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Endosomal hyperacidification in cystic fibrosis (CF) respiratory
epithelial cells is secondary to a loss of sodium transport control
owing to a defective form of the CF transmembrane conductance
regulator CFTR. Here, we show that endosomal hyperacidifica-
tion can be corrected by activating the signalling cascade
controlling sodium channels through cyclic GMP. Nitric oxide
(NO) donors corrected the endosomal hyperacidification in CF
cells. Stimulation of CF cells with guanylate cyclase agonists
corrected the pH in endosomes. Exposure of CF cells to an
inhibitor of cGMP-specific phosphodiesterase PDE5, Sildenafil,
normalized the endosomal pH. Treatment with Sildenafil reduced
secretion by CF cells of the proinflammatory chemokine
interleukin 8 following stimulation with Pseudomonas aeruginosa
products. Thus, the endosomal hyperacidification and excessive
proinflammatory response in CF are in part due to deficiencies in
NO- and cGMP-regulated processes and can be pharmacologi-
cally reversed using PDE5 inhibitors.
Keywords: cystic fibrosis; endosome; nitric oxide; cGMP;
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INTRODUCTION
Cystic fibrosis (CF) is a life-shortening inheritable disorder (Rowe
et al, 2005), caused by mutations in the gene encoding a chloride
channel termed the CF transmembrane conductance regulator
(CFTR). CF is a syndrome affecting respiratory, gastrointestinal,
hepatobiliary and male reproductive tracts (Rowe et al, 2005).
Patients with identical CFTR mutations often show different
clinical presentation, suggesting a role for modifier genes other

than CFTR (Cutting, 2005). In keeping with this idea, CFTR exerts
pleiotropic effects on transport of other ions, including the
amiloride-sensitive epithelial sodium channel (ENaC; Stutts et al,
1995), and affects a variety of transport and physiological
properties of respiratory cells and tract (Poschet et al, 2002a).
A link between the CFTR defect and lung pathology, that is,
Pseudomonas aeruginosa infections, excessive inflammation and
irreversible lung damage, remains to be established. It is known
however that the proinflammatory chemokine interleukin 8 (IL-8;
CXCR-8) is abnormally elevated in CF and is responsible for
neutrophil infiltration and subsequent inflammatory cascade
(Bonfield et al, 1995). Nevertheless, the basis for abnormally high
IL-8 and its pathology-inducing instead of infection-resolving
function are not known.

In CF, about 70% of the CFTR mutations are DF508,
which result in improper folding of the CFTR and its aberrant
transport, including retention in the endoplasmic reticulum
(Riordan, 2005) and increased endocytic removal from the plasma
membrane, as well as increased degradation (Gentzsch et al,
2004). The CFTR defect not only leads to abnormal chloride
transport, but also affects the function of the ENaC, resulting in its
increased probability of being open and higher than normal Naþ

currents (Stutts et al, 1995). Another important effect of the
upregulation of Naþ transport in CF is the lower than normal pH
in a subset of intracellular organelles in CF respiratory epithelial
cells (Poschet et al, 2001, 2002a,b). This includes the trans-Golgi
network (TGN; Chandy et al, 2001; Poschet et al, 2001, 2002a)
and cellubrevin-positive compartments in the endosomal network
(Poschet et al, 2002a,b) in CF bronchial and tracheal epithelial
cells. The aberrant Naþ transport in CF affects lumenal
hyperacidification of TGN and endosomes in CF cells in the
following manner (Poschet et al, 2001, 2002a,b): (i) the vacuolar
Hþ ATPase is sensitive to transmembrane potential build-up,
which increases as the protons are pumped into the organellar
lumen and positive charges accumulate; (ii) an efflux of Naþ

from the same lumen helps dissipate the membrane potential
and release the Hþ ATPase pump from inhibition; and (iii) the
cellubrevin-containing endosomes and TGN become overly
acidified owing to increased Naþ channel activity in CFTR-
mutant cells.
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Although the evidence points to a central role of ENaC
dysregulation in CF, it is not understood how CFTR affects ENaC
activity. It has been reported that one of the consequences of CFTR
deficiency is a reduced level of inducible nitric oxide synthase
(iNOS) and lowered NOK production by CF respiratory epithelial
cells, intrinsically related to the CFTR defect (Kelley & Drumm,
1998). As nitric oxide affects guanylate cyclase activity and
cyclic GMP blocks amiloride-sensitive sodium channels including
ENaC (Lazrak et al, 2000), we wondered whether the sodium-
dependent hyperacidification of cellubrevin-positive endosomes
in CF can be explained by reduced NOK levels in CF respiratory
epithelial cells.

RESULTS
NOK reverses endosomal hyperacidification in CF
Nitric oxide stimulates guanylate cyclase to generate cGMP
(Krumenacker et al, 2004). As cGMP inhibits amiloride-sensitive
sodium channels (Lazrak et al, 2000), we tested whether lumenal
pH in cellubrevin endosomes could be corrected by supplying
NOK to CF cells, as they show lower iNOS levels (Kelley &
Drumm, 1998; supplementary Fig S1 online). A pair of previously
characterized (Egan et al, 1992), genetically matched CF
and CFTR-corrected bronchial epithelial cell lines was used:
IB3-1 (from a compound heterozygote CF patient with CFTR

DF508/W1282X alleles) and S9 (IB3-1 cells corrected with
a full-size functional CFTR complementary DNA). In addition,
CFBE41o� (DF508/DF508 human bronchial epithelial cells) and
16HBEo� (normal human bronchial epithelial cells) were used.
The cells were transfected with a cellubrevin green fluorescent
protein (GFP) pHluorin construct to monitor endosomal pH
(Miesenbock et al, 1998; Poschet et al, 2002b). Cellubrevin-
containing endosomes of CF cells were hyperacidified compared
with endosomes in CFTR-corrected and normal cells (IB3-1, pH
6.170.1; S9, pH 6.870.1; CFBE41o�, pH 6.170.1; 16HBEo�,
pH 6.870.1; Fig 1A). The NOK donors DETA-NONOate and
NOR4 corrected endosomal hyperacidification in IB3-1 cells
(1 mM DETA-NONOate, pH 6.970.1; 1 mM NOR4, pH 7.070.2;
Fig 1B), which was further confirmed by examining a dose
response to DETA-NONOate (Fig 1C). Conversely to the correc-
tion of endosomal pH with NOK donors in CF cells, nitric oxide
synthase inhibitors, NG-nitro-L-arginine methyl ester (L-NAME)
and 1400W, induced endosomal hyperacidification in CFTR-
corrected S9 cells (1 mM L-NAME, pH 6.570.1; 10 mM 1400W,
pH 6.070.2; Fig 1D). The inactive stereoisomer R-NAME had no
effect (1 mM R-NAME, pH 6.870.1; Fig 1D). These results
indicate that NOK levels affect organellar pH, and that nitric
oxide donors can correct endosomal hyperacidification in CF
respiratory epithelial cells.

IB
3-

1 S9
CFB

E

16
HBE

**

6

6.5

7

†

**

Con
tro

l

DETA
-

NONOat
e

NOR-4

pHpH

pH pH

pHpH

** **

6

6.5

7

7.5

Con
tro

l

**

6

6.5

7

7.5

****

DETA-NONOate (mM)

0.1 0.2 0.4 0.8 1.6

Con
tro

l

8B
r-c

GM
P

Dibut
ry

l-c
GM

P
6

6.5

7

7.5
** **

Con
tro

l

NS20
28

DETA
-N

ONOat
e

+NS20
28

6

6.5

7

7.5

** † † ***

BAY41
-2

27
2

ODQ
PPIX

Con
tro

l

R-N
AM

E

L-
NAM

E

6.25

6.5

6.75

7 *† *

6

14
00

W

A B

C D

E F

b Fig 1 | Nitric oxide corrects hyperacidification in cellubrevin endosomes

of cystic fibrosis respiratory epithelial cells. Guanylate cyclase or addition

of exogenous cyclic GMP normalizes pH in cellubrevin endosomes of CF

cells. (A) Lung epithelial cells transfected with cellubrevin GFP pHlourin:

IB3-1 (CFBE) pH 6.170.1, n¼ 18; S9 (CFTR-corrected IB3-1 cells), pH

6.870.1, n¼ 18, P¼ 0.0003; CFBE, pH 6.170.1, n¼ 28; 16HBE, pH

6.870.1, n¼ 28, P¼ 0.0001. (B) CF cells treated with NOK donors and

scavengers: IB3-1, pH 6.170.1, n¼ 18; IB3-1þ 1 mM DETA-NONOate,

pH 6.970.1, n¼ 10, P¼ 0.0001; IB3-1þ 1 mM NOR4, pH 7.070.2, n¼ 10,

P¼ 0.0001. (C) Dose–response to the NOK donor DETA-NONOate:

IB3-1þ 0.1 mM DETA-NONOate, pH 6.070.1, P¼ 0.5341; IB3-1þ 0.2 mM

DETA-NONOate, pH 6.170.2, P¼ 0.9937; IB3-1þ 0.4 mM DETA-

NONOate, pH 6.570.2, P¼ 0.0018; IB3-1þ 0.8 mM DETA-NONOate,

pH 6.670.1, P¼ 0.0004; IB3-1þ 1.6 mM DETA-NONOate, pH 6.970.2,

P¼ 0.0001. In all experiments, n¼ 5. (D) Respiratory cells treated with

nitric oxide synthase inhibitors: S9, pH 6.870.1, n¼ 18; S9þ 1 mM

R-NAME, pH 6.870.1, n¼ 11, P¼ 0.9333; S9þ 1 mM L-NAME, pH

6.570.1, n¼ 10, P¼ 0.0492; S9þ 10mM 1400W, pH 6.070.2, n¼ 5,

P¼ 0.0161. (E) CF cells treated with guanylate cyclase agonists (PPIX and

BAY41-2272) and antagonists (NS2028 and ODQ): IB3-1 control, pH

6.170.1, n¼ 18; IB3-1þ 10 mM PPIX, pH 7.170.1, n¼ 10, P¼ 0.0001;

IB3-1þ 10 mM BAY41-2272, pH 6.770.2, n¼ 5, P¼ 0.0004; IB3-1þ 10 mM

NS2028, pH 6.170.1, n¼ 10, P¼ 0.9385; IB3-1þ 1 mM DETA-

NONOateþ 10mM NS2028, pH 6.470.2, n¼ 10, P¼ 0.2639; IB3-1þ 10 mM

ODQ, pH 6.270.0, n¼ 5, P¼ 0.0161. (F) CF cells treated with exogenous

cGMP: IB3-1, pH 6.170.1, n¼ 18; IB3-1þ 100mM 8Br-cGMP, pH

7.270.1, n¼ 10, P¼ 0.0001; IB3-1þ 100mM dibutyryl cGMP, pH 7.270.1,

n¼ 10, P¼ 0.0001. Open bars, CF cells; grey bars, CFTR-corrected or

normal cells. CF, cystic fibrosis; CFBE, CF bronchial epithelial cells;

CFTR, CF transmembrane conductane regulator; GFP, green fluorescent

protein; HBE, normal human bronchial epithelial cells; NO, nitric oxide;

PPIX, protoporphyrin IX.
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Endosomal hyperacidification in CF is reversed by cGMP
As NOK activates guanylate cyclase and cGMP production and
cGMP blocks Naþ channels (Lazrak et al, 2000), we examined
potential effects of guanylate cyclase and cGMP on pH of the
endosome. The cGMP agonist protoporphyrin IX (PPIX), by
increasing cGMP through stimulation of guanylate cyclase,
corrected hyperacidification in cellubrevin-containing endosomes
of CF cells (IB3-1þ 10 mM PPIX, pH 7.170.1; Fig 1E). A similar
result was obtained with a soluble guanylate cyclase (sGC)
activator BAY41-2272 (IB3-1þ 10 mM BAY41-2272, pH
6.770.2). DETA-NONOate did not induce a significant increase
in pH when added with the sGC inhibitor NS2028 (Fig 1E).
Inhibition of sGC in IB3-1 cells did not further exacerbate the
low pH (Fig 1E; bar with ODQ, inhibitor of sGC). Addition of
exogenous, membrane-permeant cGMP analogue, 8-Br-cGMP,

also reversed endosomal hyperacidification (IB3-1þ 100 mM 8Br-
cGMP, pH 7.270.1) compared with untreated cells (pH 6.170.1;
Fig 1F). Addition of another membrane-permeant cGMP deriva-
tive, dibutryl cGMP (Freedman & Raff, 1975), reversed hyper-
acidification (IB3-1þ 100mM dibutryl cGMP, pH 7.270.1; Fig 1F).
These results indicate that cGMP corrects hyperacidification of
cellubrevin endosomes in CF respiratory epithelial cells.

Phosphodiesterase 5 inhibitors correct endosomal pH
An increase of intracellular cGMP can be achieved by pharma-
cological inhibition of cGMP hydrolysis to GMP using phospho-
diesterase (PDE) inhibitors (Ballard et al, 1998). We tested the
effects of PDE inhibitors on hyperacidification of cellubrevin
endosomes in CF respiratory epithelial cells. Treatment of CF cells
with a general PDE inhibitor, IBMX, reversed hyperacidification in
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Fig 2 | Inhibition of phosphodiesterase 5 with Sildenafil increases intracellular cGMP and corrects endosomal pH in cystic fibrosis cells. (A) IB3-1,
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cellubrevin endosomes. IB3-1 treated with 200 mM IBMX had an
endosomal pH of 6.970.1, relative to a pH of 6.170.1 for
untreated cells. Inhibition of cyclic AMP (cAMP)-specific PDE
with Rolipram did not correct the endosomal hyperacidification
(IB3-1þ 10 mM Rolipram, pH 6.470.1; Fig 2A), indicating a
role for cGMP and not cAMP. Application of a cGMP PDE
inhibitor, MBCQ, reversed hyperacidification (IB3-1þ 100 nM
MBCQ, pH 7.270.1), as did a treatment with the highly specific
PDE5 inhibitor Sildenafil (IB3-1þ 300 nM Sildenafil, pH 7.170.1;
Fig 2A). Treatment with Sildenafil increased intracellular cGMP in
IB3-1 cells (Fig 2B). The role of PDE5 in these processes was
confirmed by PDE5 knockdown (supplementary Fig S2 online),
which increased endosomal pH in CF cells (Fig 2C). Incubation of
IB3-1 cells with Sildenafil did not alter localization of cellubrevin
GFP pHlourin relative to the transferrin receptor, a marker of
recycling endosome (Poschet et al, 2002b; Fig 2D). Fig 3 illustrates
the fluorescence intensities of pH-sensitive GFP pHlourin after
treatment with Sildenafil. We also carried out a converse
experiment, whereby Sildenafil reversed a pharmacologically
induced endosomal hyperacidification in CFTR-corrected cells S9
(supplementary Fig S3A online).

Finally, we tested primary cells from a lung transplant from
a CF patient homozygous for DF508 CFTR mutation. Sildenafil
treatment reduced the hyperacidification in endosomes of primary

human CF respiratory epithelial cells (Fig 4A). Collectively, these
results demonstrate that PDE5 inhibitors correct endosomal
hyperacidification in CF lung epithelial cells.

Sildenafil reduces IL-8 secretion in CF cells
The proinflammatory neutrophil-recruiting chemokine IL-8 is
persistently elevated in CF (Bonfield et al, 1995). Endosomes
and proinflammatory signalling have previously been linked
through a requirement for acidification (Honda et al, 2005) in
the process of signalling following recognition of endocytosed
bacterial products, such as DNA containing unmethylated CpG
motifs signalling through Toll-like receptor 9 (TLR9; Latz et al,
2004b). It has been shown that CpG DNA induces an
inflammatory response in CF cells (Greene et al, 2005). We tested
whether endosomal hyperacidification in CF cells contributes to
the excessive proinflammatory output. Application of Sildenafil
to CF cells for 24 h reduced secretion of IL-8 in response to
stimulation by DNA preparations from P. aeruginosa, a crucial
CF pathogen with chromosomal DNA rich in unmethylated
CpG motifs (see supplementary Fig S4 online for IL-8 secretion
dose–response curve as a function of increasing concentrations
of P. aeruginosa DNA). Mean IL-8 secretion for IB3-1 cells was
161726 pg/ml and for IB3-1þ 300 nM Sildenafil was 89723 pg/
ml, P¼ 0.0221 (Fig 4B). Sildenafil was also able to suppress IL-8
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IB3-1 + Sildenafil

5.0 7.0

Ratio

pH 

Fig 3 | Live ratiometric fluorescence microscopy of cellubrevin green fluorescent protein pHlourin-labelled endosomes in cystic fibrosis cells treated

with Sildenafil. Emission fluorescence was collected/imaged at 508 nm, whereas excitation was rapidly alternated between 410 and 470 nm. Note relative

reduction of fluorescence emission after illumination at 470 nm with IB3-1 cells treated with Sildenafil, with intensities closer to those observed with

cystic fibrosis transmembrane conductance regulator (CFTR)-corrected cells.
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production in IB3-1 cells following stimulation with live
P. aeruginosa (Fig 4C). Sildenafil alone did not stimulate secretion
of IL-8 in cells that were not exposed to P. aeruginosa products
(supplementary Fig S5 online). Thus, Sildenafil reduces secretion
of IL-8 in CF respiratory epithelial cells when they are exposed to
whole P. aeruginosa bacteria or are stimulated with P. aeruginosa
DNA, consistent with Sildenafil effects on endosomal pH.

DISCUSSION
Hyperacidification of endosomal compartments in CF respiratory
epithelial cells is due to dysregulated sodium transport in CFTR
mutant cells (Poschet et al, 2002a). Here, we have shown that
drugs promoting the formation or preventing the degradation
of cGMP reverse endosomal hyperacidification in CF cells. This
includes NOK donors, which stimulate guanylate cyclase to

produce more cGMP (Roczniak & Burns, 1996), or PDE inhibitors,
which prevent the degradation of cGMP (Ballard et al, 1998). Fig 5
shows a model summarizing these relationships.

Before the more recent demonstration of organellar hyperaci-
dification in CF respiratory epithelial cells (Chandy et al, 2001;
Poschet et al, 2001, 2002a,b), there were proposals that the
absence of the CFTR might lead to alkalinization of the
intracellular organellar lumen owing to a loss of Cl� conductance
(Barasch et al, 1991). Later research found no organellar
alkalinization (Biwersi & Verkman, 1994; Seksek et al, 1996;
see the supplementary information online for detailed discussion).
Subsequent studies have confirmed that organelles in CF
respiratory epithelial cells are not more alkaline, and instead
have demonstrated that the TGN and recycling endosomes
are hyperacidified in human CF respiratory epithelial cells
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(Chandy et al, 2001; Poschet et al, 2001, 2002a,b). These studies
have shown that organellar hyperacidification in CF respiratory
cells is due to the loss of regulation of sodium transport in the
absence of a functional CFTR, and the runaway flux of Naþ

out of the organelles (Poschet et al, 2002a). Further support for
this model (Fig 5) is provided (supplementary information
online) by inhibition of Naþ /Kþ ATPase (supplementary Fig S3A
online) and amiloride-sensitive Naþ channels (supplementary
Fig S3B online).

The expression of iNOS is reduced in CF airway epithelial cells
(Kelley & Drumm, 1998) and in human lung explants, but not in
other lung diseases (Meng et al, 1998). In their initial publication
on decreased iNOS levels, Kelley & Drumm (1998) have proposed
the possibility that decreased NOK levels in CF may be linked to
aberrant Naþ transport in the CF respiratory epithelium through
the decreased action of NOK on guanylate cyclase. Our work
presented here indirectly validates their model, as reflected in
organellar hyperacidification in CF cells. This signalling cascade is
the basis for Sildenafil action in our experiments, and suggests
potential therapeutic uses, in keeping with reports linking
Sildenafil action on the NOK/cGMP pathway to positive outcomes
in animal models of lung disease (Toward et al, 2004; Ladha
et al, 2005).

CF is characterized by excessive lung inflammation. Treatment
of CF cells with Sildenafil reduced secretion of the proinflamma-
tory chemokine IL-8 elicited by stimulation with high CpG DNA
of P. aeruginosa. Endosomal pH is important in proinflammatory
TLR9 signalling, as treatment with bafilomycin or chloroquine
abrogates this signalling (Honda et al, 2005). In macrophages and
dendritic cells, CpG DNA is internalized by endocytosis, whereas
TLR9 moves from the endoplasmic reticulum to endosomal
organelles where it binds to CpG DNA and activates signalling
(Latz et al, 2004a). Hyperacidification of endosomes in CF
respiratory epithelial cells augments proinflammatory signalling
in response to Pseudomonas products, as shown previously
(Firoved et al, 2004) and further extended here. Sildenafil
treatment, as predicted from the normalization of endosomal
pH, resulted in normalization of IL-8 secretion. Thus, not only
does this work show a pathway leading to the hyperacidification
of proinflammatory signalling organelles in CF, but also offers a
remedy using a safe and widely used drug.

METHODS
Live fluorescence ratiometric microscopy and pH measurements.
Fluorescence microscopy was as previously described (Poschet
et al, 2002b) and was performed by using an Olympus IX-70
microscope and Olympix KAF1400 CCD camera
(LSR, Olympus, NY, USA). Following excitation at 410 and
470 nm, the ratio of emission at 508 nm was determined using
filter sets (Chroma, VT, USA) mounted in a Sutter filter wheel
(Sutter Instruments, CA, USA) and processed by Ultraview
software (Perkin-Elmer, CA, USA). Cells were mounted in a
perfusion chamber in buffer A: 25 mM HEPES (pH 7.4), 119 mM
NaCl, 2.5 mM KCl, 2 mM CaCl2, 2 mM MgCl2 and 30 mM
glucose at 37 1C. External and internal standards and calibration
curve were generated as previously described (Poschet et al,
2001, 2002b).
Modulation of cellubrevin endosomal pH. After 72 h from the
time of transfection, cells were treated with drugs for 20 min to 2 h

at 37 1C and 5% CO2, and cellubrevin endosomal pH was
determined as described above.
Other methods. Further methods are described in the supple-
mentary information online.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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