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Federation des Maladies Infectieuses,2 Unité de Transplantation Hépatique,3 and Service d’Anatomie-Pathologique,4
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Liver and plasma hepatitis C virus (HCV) variability was compared by E2 cloning and sequencing in three
patients coinfected with HCV and human immunodeficiency virus (HIV) before and after interferon treatment
and in three patients solely infected with HCV. The plasma and liver samples contained unique sequences. In
the patients coinfected with HIV, accumulated random mutations produced mostly nonsynonymous substitu-
tions in contrast to the reduced HCV genetic variability seen after treatment.

The course of hepatitis C virus (HCV) infection is modified
during coinfection with human immunodeficiency virus (HIV),
undergoing enhanced viral replication and accelerated progres-
sion to cirrhosis (4, 15, 20, 25). In addition, a sustained virological
response occurs in only 25% of the patients coinfected with HCV
and HIV that are treated with interferon-ribavarin. HCV has a
quasispecies distribution (9, 21, 23) that is best studied in the E2
envelope hypervariable region 1 (HVR1) (14) and is occasionally
described as predictive of a favorable outcome (5, 7, 8, 14, 17).
However, little is yet known about HCV quasispecies in patients
coinfected with HIV (2, 15).

Our study focused on liver samples in three nonresponding
patients included in a clinical trial (22) in order (i) to describe
liver and plasma HCV variability in patients coinfected with
HCV and HIV and in patients solely infected with HCV at
baseline and (ii) to compare hepatic and plasmatic quasis-
pecies in patients coinfected with HCV and HIV before and 6
months after completion of anti-HCV treatment.

The three patients coinfected with HIV (P1, P2, and P3) had
TCD4 lymphocytes at �250/mm3, undetectable HIV RNA,
and chronic HCV hepatitis. Patients P1 and P2 were infected
with HCV genotype 3, and patient P3 was infected with HCV
genotype 1b. The three HIV-negative genotype 1b-infected
patients (P4, P5, and P6) had not received any anti-HCV
treatment for several months.

After RNA extraction from plasma and liver (22), a 325-bp
fragment encompassing HVR1 region was amplified (11) and
cloned (pGEM-T Easy Vector System I; Promega). For the
three patients coinfected with HIV 222 clones were evaluated
(mean, 18.5 per sample), and for the three HIV-negative pa-
tients 95 clones were evaluated. The sequences (CEQ2000;
Beckman Coulter) were aligned (CLUSTAL W 1.74), and phy-

logenetic trees were constructed by the neighbor-joining
method. GenBank accession numbers for the original nucleo-
tide sequences presented here are recorded as AY793020 to
AY793336.

The quasispecies complexity was calculated by using normal-
ized Shannon entropy (Sn) (24). Diversity was analyzed for (i)
the mean genetic distance (d, i.e., the number of nucleotide
differences divided by total number of nucleotides) and (ii)
synonymous substitutions (dS) and nonsynonymous substitu-
tions (dN). The data were by using t test results (paired t tests
or Mann-Whitney nonparametric tests), and correlations were
investigated by using Prism 2.01 software.

Table 1 shows detailed complexity and diversity results be-
fore treatment for the six patients (baseline) and after inter-
feron treatment for the three patients coinfected with HIV
(posttreatment). Before treatment, HCV quasispecies displayed
no specific complexity or diversity pattern related to sample types
(plasma or liver) or patients characteristics. Table 2 presents the
statistical parameters used in this study. Complexity and diversity
were significantly correlated. In the three patients coinfected with
HIV, synonymous substitutions were the most frequent at base-
line. Other researchers previously described a higher diversity in
severely immunocompromised patients coinfected with HIV (19)
or in patients with end-stage liver disease (1), which was not the
case in our patients.

In patients solely infected with HCV, the complexity was
significantly higher in HVR1 than in flanking regions (Fig. 1),
whereas no difference appeared in patients coinfected with
HIV. Since HVR1 is known to harbor both neutralizing and
cytotoxic T epitopes, this absence of specific complexity pat-
tern in HVR1 suggests a weak immune pressure, if any, which
could result from HIV-related immune deficiency. In these
patients, HVR1 quasispecies evolution should therefore more
likely be due to a high rate of accumulation of random muta-
tions than to a positive selection pressure.

On the phylogenetic trees (data not shown), each patient’s
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sequences clustered independently, thus excluding cross-con-
tamination. The viral variant distribution is presented in Fig. 2.
There was not necessarily a dominant variant in each compart-
ment at each time, but each compartment harbored specific
variants, as already described (12, 16). For HIV-infected pa-
tients P1 and P2, one common dominant variant was present
both at baseline and after treatment completion (50 to 89% of
the clones). However, in P2, it represented only 5% of the
plasma clones after treatment. For patient P3, only one base-
line plasma variant was still present after treatment (�50% of
the clones), and the liver harbored one predominant but pre-
viously undetected variant (89% of the clones). Of the three
patients solely infected with HCV, patient P4 displayed a vari-

ant distribution similar to that of patients P1 and P2. Patients
P5 and P6 had, respectively, 5 and 1 common variants in the
plasma and liver, but none predominated. There was one ma-
jor liver variant in P6 (53% of the clones).

Previous studies of HCV variability over time also showed
little evolution in plasma complexity in most instances, both in
patients coinfected with HIV and in patients solely infected
with HCV (2, 13). Important quasispecies differences be-
tween blood and liver, correlated with hepatic fibrosis, have
been described (3). Other researchers found no significant
variation (12).

After treatment completion, liver complexity was notably
reduced in the HIV-infected patients (Table 2). Although
unsuccessful, interferon treatment seemed more efficient for
eliminating minor liver variants than plasma ones (6). The
predominant variant persisting over time in two patients
coinfected with HIV appeared to be the closest to the com-
mon node connecting all the clones in each patient. This

TABLE 1. Complexity and diversity of the entire sequence
encompassing HVR1 for patients P1 to P6

Patient Value
Complexity Diversity

Sn nta Sn aab dc dN/dSd

P1 Plasma baseline 0.975 0.514 0.026 0.309
Liver baseline 0.889 0.337 0.011 0.053
Plasma posttreatment 0.207 0.139 0.002 0.333
Liver posttreatment 0.539 0.442 0.004 1.25

P2 Plasma baseline 0.657 0.453 0.008 0.375
Liver baseline 0.739 0.53 0.01 0.273
Plasma posttreatment 0.783 0.457 0.01 0.392
Liver posttreatment 0.38 0.233 0.003 0.286

P3 Plasma baseline 0.959 0.821 0.033 0.448
Liver baseline 0.714 0.679 0.031 0.444
Plasma posttreatment 1 0.758 0.015 0.229
Liver posttreatment 0.256 0.168 0.002 1

P4 Plasma baseline 0.54 0.127 0.003 >1
Liver baseline 0.722 0.616 0.007 0.555

P5 Plasma baseline 0.958 0.792 0.022 0.576
Liver baseline 1 0.787 0.021 0.6

P6 Plasma baseline 0.937 0.769 0.022 2.25
Liver baseline 0.622 0.564 0.015 1.42

a Shannon entropy (Sn) at the nucleotide level (nt).
b Shannon entropy (Sn) at the amino acid level (aa).
c Genetic distance.
d dN/dS ratio is considered as a measure of immune pressure compared to

genetic drifts when �1 (18) and appears in boldface.

TABLE 2. Statistical results obtained from comparison of the complexity and diversity data in patients solely infected with HCV or
coinfected with HIV and HCV

Parameter Subset P and/or r2

HVR1 complexity � flanking regions complexity P � 0.04

Correlation between nucleotide and amino acid
complexity

In patients solely infected with HCV r2 � 0.6648
In patients coinfected with HIV r2 � 0.7819
In both groups of patients r2 � 0.68

Diversity d at baseline � d posttreatment in
patients coinfected with HIV

In plasma P � 0.02
In liver P � 0.02
In both compartments P � 0.02

Correlation between complexity (Sn) and
diversity (d) in patients coinfected with HIV

Nucleotide entropy (Sn) r2 � 0.5021; P � 0.0099
Amino acid entropy (Sn) r2 � 0.6506; P � 0.0015

FIG. 1. Comparison of amino acid complexity expressed with Shan-
non entropy (Sn), between HVR1 and in the flanking regions in HCV-
solely infected and HCV-HIV coinfected patients. Mann-Whitney test.
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variant could be more stable on an evolutionary level, as if
best adapted to its host environment (10, 13) or more patho-
genic (6).

In patients P1 and P3, nonsynonymous mutations markedly
increased in the liver after treatment (dN/dS liver ratio of �1):
in addition to viral fitness alteration, a possible immunological
reaction targeting the liver during interferon treatment and
contributing to the selection of major viral variants cannot be
excluded.

Finally, diversity decreased significantly after treatment in
all patients coinfected with HIV, both in plasma and in liver, as
already described (1). Thus, interferon seemed to favor the
emergence of more closely related clones, reducing HCV’s
ability to diversify its genetic repertoire.

In conclusion, the plasma and liver already harbored differ-
ent HCV quasispecies before treatment, both in patients solely
infected with HCV and in patients coinfected with HIV. After
unsuccessful interferon treatment, HCV complexity and diver-
sity were both markedly reduced in the HIV-infected patients,
but the liver compartment displayed unique evolutionary fea-
tures.
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