). Figure 1b demonstrates the kill-
ing curves of PA-48912-1, a mucoid clinical strain of P. aerugi-
nosa. According to the MIC studies, this strain was sensitive to
both forms of amikacin and tobramycin but their time-killing
curve indicated a different efficacy pattern. For instance, at the
MIC, free amikacin showed a modest initial drop in CFU that

remained while the liposomal form led to a complete eradica-
tion in 4 h. At the MIC, both free and liposomal gentamicin led
to a complete bacterial eradication in 24 h. However, we
should point out that the concentration of gentamicin trapped
in liposomes at this concentration (MIC, 0.5 �g/ml) was 64-
fold lower than that of the free drug. Both liposomal and free
gentamicin at two to four times the MIC led to complete
bacterial eradication in 2 to 6 h, where free drugs lagged
behind by 2 h.

Figure 1c demonstrates the killing curves of PA-48912-2, a
nonmucoid clinical strain that is highly resistant to free ami-
kacin and tobramycin but sensitive to all liposomal aminogly-
cosides. At the MIC (32-fold less than that of the free drug),
only liposomal amikacin eliminated this resistant strain in 24 h.
At two to four times the MIC, however, both free and liposo-
mal amikacin completely eradicated the bacteria in 2 to 6 h.

Unlike amikacin, neither free gentamicin nor tobramycin
eradicated PA-48912-2 even at the concentration equal to four
times the MIC. Liposomal drugs, however, showed improved
killing rates, although complete eradication was demonstrated
only at four times the MIC in 24 h.

Figure 1d displays the killing curves of PA-48913, a mucoid
clinical strain of P. aeruginosa which was extremely resistant
(MIC, �256 �g/ml) to all free aminoglycosides tested but
sensitive or intermediate to their liposomal formulations. Li-
posomal amikacin at twice the MIC (16 �g/ml) abolished bac-
terial growth in 6 h. The same killing effect was achieved with
512 �g/ml of the free amikacin. Liposomal tobramycin dem-
onstrated a killing pattern similar to that of the free drug but

FIG. 1. Killing curves for a laboratory strain and three clinical strains of P. aeruginosa. Bacteria were exposed to one (squares), two (triangles),
or four (circles) times the MICs (Table 1) of free (solid lines) and liposomal (broken lines) antibiotics. Control samples (�) contained no
antibiotics. (a) ATCC 10145 exposed to amikacin; (b) PA-48912-1 exposed to gentamicin; (c) PA-48912-2 exposed to amikacin; (d) PA-48913
exposed to tobramycin.
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at much lower concentrations (8 versus 1,024 �g/ml). Although
liposomal gentamicin displayed a better killing pattern than
that of the free drug, it was unable to completely eradicate this
strain.

Collectively, the MICs shown in Table 1 and the killing
curves described above confirm the higher potency of liposo-
mal aminoglycosides than of the free antibiotics against resis-
tant strains of P. aeruginosa.

Analysis of liposome-bacterium interactions by TEM. Fig-
ure 2a represents the interaction between antibiotic-free lipo-
somes and PA-48912-2, a nonmucoid clinical strain that is
highly resistant to free amikacin and tobramycin but sensitive
to their liposomal formulations. The liposomes surrounded the
cells, and some fused with the bacterial outer membrane (ar-
rows) after 1 h of incubation at 37°C (Fig. 2b). Similar inter-
actions were observed with other strains tested.

Flow cytometry analysis of liposome-bacterium interactions.
Integration of PKH2-GL-labeled empty vesicles into the mem-
brane of P. aeruginosa is demonstrated by FACS analysis (Fig. 3).
Bacteria incubated with PKH2-GL alone (positive control) or
PBS (negative control) were used as controls. Liposomal
PKH2-GL was incorporated into the membranes of antibiotic-
sensitive as well as resistant strains of P. aeruginosa in a time-
dependent fashion. The laboratory strain reached a maximum
incorporation level of 46.6% in 1 h while the resistant clinical
strain reached its peak of 56.8% in 6 h. Positive controls dem-
onstrated that PKH2-GL is compatible with the membrane of
P. aeruginosa, as it labeled nearly all bacterial membrane
(97.8%) in 10 h. Samples were analyzed in triplicate, and data
confirmed the fusion of liposomes with bacterial membranes as
suggested by TEM observations.

Analysis of fusion by lipid mixing assay. The fusion between
labeled empty liposomes and bacterial membranes resulted in
a decreased efficiency of resonance energy transfer as mea-
sured by a fluorescence spectrophotometer. The percentage of

fusion between liposomes and a nonresistant laboratory strain
reached a maximum fusion of 54.3% � 1.5% in 1 h. On the
other hand, the maximum fusion degree of a resistant clinical
strain (57.8% � 1.9%) was reached in 6 h. Overall, there was
no significant difference in fusion rates obtained by FACS
analysis and the by lipid mixing assay (Table 2). Further, both
techniques demonstrated that maximum fusion occurs sooner
in the antibiotic-sensitive strain, 1 h compared to 6 h in the
antibiotic-resistant strain.

Determination of antibiotic penetration by immunocyto-
chemistry. The amount of encapsulated or free immunogold-
labeled tobramycin within a resistant clinical strain of P. aerugi-
nosa (PA-48912-2) increased as a function of incubation time,
regardless of the antibiotic formulation (Fig. 4). No significant
differences were observed in the penetration of antibiotic be-
tween free and liposomal tobramycin in 2 h. After 6 h of
incubation, however, the amount of colloidal gold in the cyto-
plasm of bacteria exposed to liposomal tobramycin was signif-
icantly higher than that in bacteria that received free antibiot-
ics (24.2 � 6.2 versus 3.2 � 2.3 gold particles/bacterium; P �
0.001). Control samples receiving PBS or antitobramycin alone
were negative for gold labeling inside the bacterial cells. The
background labeling, gold particles not associated with bacte-
ria, was negligible.

DISCUSSION

Chronic lung infections caused by P. aeruginosa are the lead-
ing cause of death in CF patients (8, 9, 13). Despite the use of
aggressive antibiotic therapy, complete eradication remains
virtually impossible (12, 13). This, in part, is due to the high
intrinsic resistance of P. aeruginosa to antimicrobial agents,
owing primarily to its low outer-membrane permeability (10,
11). In this communication, we report the mechanism of en-

FIG. 2. Analysis of liposome-bacterium interactions by transmission electron microscopy. Empty liposomes were incubated with overnight cultures
of different pseudomonal strains at 37°C for 1 h and visualized by TEM. The liposomes (dark spheres) surrounded the bacterial cells (a; arrows), and some
induced membrane deformation (b; arrows).
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hanced antibacterial activity of aminoglycosides enclosed in
our newly developed DPPC-cholesterol formulation.

Data reported here indicate significant differences in MICs
between free and liposomal formulations. These findings agree
with our previous observations on enhanced susceptibility of
antibiotic-resistant P. aeruginosa to liposomal gentamicin, de-
spite the difference in method of preparation (22). The dehy-
dration-rehydration method used in this study yielded small
vesicles (210 � 25 nm in diameter) with high entrapment
efficiency (28.20% � 1.15%), due to the reduced hydrophobic
forces (45).

The time-kill assays further confirmed the higher potency of
liposomal aminoglycosides than of the free antibiotics. For
instance, liposomal amikacin eradicated a nonmucoid clinical
strain at the MIC (8 �g/ml), whereas the free drug at 256 �g/ml
was inactive. Considering the narrow therapeutic range of ami-
kacin (16 to 32 �g/ml), this formulation could be the drug of
choice against this bacterium. Other studies have shown im-
proved efficacy of liposomal antibiotics of different formula-
tions (2, 24, 25). For instance, tobramycin encapsulated into
negatively charged fluid liposomes displayed stronger bacteri-
cidal activity than the free drug (2). Nacucchio et al. demon-
strated that encapsulation of piperacillin in liposomes pre-
pared with phosphatidylcholine and cholesterol (molar ratio,
1:1) protected the drug from hydrolysis by staphylococcal
�-lactamase as well (24).

Several hypotheses including reduced electrostatic repulsion
of liposomal antibiotics or protection of the drugs from bacte-
rial enzymes may explain the mechanism of enhanced antimi-
crobial activities of liposomal formulations (36–38). We hy-
pothesized that the enhanced antimicrobial activity of these
formulations is due to their fusion with the bacterial outer
membrane. The TEM data show that liposomes interact inti-
mately with the outer membrane of P. aeruginosa. This was
evident from membrane deformation and signs of membrane
swelling. Integration of the PKH2-GL-labeled liposomes with
bacterial membranes was confirmed by flow cytometry as well.
This association indicates a direct incorporation of liposomal

FIG. 3. Flow cytometric analysis of liposome-bacterium interactions. A sensitive laboratory strain, ATCC 10145, and a resistant clinical strain,
PA-48912-2, were incubated with PBS (left panels), labeled empty liposomes (middle panels), or free PKH2-GL (right panels) for 0.5, 1, 6, and
10 h at 37°C with agitation. Percentages of the labeled bacterial cells are indicated.

TABLE 2. Liposomal fusion rates of a sensitive laboratory strain
(ATCC 10145) and a resistant clinical strain (PA-48912-2)

determined by flow cytometry and lipid mixing assay
(as detailed in the text)

Time (h) Bacterial strain
% Fusion

FACS Lipid mixing

0.5 ATCC 10145 31.9 32.6 � 1.4
PA-48912-2 24.2 29.3 � 1.0

1 ATCC 10145 46.6 54.3 � 2.6
PA-48912-2 45.3 51.4 � 0.7

6 ATCC 10145 14.8 11.4 � 5.0
PA-48912-2 56.8 57.8 � 3.3
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phospholipids into the bacterial membranes because (i) the
probe inserts its aliphatic carbon tails into membranes (15, 38)
and (ii) dissociation of the probe from the liposomes to the
bacterial membrane via an aqueous environment is unlikely
due to the strong hydrophobic nature of this probe. Further,
we applied a centrifugation step with a sucrose cushion as well
as successive PBS washes to rule out the possibility of liposo-
mal adsorption to bacteria.

An apparent reduction in incorporation of the tracer with
ATCC 10145 after 1 h could be due to the tracer’s degradation
as well as bacterial growth since the labeled liposomes had no
antibiotics. The latter phenomenon seems to be the main rea-
son, however, because the reduction was more pronounced
with ATCC 10145 than with the clinical strains with lower
growth rates.

The lipid mixing assay confirmed that the interaction be-
tween liposomes and bacteria is fusion while ruling out the
possibility of adsorption or aggregation (6, 44). Based on the
assay’s principle, fusion of fluorescent vesicles to nonfluores-
cent lipids, i.e., bacterial cells, results in probe dilution and a
decrease in resonance energy transfer efficiency due to an
increase in distance between NDB-PE and Rh-PE (40). How-
ever, aggregation or adsorption of liposomes to cells does not
induce any change in resonance energy transfer. The time
needed to reach the maximum fusion rate for a sensitive lab-
oratory strain (54.3% � 1.5%) and a resistant clinical strain
(57.8% � 1.9%) of P. aeruginosa was 1 and 6 h, respectively.

This variation in fusion rate agrees with both TEM and FACS
data and could be due to bacterial permeability to antibiotics.
Although liposomal fusion with the resistant strain was signif-
icantly delayed, the overall level of fusion was not affected
(Table 2).

Finally, we employed immunogold techniques to assess
whether liposomal fusion with bacterial membrane resulted
in increased antibiotic penetration inside the cell. In this
assay, we chose tobramycin because of the availability of
antibodies and the clinical strain PA-48912-2 due to its
antibiotic susceptibility profile. Bacteria exposed to liposo-
mal tobramycin revealed more cytosolic antibiotics than
those exposed to free drug. Enhanced antibiotic penetration
through liposomal fusion suggests that pseudomonal mem-
brane permeability plays a major role in the mechanism of
antibiotic resistance (Table 1).

The phenomenon of enhanced liposomal antibiotic penetra-
tion into bacterial cells has been reported by other investiga-
tors as well. Sekeri-Pataryas et al. showed that negatively
charged liposomes containing penicillin could overcome the
cell wall barrier of P. aeruginosa and deliver the antibiotic to
the cells (36). Furthermore, these authors demonstrated that
nonpermeable substances such as albumin can be introduced
into the cells by the use of liposomes. This particular report,
however, did not reveal the activity of entrapped drugs nor the
mechanism by which liposomes interacted with the cells. Lipo-
some-bacterium fusion, however, has been demonstrated with

FIG. 4. Determination of antibiotic penetration by immunocytochemistry. A resistant clinical strain (PA-48912-2) was incubated with free (a)
or liposomal (b) tobramycin at a final concentration of 128 �g/ml for 6 h at 37°C with agitation. Colloidal gold-labeled antibiotics in the bacterial
cytoplasm are shown as dark dots (10 nm).
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the delivery of entrapped horseradish peroxidase to the
periplasmic space of Escherichia coli and Salmonella enterica
serovar Minnesota (42).

In conclusion, liposomal formulations reported here could
deliver a sufficient amount of aminoglycosides into antibiotic-
impermeable bacteria. Application of several methods con-
firmed liposome-bacterial membrane fusion as the molecular
mechanism of this phenomenon. Our research is now aimed at
evaluating the efficacy of these liposomal formulations in ani-
mal models of pulmonary infections.
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