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Of all bacteria, Bartonella quintana has the highest reported in vitro hemin requirement, yet an explanation
for this remains elusive. To produce diseases such as trench fever, endocarditis, and bacillary angiomatosis,
B. quintana must survive and replicate in the disparate environments of the Pediculus humanus corporis (body
louse) gut and the human vasculature. We previously identified a five-member family of hemin binding proteins
(Hbps) synthesized by B. quintana that bind hemin on the outer surface but share no similarity to known
bacterial heme receptors. In the present study, we examine the transcription, regulation, and synthesis of this
virulence factor family by cultivation of the bacterium in environments that simulate natural heme, oxygen, and
temperature conditions encountered in the host and insect vector. First, quantitative real-time PCR data show
that hbpC expression is regulated by temperature, where a >100-fold increase in transcript quantity was seen
at 30°C relative to 37°C, suggesting that HbpC synthesis would be greatest in the cooler temperature of the
louse. Second, cultivation at human bloodstream oxygen concentration (5% relative to 21% atmospheric)
significantly decreases the transcript quantity of all hbp genes, indicating that expression is influenced by O2
and/or reactive oxygen species. Third, a differential expression pattern within the hbp family is revealed when
B. quintana is grown in a range of hemin concentrations: subgroup I (hbpC and hbpB) predominates in a
simulated louse environment (high heme), and subgroup II (hbpA, hbpD, and hbpE) is preferentially expressed
in a simulated human background (low heme). By using two-dimensional sodium dodecyl sulfate-polyacryl-
amide gel electrophoresis, immunoblotting, and matrix-assisted laser desorption ionization—time of flight
mass spectrometry fingerprinting, we demonstrate that synthesis of HbpA correlates with hbpA transcript
increases observed at low hemin concentrations. Finally, an hbpA promoter-lacZ reporter construct in B.
quintana demonstrates that a transcriptional regulator(s) is controlling the expression of hbpA through a
cis-acting regulatory element located in the hbpA promoter region.

Trench fever, the common name for the acute febrile syn-
drome associated with Bartonella quintana infection, has af-
fected millions of people during war and is presently reemerg-
ing in inner cities throughout the world (28, 36) and in AIDS
patients. Chronic manifestations of persistent infection by this
�-proteobacterium include protracted bacteremia, endocardi-
tis, bacillary angiomatosis, and bacillary peliosis (20, 31). Al-
though B. quintana has been found in small mammals (24),
ticks (11), and fleas (41), maintenance in nature is thought to
be restricted to humans and body lice (Pediculus humanus
corporis). Transmission to humans occurs when louse fecal
matter or a crushed louse containing the bacterium is intro-
duced into the bloodstream by breaches in the integument,
usually by the itching caused by louse infestation. Living be-
tween the clothing and the skin, body lice normally take several
meals per day and acquire B. quintana by imbibing the blood of
a bacteremic host (9). Unhygienic, overcrowded conditions
disseminate infected lice throughout the population and can
quickly result in an epidemic.

Of all bacteria, B. quintana has the greatest known require-
ment for exogenous heme (33, 34, 48). Heme consists of an
iron atom contained in the center of a large heterocyclic or-
ganic ring called a porphyrin. The Fe3� oxidation product of
heme is called hemin. It is generally accepted that this extraor-

dinary supplement requirement (20 to 40 �g/ml of medium) is
similar for all Bartonella species, and erythrocytes, hemoglobin,
or hemin is essential for in vitro cultivation (8). Since combi-
nations of iron and porphyrin cannot substitute for heme in
Bartonella cultivation, several researchers have hypothesized
that high levels of heme are necessary for one or more of the
following: a source of iron (10, 42), a precursor for synthesis of
porphyrin-containing proteins (34), and a hydrogen peroxide-
detoxifying system (33).

To generate disease, B. quintana must survive immune at-
tack, adapt to host and vector environments, and proliferate
throughout the human-louse-human cycle. Free heme is quite
rare in humans (6), whereas potentially toxic levels are fre-
quently generated following blood meal digestion within the
louse gut (9, 19, 37, 47). Considering its extraordinary heme
requirement, it is obvious that heme acquisition mechanisms
are essential for replication and, ultimately, the pathogenesis
of B. quintana.

Previously, we discovered a family of hemin binding proteins
(HbpA, HbpB, HbpC, HbpD, and HbpE) synthesized by B.
quintana that serves as hemin receptors yet shares no similarity
to known bacterial heme binding proteins (10, 32). In the
present study, we examine the expression, regulation, and syn-
thesis of this virulence factor family in conditions that reflect
body louse and human environments. We report that hemin,
oxygen, and temperature influence the hbp transcript profile in
a differential and coordinated manner.
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MATERIALS AND METHODS

Bacterial strains and culture conditions. Table 1 describes the bacterial strains
used in this study. B. quintana strain JK31 is a recent low-passage virulent human
isolate and was a generous gift from Jane Koehler (University of California at
Davis). The Brucella agar-hemin (BA-H) cultivation media for Bartonella con-
sisted of Brucella broth (Becton Dickinson, Sparks, MD) base containing 1.5%
Difco agar (Becton Dickinson) and supplemented with hemin chloride (Calbio-
chem, San Diego, CA). Hemin chloride (hereafter called hemin) was dissolved in
0.02 N NaOH to a final concentration of 5 mg/ml and was added to the media in
a range of 0 mM to 5 mM, where 0.15 mM was the typical (control) hemin
concentration. Bartonella organisms were routinely grown in a humidified 5%
CO2 incubator at 37°C and approximately 21% O2. The growth temperature was
modified by growing at 30°C in a humidified 5% CO2 incubator. The O2 con-
centration of the environment was lowered by cultivation in a Pyrex Vacuum
Desiccator jar (Corning, St. Louis, MO) where atmospheric air was replaced with
a blood-gas mixture (5% CO2, 5% O2, 90% N2; NorLab, Boise, ID). Atmo-
spheric gasses were evacuated by vacuum (to 50 cm Hg), and blood gas was
allowed to fill the desiccator jar to 10 lb/in2. After repeating the evacuation-
replacement procedure seven times, the internal pressure was equalized to at-
mospheric pressure, and the jar was placed at 37°C. Approximately 96 h was
required for Bartonella to reach mid-log phase. For electroporation-mediated
transformation, strain JK31 was plated on heart infusion broth base (Becton
Dickinson) containing 1.5% Difco agar and supplemented with 2% (vol/vol)
sheep serum and 4% (vol/vol) defibrinated sheep blood (Quad Five, Ryegate,
MT). Filter-sterilized kanamycin sulfate was added to a final concentration of 25
�g/ml for selection of transformants.

Escherichia coli strains TOP10 F� and DH5�, employed in cloning experi-
ments, were cultivated with Luria-Bertani medium using standard concentrations
of antibiotic supplements (5).

Nucleic acid isolation, purification, and manipulation. RNA used for quan-
titative real-time PCR (qRT-PCR) analysis was isolated by using the RiboPure-
Bacteria kit with Turbo-DNaseI treatment (Ambion, Austin, TX) and a FastPrep

bead homogenizer (Q-Biogene, Carlsbad, CA) per the manufacturers’ instruc-
tions. Primers and probes used for qRT-PCR analysis of the hbp family were
previously described (32). The lacZ primer-probe set was designed with Beacon
Designer version 4.0 (Bio-Rad, Hercules, CA). The dual-labeled lacZ probe was
synthesized with fluorescent tags as described for the hbp family, where 5-car-
boxyfluorescein and N,N�,N�-tetramethyl-6-carboxyrhodamine were covalently
linked to the 5� and 3� ends, respectively (Sigma-Genosys, Woodlands, TX). The
lacZ primer pair (Table 1) was synthesized by Applied Biosystems (ABI, Foster
City, CA).

Plasmids and primers used in this study are described in Table 1. Standard
PCR and cloning procedures were employed for the construction of plasmids (5)
with the exception of the Expand Long Template PCR system (Roche Diagnos-
tics, Indianapolis, IN), utilized for high-fidelity amplicon production in inverse
PCR-mediated cloning per the manufacturer’s instructions. For routine cloning,
the Perfectprep Plasmid Mini kit (Eppendorf, Hamburg, Germany) and the
QIAquick Spin kit (QIAGEN, Valencia, CA) were used for plasmid isolation
and DNA purification, respectively. The Wizard Midiprep kit (Promega, Madi-
son, WI) was used to purify plasmids employed in electroporation-mediated
transformation of B. quintana. Bacterial genomic DNA was prepared with a
DNeasy Tissue kit (QIAGEN) per the manufacturer’s instructions. Quantifica-
tion of nucleic acids was accomplished by spectrophotometric analysis using a
Spectronic Genesys 2 (Milton Roy, Rochester, NY).

Construction of HbpA reporter construct. Diagrams of the reporter plasmid
pHPRO� LACZ� and two control plasmids (pHPRO- LACZ� and pHPRO�

LACZ�) are shown in Fig. 6. Primers HPRO FOR and HPRO REV were
designed to generate a PCR fragment containing the promoter region of hbpA
(HPRO). Using pHBP-CMV (32) as the template, the resulting amplicon was
cloned into pCR2.1-TOPO per the manufacturer’s instructions (Invitrogen,
Carlsbad, CA), resulting in pCR2.1-HPRO. Sequence analysis of both strands
with M13 universal primers verified that pCR2.1-HPRO contained the HPRO,
240 bp immediately 5� to the hbpA start site, and it was identical to published
sequences (1, 32).

TABLE 1. Bacterial strains, plasmids, and primers

Strains, plasmids,
and primers Relevant characteristic(s) Source or

reference

B. quintana
JK31 Low-passage virulent human isolate J. Koehler
JK31 pHPRO� LACZ� JK31 with pHPRO� LACZ� This study
JK31 pHPRO� LACZ� JK31 with pHPRO� LACZ� This study
JK31 pHPRO� LACZ� JK31 with pHPRO� LACZ� This study
E. coli
DH5� Host strain for cloning Gibco-BRL
TOP10 F� Host strain for cloning Invitrogen

Plasmids
pHBP-CMV pBK-CMV with 3.5-kbp insert containing hbpA and flanking sequence 32
pCR2.1-TOPO TA cloning plasmid for PCR products Invitrogen
pCR2.1-HPRO pCR2.1-TOPO with 240-bp hbpA promoter region This study
pUJ9 Promoterless �lacZ fusion plasmid 12
pUJ-HPRO 302-bp EcoRV/BamHI fragment from pCR2.1-HPRO into SmaI/BamHI site of pUJ9 This study
pBBR1MCS-2 Shuttle vector for Bartonella 22
pHPRO� LACZ� Reporter construct: pBBR1MCS-2 with hbpA-promoted �lacZ This study
pHPRO- LACZ� Control plasmid 1: pHPRO� LACZ� minus hbpA-promoter This study
pHPRO� LACZ- Control plasmid 2: pHPRO� LACZ� minus �lacZ This study

Primers
HPRO FOR 5�-CAGGCAGAATATCGTTACAGC This study
HPRO REV 5�-AAACTTTGCTCCTTTATTTATGAAG This study
PBBR FOR�AvrII 5�-ATCCTAGGGCATAAAGTGTAAAGCCTGGGGT This study
PBBR REV�AscI 5�-ATGGCGCGCCCTGGTGCTACGCCTGAATAAGTG This study
HPROLAC REV�AvrII 5�-ATCCTAGGACATCCAGAGGCACTTCACCG This study
HPROLAC FOR�AscI 5�-ATGGCGCGCCCAGGCAGAATATCGTTACACG This study
LINK FOR�AscI 5�-ATGGCGCGCCTAGGCAATCGATGAATTCAT This study
LINK REV�EcoRI 5�-ATGAATTCATCGATTGCCTAGGCGCGCCAT This study
HSEQ 5�-ACCTCGCTAACGGATTCAC This study
LACZ FOR 5�-AGTTCTGTATGAACGGTCTGGTC This study
LACZ REV 5�-AGGTATTCGCTGGTCACTTCG This study
LACZ PROBE 5�-CCGACCGCACGCCGCATCCAG This study
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The HPRO was then recloned into the promoterless �lacZ fusion plasmid,
pUJ9 (12). Specifically, the 302-bp EcoRV/BamHI fragment of pCR2.1-HPRO
was ligated to SmaI/BamHI-restricted pUJ9, resulting in pUJ-HPRO. Orienta-
tion of HPRO relative to �lacZ was confirmed by sequence analysis of pUJ-
HPRO with the HPRO FOR primer. Finally, inverse PCR-mediated cloning was
utilized to move the HPRO-�lacZ fragment into the Bartonella shuttle vector,
pBBR1MCS-2 (7, 22). Specifically, primers (PBBR FOR�AvrII and PBBR
REV�AscI) were designed to amplify the entire pBBR1MCS-2 plasmid while
introducing AvrII and AscI restriction sites into the termini of this 4,604-bp
amplicon. The 2,258-bp HPRO-�lacZ fragment was amplified from pUJ-HPRO
with primers (HPROLAC REV�AvrII and HPROLAC FOR�AscI) that
introduced the same restriction sites into the termini of this product. The
pBBR1MCS-2 and HPRO-�lacZ amplicons were digested (AvrII/AscI) and li-
gated, resulting in the 6,878-bp reporter construct pHPRO� LACZ�. The construct
was verified by sequence analysis with primers HPRO FOR and HPROLAC
REV�AvrII.

Two control plasmids were also generated with this reporter plasmid lacking
either the hbpA promoter (pHPRO� LACZ�) or �lacZ (pHPRO� LACZ�).
First, the hbpA promoter was removed from pHPRO� LACZ� by digestion
(EcoRI/AscI) and was replaced with a 15-bp linker formed by hybridization of
primers (LINK FOR�AscI and LINK REV�EcoRI) containing corresponding
restriction sites. This 6,643-bp plasmid was confirmed by sequence analysis with
primer HSEQ and was termed pHPRO� LACZ�. For the second control plas-
mid, �lacZ was removed from pHPRO� LACZ� by digestion (AvrII/SpeI) and
religation, resulting in pHPRO� LACZ�, and this was confirmed by sequence
analysis using HPRO FOR primer.

Electroporation-mediated transformation of B. quintana JK31. Transforma-
tion of B. quintana JK31 was accomplished by methods similar to those we
previously described for B. bacilliformis (7). Briefly, strain JK31 (in vitro passage
3) was harvested, washed in 10% glycerol, and diluted to 3 � 1010 cells/ml. A
volume of 44 �l of this suspension was combined with 5.4 to 43.2 �g plasmid
DNA in a 2-mm-gap electroporation cuvette (BTX, Holliston, MA) and pulsed
with a GenePulser (Bio-Rad) at 2.5 kV, 25 �F, and 400 �. Kanamycin-resistant
clones were verified as stable transformants by isolation of plasmid DNA and
subsequent restriction fragment length polymorphism analysis.

Nucleotide sequencing and analysis. DNA was sequenced using a BigDye
Terminator Cycle Sequencing Ready Reaction kit (ABI) and an automated
DNA sequencer (ABI3130x1). Sequence analysis was accomplished with
MacVector Software version 7.2.2 (Accelyrys, San Diego, CA).

qRT-PCR of hbp and �lacZ transcripts. The MyiQ Real-Time PCR Detection
System (Bio-Rad) was used with One-Step RT-PCR Mastermix, Multiscribe, and
RNase inhibitor reagents (ABI), where each reaction included 0.7 ng template
RNA, 67 ng probe, and 167 ng of each primer in a 25-�l volume in a 96-well
format. Thermal cycling was 50°C for 30 min and 95°C for 10 min, followed by 40
cycles of 95°C for 15 s and 60°C for 60 s. Raw data were analyzed by Optical
System Software version 1.0 (Bio-Rad). Calculation of fold differences in hpb or
lacZ mRNA transcript levels between two environmental conditions was accom-
plished by using the comparative cycle threshold (CT) method (4, 26) (part
#4371095; ABI). Specifically, triplicate qRT-PCRs using RNA derived from
bacteria subjected to each condition were used to calculate the 2���Ct by
normalizing to 16S rRNA. Independent determinations of fold differences were
used to calculate standard deviation and demonstrate reproducibility of the
results.

Two-dimensional electrophoresis and immunoblotting. Bartonella organisms
were harvested from culture plates with a sterile razor blade into HEPES buffer
(20 mM HEPES, 50 mM NaCl, 4°C [pH 7.5]) supplemented with Complete Mini
Protease Inhibitor Cocktail (Roche Diagnostics, Mannheim, Germany) per the
manufacturer’s instructions. After washing the bacteria three times in this solu-
tion (using centrifugations of 4,620 � g for 10 min at 4°C), cell lysis was achieved
by three passes through a French Press Cell Disrupter (Thermo Electron Corp.,
Waltham, MA) at 12,000 lb/in2. The preparation was cleared of cellular debris by
centrifugation (10,000 � g, 15 min, 4°C), and total protein was quantified with a
bicinchoninic acid kit (Pierce, Rockford, IL). Ultracentrifugation (100,000 � g,
1.5 h, 4°C) was used to enrich for insoluble outer-membrane proteins when
isolating protein spots for identification by mass spectrometry. A range of 60 to
200 �g of protein was precipitated with 3 volumes of acetone supplemented with
13.3% trichloroacetic acid (Sigma, St. Louis, Mo.) and 0.05% 2-mercaptoethanol
(2-ME) (Fisher, Fair Lawn, NJ) and incubating for 1.5 h at �20°C. Proteins were
pelleted by centrifugation (1,310 � g, 15 min, 4°C) and washed with acetone
containing 0.07% 2-ME. The pellet was air dried for 2 min at 25°C and resus-
pended in 200 �l rehydration buffer (7 M urea, 2 M thiourea, 4% Triton X-100,
0.62% DL-dithiothreitol, 0.2% Bio-Lyte 3/10 ampholyte [Bio-Rad], 0.002% bro-
mophenol blue, 0.2 mM Tris-HCl). The rehydration buffer was prepared with

Ultra Pure H2O (Ambion), and all reagents were PlusOne grade (Amersham,
Piscataway, NJ), with the exception of the ampholyte. Samples were then vor-
texed (2 min), incubated at 25°C (50 min), and centrifuged (16,000 � g, 10 min,
25°C) to pellet insoluble debris. The supernatant was loaded into the isoelectric
focusing (IEF) tray of a Protean IEF Cell (Bio-Rad) followed by a Ready Strip
IPG strip (11 cm, pH 3 to 10 nonlinear; Bio-Rad) and finally overlaid with
mineral oil (Bio-Rad). Focusing was achieved by the following cycles: active
rehydration for 12 h (50 V, 20°C), 250 V for 15 min, 8,000 V for 2.5 h, and 8,000
V until a total of 35,000 V � h was reached. Following a brief equilibration of the
strips (per the manufacturer’s instructions), a standard sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) gel (12.5% [wt/vol] acrylamide)
was used to separate the focused proteins. A Silver Quest stain kit (Invitrogen)
was used to visualize spots, except when mass spectrometry followed separation,
where staining was accomplished with 0.1% (wt/vol) Coomassie brilliant blue
(CBB).

Immunoblots were prepared by transferring proteins separated by SDS-
PAGE to Nitropure nitrocellulose membranes (0.45-�m pore size; Osmonics,
Minnetonka, Minn.) by the methods of Towbin et al. (46). Immunoblots were
probed with rabbit anti-HbpA antibody (10) at a 1:6,666 dilution and developed
using goat-anti-rabbit:horseradish peroxidase and 4-chloro-1-naphthol (Sigma)
using standard procedures (5).

Protein identification by mass spectrometry. A total of 200 �g of an outer-
membrane enriched fraction was focused, separated, and stained with CBB as
described above. Spots corresponding to the predicted molecular weight and pI
of the Hbps were excised from the gel, transferred to siliconized microcentrifuge
tubes, destained with 50% acetonitrile–25 mM NH4HCO3 (at 25°C until color-
less), and dried in a speedvac. Sequencing Grade Modified Trypsin (Promega)
was prepared per the manufacturer’s instructions and diluted to 12.5 ng/�l in 25
mM NH4HCO3. Dried gel fragments were reswelled in the trypsin solution (4°C,
20 min), resuspended in 25 mM NH4HCO3, and digested for 16 h at 37°C.
Peptides were extracted from the gel fragments with 0.1% trifluoracetic acid
(TFA)–60% methanol, dried in a speedvac, and resuspended in 4 �l 2.5% TFA.
Finally, peptides were cleaned and concentrated using Omix C18 pipette tips
(Varian, Palo Alto, CA) per the manufacturer’s instructions, analyzed using the
Voyager-DE PRO MALDI-TOF BioSpectrometery Workstation (ABI), and
fingerprinted with MASCOT software (http://www.matrixscience.com) (38).

RESULTS

Growth of B. quintana at “louse-like temperature” results in
a dramatic increase in hbpC. To determine if the hbp transcript
profiles were influenced by temperature, we compared the
effects of growth at louse-like temperature (30°C) (27, 29) to
those at human bloodstream temperature (37°C). B. quintana
strain JK31 was grown on BA-H (0.15 mM hemin) at 37°C and
30°C. RNA was prepared from bacteria cultivated at each
temperature, and qRT-PCR was performed as described
above. To clarify the methods and compound calculations of
the comparative method of qRT-PCR (4) using this first ex-
periment, a brief description follows. The threshold cycle (CT)
is the cycle number at which the fluorescence signal generated
by PCR crosses a threshold just above background and begins
exponential increase. The detection system (MyiQ; Bio-Rad)
statistically determines the threshold value during each run
using a series of computations based on real-time output of
fluorescent signal (data not shown). The average of three CT

values (Avg CT) was determined for each target (16S as well as
hbpA to hbpE) using RNA preparations from 30°C and 37°C
and is listed in Fig. 1. The Avg CT value represents the quantity
of a specific target transcript in a given RNA sample, where the
lower the Avg CT the more abundant the specific transcript. In
this experiment, the 16S transcript is the most common and
hbpB is the least common in both 30°C and 37°C RNA sam-
ples. Considering only the hbp genes, the hierarchy of tran-
scripts from the 30°C RNA sample is hbpA 	 hbpC 	 hbpD 	
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hbpE 	 hbpB, and from the 37°C preparation it is hbpA 	
hbpD 	 hbpE 	 hbpC 	 hbpB.

The Avg CT values are useful for determination of transcript
quantity in a single sample. However, when determination of
relative quantities between RNA samples is necessary, the Avg
CTs and corresponding standard deviations (SDs) are used to
calculate the fold difference using the comparative method.
The fold difference is the amount of target mRNA normalized
to an endogenous reference and relative to a calibrator. In this
experiment, the amount of a specific hbp mRNA transcript in
the 30°C preparations (target) was normalized to the amount
of 16S rRNA (endogenous reference) and is relative to the
quantity of that particular hbp mRNA transcript in the 37°C
preparations (calibrator). Fold differences calculated by this
method for each hbp transcript are derived from the given Avg
CTs and corresponding SDs and are listed with resultant range
limits (Fig. 1). To illustrate the reproducibility of these tran-
script profile determinations, the bar graph portion of Fig. 1
depicts fold differences calculated from the given data set (Avg
CTs and corresponding SDs) together with a second indepen-
dently derived data set where error bars show the SD between
these independent fold difference determinations.

The more than 108-fold difference in hbpC transcript quan-
tity at 30°C is the largest fold difference of any environmental

condition tested in this study, and it shows that hbpC transcrip-
tion is temperature regulated. Furthermore, this significant
increase in hbpC expression at 30°C suggests that HbpC func-
tion may be important in the louse. The fold difference of the
other four hbp transcripts is statistically insignificant, suggest-
ing that the expression of these hbp genes is not temperature
regulated and not necessarily specific to the louse.

Growth at “bloodstream” oxygen levels results in down-
regulation of all hbp genes. As the combination of O2 and
heme (or iron) can result in the formation of toxic reactive
oxygen species (ROS) (6, 18), we were curious to see if hbp
transcript profiles are influenced by oxygen. B. quintana strain
JK31 was grown on BA-H (0.15 mM hemin) at 37°C in an
environment containing 5% O2 or 21% O2. RNA was prepared
from bacteria cultivated at each O2 concentration, and qRT-
PCR was performed as described above. Average CTs and
corresponding SDs are listed in Fig. 2, where the hierarchy of
hbp transcripts is the same at both O2 concentrations (hbpA 	
hbpD 	 hbpE 	 hbpC 	 hbpB). Fold differences calculated
from these Avg CT values are listed in Fig. 2 with correspond-
ing range limits. In this experiment, the amount of a specific
hbp mRNA transcript derived from 5% O2-grown bacteria
(target) was normalized to the amount of 16S rRNA (endog-
enous reference) and is relative to the quantity of that partic-

FIG. 1. Fold differences in hbp mRNA following growth at louse-like temperature (30°C) relative to that at human temperature (37°C). At 96 h,
the amount of target hbp mRNA transcript in 30°C preparations was normalized to the amount of 16S rRNA and is relative to the quantity of that
particular hbp mRNA transcript in 37°C preparations. A representative experiment is shown, where CT values were determined in triplicate. SD
bars were generated by comparing fold differences to those obtained from a second independent triplicate determination.
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ular hbp mRNA transcript from a 21% O2-grown preparation
(calibrator). The bar graph portion of Fig. 2 shows the fold
differences calculated from the given data set together with a
second independently derived data set, where error bars show
the SD between these independent fold difference determina-
tions. The fold differences of all hbp transcripts are signifi-
cantly decreased when bacteria are grown in a 5% O2 environ-
ment relative to 21% O2, indicating that hbp expression is
influenced by oxygen and/or ROS.

Variable hemin levels reveal expression subgroups of the
hbp genes. B. quintana must survive and replicate in environ-
ments containing markedly different heme concentrations
throughout the infectious cycle. Humans maintain very low
free heme levels by sequestering it within hemopexin, albumin,
and hemoglobin complexes (6). On the contrary, body lice feed
several times per day and digest their blood meal within min-
utes, exposing B. quintana to very high levels of potentially
toxic heme with each meal (9, 47). Thus, we were interested in
examining hbp expression at low (human) and high (louse)
heme levels.

B. quintana strain JK31 was grown at 37°C on BA-H sup-
plemented with a range of hemin concentrations (0.0, 0.035,
0.04, 0.05, 0.15, 1.0, 2.5, 5.0, and 8.0 mM), and RNA was

prepared from the cultures. The control (0.15 mM), low (0.05
mM), and high (1.0, 2.5, 5.0 mM) hemin concentrations were
empirically determined by relative growth rates and 16S Avg
CT values. Growth was significantly affected in the extremes of
this range, where growth did not occur (0.0, 8.0 mM heme) or
a slower growth rate combined with a high 16S Avg CT value
(0.035, 0.04 mM heme) eliminated these conditions from our
experiment (data not shown).

qRT-PCR and fold difference calculations were performed
as described above. Figure 3 shows the effect on hbp transcript
profiles at low hemin concentration (0.05 mM) compared to
the control concentration (0.15 mM). The average CT hierar-
chy at low hemin (hbpA 	 hbpD 	 hbpE 	 hbpC 	 hbpB) is
similar to that of the control (hbpD 	 hbpA 	 hbpE 	 hbpC 	
hbpB), where hbpA and hbpD quantities are nearly equal.
However, fold differences indicate that expression of hbpA,
hbpD, and hbpE are significantly increased at low hemin con-
centration, whereas hbpC and hbpB remain relatively un-
changed. This demonstrates that hbpA, hbpD, and hbpE re-
spond to low hemin levels and suggests that HbpA, HbpD, and
HbpE may play a more significant role in the human environ-
ment relative to HbpC and HbpB. Finally, these data infer that

FIG. 2. Fold differences in hbp mRNA following growth at human bloodstream oxygen concentration (5% O2) relative to that of the routine
in vitro culture environment (21% O2). At 96 h, the amount of target hbp mRNA transcript in 5% O2 preparations was normalized to the amount
of 16S rRNA and is relative to the quantity of that particular hbp mRNA transcript from 21% O2 preparations. A representative experiment is
shown, where CT values were determined in triplicate. SD bars were generated by comparing fold differences to those obtained from a second
independent triplicate determination.
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two subgroups exist within the hbp family: subgroup I (hbpC
and hbpB) and subgroup II (hbpA, hbpD, and hbpE).

The subgroup hypothesis is further supported by analyzing
the fold differences at high hemin levels (1.0, 2.5, 5.0 mM)
relative to the control (0.15 mM) and is illustrated in Fig. 4. As
the hemin concentration is elevated to 1.0 mM, a decrease is
evident in all hbp transcript quantities and implies that hemin
is saturating but not yet toxic, suggesting that this may be the
ideal hemin concentration for B. quintana strain JK31. Increas-
ing concentrations further (2.5 to 5 mM) results in an elevation
of subgroup I (hbpC and hbpB), whereas subgroup II (hbpA,
hbpD, and hbpE) remains relatively unchanged. This demon-
strates that hbpC and hbpB respond to concentrations of free
hemin that are approaching toxicity, an environment that
would most likely be encountered in the louse gut. These
results, combined with the 	100-fold increase seen in hbpC
transcript at louse-like temperature (Fig. 1), strongly suggest
that HbpC function is critical in the louse.

Finally, hbp transcript quantity was not significantly affected
by cultivation at several different free iron concentrations or
media pH backgrounds, indicating that these environmental
cues do not influence expression (data not shown). Due to the
inherent peroxidase activity of hemin, it was impossible to

investigate the oxidative stress response by cultivation in an
H2O2-rich environment.

Synthesis of subgroup II proteins correlates with expression
data. To determine if hbp transcript profiles correspond to
protein profiles, we analyzed whole-cell lysates by two-dimen-
sional electrophoresis, immunoblotting, and matrix-assisted la-
ser desorption ionization—time of flight (MALDI-TOF) mass
spectroscopy (MS). B. quintana strain JK31 was grown at 37°C
on BA-H supplemented with low (0.05 mM) and control (0.15
mM) hemin concentrations. The image in Fig. 5A shows a
silver-stained two-dimensional gel of a lysate prepared from B.
quintana organisms grown on control (0.15 mM) hemin plates
with spots identified by MALDI-TOF MS corresponding to
group II proteins (HbpA, HbpD, and HbpE). Immunoblots
were prepared and probed with anti-HbpA antibody. It is ob-
vious, from the intensity and size of the immunolabeled spots,
that group II proteins are more abundant when bacteria are
grown at low hemin (Fig. 5C) relative to control hemin (Fig.
5B). The arrow indicates the size of the HbpD spot, which was
confirmed by MALDI-TOF MS to extend into a lower pI
range. Previously, we described our rabbit anti-HbpA antibody
as monospecific, based on single-dimension immunoblots and
knowledge of only a single member of the Hbp family (10).

FIG. 3. Fold differences in hbp mRNA following growth at a low hemin concentration (0.05 mM) relative to the control concentration (0.15
mM). At mid-log phase, the amount of target hbp mRNA transcript from 0.05 mM preparations was normalized to the amount of 16S rRNA and
is relative to the quantity of that particular hbp mRNA transcript from 0.15 mM preparations. A representative experiment is shown, where CT
values were determined in triplicate. SD bars were generated by comparing fold differences to those obtained from a second independent triplicate
determination.
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This experiment clearly demonstrates that anti-HbpA antibody
cross-reacts with HbpD and HbpE, the other members of sub-
group II. We were unable to locate HpbC or HbpB by
MALDI-TOF MS or by cross-reactivity with anti-HbpA from
cultures grown at low hemin concentration.

Expression of �lacZ by the hbpA promoter parallels hbpA
transcription. Data presented thus far demonstrate that hbp
transcription is affected by physiologically relevant environ-
mental conditions. We were curious to determine if transcrip-
tion factors were involved in regulation of transcript quantity.
To this end, we constructed a reporter plasmid, pHPRO�

LACZ�, consisting of the hbpA promoter region, HPRO,
fused to a truncated lacZ gene (�lacZ). A diagram of this
reporter plasmid is shown in Fig. 6A, along with two control
constructs lacking either HPRO, pHPRO� LACZ� (Fig. 6B),
or �lacZ, pHPRO� LACZ� (Fig. 6C). These three constructs
were electroporated into low-passage B. quintana strain JK31,
and transformation was confirmed by restriction fragment length
polymorphism analysis and sequencing. The transformation effi-
ciency was approximately 0.8 transformants per �g DNA.

The resulting strains (JK31-pHPRO� LACZ�, JK31-
pHPRO� LACZ�, and JK31-pHPRO� LACZ�) were then
analyzed by qRT-PCR in the two environments where hbpA
expression is most affected: low hemin (0.05 relative to 0.15
mM) and low oxygen (5% relative to 21%). Fold differences
were calculated for �lacZ transcripts and are shown in Fig. 7.
Although �lacZ appears to be transcribed from a cryptic pro-
moter in the control plasmid lacking HPRO (black bars),
where relative amount of transcript (more than 3.5 to 4.0) is
not influenced by the environment, data in Fig. 7B clearly show
that without HPRO, repression is lost under low oxygen. �lacZ
is not detectable in strains lacking this truncated open reading
frame (ORF), showing that B. quintana does not have a
genomic copy of lacZ. hbpA expression in these strains and
under the two conditions is similar to previous results in Fig. 2
and 3 (data not shown). These data suggest that a transcrip-

tional regulator(s) is influencing the expression of hbpA, at
least under conditions of low O2, and that the hbpA promoter
region contains a cis-acting regulatory element.

DISCUSSION

Bartonella species require extraordinarily high hemin con-
centrations for growth, yet an explanation for this remains
unknown. Several researchers have hypothesized that heme is
essential as a source of porphyrin (34) and/or iron (10, 42) or
as a hydrogen peroxide-detoxifying agent (33). Recently pub-
lished genomic sequences (1) provide data that address these
hypotheses: (i) neither B. quintana nor B. henselae is capable of
de novo heme synthesis, as genes for nearly all porphyrin
biosynthetic enzymes are missing; (ii) ORFs encoding uptake
systems for heme (HutABC/HmuV), iron-siderophore (Fat-
BCD/CeuD), and free iron (YfeABCD) are found in both
species; (iii) genes coding for catalase, peroxidase, bacteriofer-
ritin, or ferritin-like heme or iron storage molecules and iron
detoxification proteins (Dps) are absent in both genomes.

A survey of over 100 genomes using the KEGG database
(http://www.genome.ad.jp/kegg/pathway.html) demonstrates that
bacteria lacking the enzymes to perform de novo heme syn-
thesis are quite rare. Although the absence of heme biosyn-
thesis in B. quintana and B. henselae describes why this mole-
cule is essential, it does not explain the extraordinary quantity
that is necessary for routine culture. Compared to other patho-
gens that also lack this capability, the heme supplement for
Bartonella is approximately 100-fold greater than that of Por-
phyromonas gingivalis and 1,000-fold greater than that of Hae-
mophilus influenzae in aerobic iron-replete conditions (23, 25,
34, 49). One explanation assumes that more heme and/or iron
is required as a nutrient by Bartonella to synthesize a relatively
larger number of enzymes that utilize heme prosthetic groups
and/or iron. However, while genomic sequence annotations for
B. quintana and B. henselae (1) describe a number of enzymes

FIG. 4. Fold differences in hbp mRNA at high heme levels from mid-log-phase cells. The amount of target hbp mRNA transcript from cultures
grown in 1, 2.5, and 5 mM heme was normalized to the amount of 16S rRNA and is relative to the quantity of that particular hbp mRNA transcript
from 0.15 mM preparations. A representative experiment is shown, where CT values were determined in triplicate. SD bars were generated by
comparing fold differences to those obtained from a second independent triplicate determination.
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that use iron as a cofactor, only two utilize heme prosthetic
groups, succinate dehydrogenase and cytochrome O oxidase.

An alternative explanation for the high requirement is that
heme molecules are not just metabolic nutrients per se but are
also mediators of metabolic homeostasis, where heme may (i)
function as a defense mechanism against ROS (ii) or exog-
enously generate a decreased oxygen environment for the bac-

terium. Although there is one report suggesting that B. quin-
tana can respire anaerobically (17), it is generally accepted that
the Bartonella species are aerobic (8). During aerobic respira-
tion, superoxide (O2

�) and hydrogen peroxide (H2O2) are
naturally generated, and superoxide dismutase and catalase/
peroxidase are normally employed, respectively, for intracellu-
lar detoxification (30). Although genes encoding superoxide

FIG. 5. A. Two-dimensional SDS-PAGE gel of a whole-cell lysate of B. quintana grown for 96 h at the control hemin concentration (0.15 mM),
with positions of HbpA, HbpD, and HbpE circled. B. Corresponding immunoblot of two-dimensional SDS-PAGE developed with anti-HbpA
antiserum reacting with subgroup II Hbps. C. Immunoblot of two-dimensional SDS-PAGE of B. quintana grown to mid-log phase at a low hemin
concentration (0.05 mM) developed with anti-HbpA showing significant increases in HbpA, HbpD, and HbpE. Identity of the Hbps was verified
by MALDI-TOF MS, and the spot indicated with the arrow is additional HbpD not seen at the 0.15 mM heme level. The pI range of the IEF is
shown at the top, and the molecular weight (MW) is given to the right in thousands.
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dismutase can be found in both B. quintana and B. henselae,
there are no genes encoding catalase or peroxidase (1). The
apparent absence of a method for endogenous H2O2 detoxifi-
cation suggests that either these bacteria possess an uncharac-
terized mechanism for its degradation, or they do not respire
aerobically. First, since almost all catalases and peroxidases
utilize a heme prosthetic group, it is possible that one or more
of the hypothetical genes encode a novel heme enyzme for
H2O2 detoxification and the concurrent requirement for high-
level heme uptake. Second, although in vitro growth of B.
quintana can be accomplished under atmospheric oxygen, the
results of this study demonstrate that a microaerophilic envi-
ronment of 5% O2 is sufficient for replication. It has been
demonstrated biochemically that B. quintana does not produce
H2O2 and is catalase negative, two metabolic traits shared with
clostridia and lactobacteria that respire anaerobically, even in

the presence of oxygen (34). This suggests that B. quintana is
not an aerobe and may not require much oxygen for metabo-
lism. Determination of the heme requirements of B. quintana
at very low O2 concentrations is currently being examined to
help address this hypothesis.

The second nonnutritional method whereby heme can me-
diate metabolic homeostasis is by creating a decreased oxygen
microenvironment. First, Bartonella are members of the order
Rhizobiales, along with several human (Brucella spp.) and plant
(Agrobacterium spp.) pathogens. Many rhizobia form a symbi-
otic relationship with their legume host plant by fixing atmo-
spheric nitrogen in root nodules. For nitrogen fixation to occur,
a microaerophilic environment must be established for the
bacteria. This is accomplished by plant-generated leghemoglo-
bin (a molecule similar to hemoglobin) binding to the rhizobial
surface, effectively shielding the bacteria, and O2-labile nitro-
genase, from oxygen (3). Considering the close relationship of
Bartonella and rhizobia, it is tempting to speculate that heme
binding is a common strategy used by members of this order to
decrease oxygen in the environment. In addition, orthologues
of the Hbps can be found in Brucella and Agrobacterium (13,
32). Second, P. gingivalis stores heme dimers on its surface to
both exclude oxygen from the cell (44) and function as an
antioxidant by the intrinsic peroxidase activity of heme (43).
Interestingly, the hemin blotting technique that we first used to
identify the Hbp family proteins (10) relies on this intrinsic
peroxidase activity and shows that the heme bound to the Hbps
might act as H2O2 detoxifiers.

The human body louse has been implicated as the insect
vector for three major human diseases: epidemic typhus (Rick-
ettsia prowazekii), relapsing fever (Borrelia recurrentis), and
trench fever (B. quintana) (15). Body lice live between the skin
and clothing of humans, where the temperature is approxi-
mately 30°C (27, 29). Lice imbibe human blood several times
per day and hemolyze erythrocytes almost immediately (9, 47),
resulting in waves of potentially toxic heme, iron, and ROS
with each meal. It has been well established that B. quintana
multiplies extracellularly in the gut of the louse (14, 19) and is

FIG. 6. A. Reporter construct (pHPRO� LACZ�) containing the 240-bp hbpA promoter region, HPRO, fused to �lacZ. Primers used for
inverse PCR cloning and sequence analysis are indicated with small arrows and are described in Table 1. Restriction endonuclease sites and
plasmid ORFs (KAN, kanamycin resistance cassette; MOB, mobilization gene; REP, origin of replication) are also illustrated. B. Control plasmid
1 derived from the reporter construct by removing the EcoRI-AscI fragment containing the HPRO. C. Control plasmid 2 derived from the reporter
construct by removal of the SpeI-AvrII fragment containing �lacZ.

FIG. 7. Fold differences in �lacZ mRNA in B. quintana containing
the reporter construct pHPRO� LACZ� (white) or the control plas-
mids pHPRO� LACZ� (black) and pHPRO� LACZ� (N.D., not
detectable), under conditions of (A) low heme (0.05 mM) or (B) low
O2 (5%) relative to normal conditions (0.15 mM heme or 21% O2,
respectively). A representative experiment is shown, where CT values
were determined in triplicate. SD bars were generated by comparing
fold differences to those obtained from a second independent triplicate
determination. All strains were grown in the environments indicated,
and mRNA preparations were made at mid-log phase.
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thus repeatedly exposed to these toxic molecules and digestive
enzymes.

Our data show that hbpC transcript increases 	100-fold at
louse-like temperature (Fig. 1) and 10-fold at high hemin con-
centration (Fig. 4). Together, these results strongly suggest
that HbpC would be preferentially synthesized in the louse gut.
Considering the nutritive and nonnutritive explanations for the
high heme requirement given above, the most straightforward
hypothesis is that HbpC functions to bind heme on the surface,
creating an antioxidant barrier. Heme and iron detoxification
and storage are also challenges for hematophagous arthropod
vectors, as hemoglobin is a major protein source (35, 37). This
implies that B. quintana must compete with the louse for heme
and iron molecules and suggests that HbpC could also function
as a heme storage site. An intriguing parallel occurs in the
flea-borne agent of bubonic plague, Yersinia pestis, where (i)
the outer membrane is the primary site of exogenous heme
storage (39), (ii) the storage phenotype is most evident at the
temperature of the flea (40), and (iii) heme storage is required
for colonization of the flea proventriculus and subsequent
transmission (16). Finally, louse fecal matter is the most com-
mon vehicle for B. quintana transmission to humans, where B.
quintana can survive up to a year (21). Each environmental cue
of fecal matter (21% O2, low temperature, and high heme)
resulted in an increased expression of hbpC, suggesting that
HbpC may contribute to survival in fecal matter. In nature,
these conditions are experienced simultaneously and may have a
different effect on the hbp transcript profile than the individual in
vitro simulations presented in this study. We propose that HbpC
is required for survival of B. quintana in the louse and/or fecal
matter and are presently addressing this hypothesis with an hbpC
mutant and our established body louse colony.

B. quintana is exposed to a very different environment in the
human. Available heme is scavenged by hemopexin, hemoglo-
bin, and serum albumin, and free iron is chelated by a number
of molecules depending on whether the bacterium is intracel-
lular or extracellular. As growth of B. quintana is dependent on
heme availability, mechanisms must be employed for its bind-
ing and transport into the cell. Genes encoding uptake systems
for heme, iron-siderophore, and free iron are found in both B.
quintana and B. henselae (1), yet their functions have not been
studied. To date, all Bartonella species examined also contain
genes encoding the Hbp family proteins (originally termed
“Pap” in B. henselae) (50). Our data demonstrate that the
relative quantity of subgroup II (hbpA, hbpD, and hbpE) tran-
script is significantly upregulated at low hemin concentrations
(Fig. 3), suggesting that subgroup II proteins are utilized in the
human for acquisition of heme. This notion is supported by
qRT-PCR analysis of the hbp transcript profile in a Rhesus
macaque where the hierarchy (hbpD 	 hbpA 	 hbpE 	 hbpC
	 hbpB) is consistent with this in vitro low-heme condition
(data not shown).

Oxygen, heme, and iron are molecules that are required by
almost all living organisms to maintain metabolic homeostasis,
yet each of these nutrients can become toxic if the concentra-
tion is too high (6, 18). Furthermore, heme and iron are ca-
pable of transforming oxygen into highly toxic ROS (O2

�,
H2O2, and OH�). Humans maintain their bloodstream O2

between 3 and 5%, much lower than the atmospheric 21%
used for routine cultivation of B. quintana. Nothing is known

about the O2 concentration in a louse gut, but we hypothesize
that large amounts of ROS are present during blood meal
digestion. Our data show that all of the hbp transcripts de-
crease significantly when B. quintana is grown at an O2 con-
centration that simulates the human bloodstream (Fig. 2). This
finding strongly suggests that the Hbps respond to O2 and/or
ROS. Again, the simplest explanation is that surface-bound
heme functions as an antioxidant barrier, where bacteria grown
at 5% oxygen encounter relatively less ROS and, thus, less Hbp
is necessary to maintain metabolic homeostasis. Assuming that
the Hbps also function in transport of hemin for nutritional
purposes (50), it is also possible that enzymes which utilize
porphyrin and/or iron are not required to the extent they are at
21% O2. In nature, one would expect relative hbp expression to
be highest in louse fecal matter and lowest in the human
bloodstream.

B. quintana is also unusual in that it apparently lacks mech-
anisms for iron storage (ferritin), heme storage (bacterioferri-
tin), iron detoxification, and antioxidant defense (catalase and
peroxidase). To prevent intracellular oxidative damage and
iron toxicity, the regulation of genes involved in heme uptake
and subsequent nutritive utilization must be tightly regulated
(2, 45). It is obvious that hbpC transcription is temperature
regulated and that oxygen and hemin also influence transcrip-
tion of the hbp genes. We generated a �lacZ reporter construct
(Fig. 6) to determine if the hbpA promoter region could con-
trol transcription of an exogenous locus. Although the pres-
ence of the cryptic promoter may be affecting �lacZ expression
at low hemin concentrations (Fig. 7A), it is evident that re-
pression of �lacZ is occurring under low oxygen concentrations
(Fig. 7B). This strongly suggests that one or more regulators
are affecting transcription and that the hbpA promoter region
contains a cis-acting regulatory element. Experiments are un-
der way to identify the specific trans-acting regulators and the
cognate promoter elements of the hbp genes.

In conclusion, the roles that the Hbp family play in essential
heme acquisition and maintenance of metabolic homeostasis
are unknown. We report here the differential and coordinated
expression of hbp genes in response to environmental condi-
tions that simulate the human host and louse vector. Based on
differential expression patterns, we propose that there are two
subgroups of hbp genes, subgroup I (hbpC and hbpB) and
subgroup II (hbpA, hbpD, and hbpE). We are downplaying the
role of hbpB for several reasons: (i) hbpB contains a 
510-bp
insert in the center of its ORF and recombinant HbpB does
not bind hemin like other Hbps (J. A. Carroll and M. F.
Minnick, unpublished data); and (ii) in all qRT-PCR studies,
the relatively high average CT value suggests that very little
hbpB transcript is produced. Continued work on this heme
receptor gene family is expected to yield valuable clues regard-
ing the extraordinary need for heme as well as the roles that
these virulence factors play in the survival and pathogenesis of
Bartonella.
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