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ABSTRACT 
 
Syndromic surveillance systems are being 
deployed widely to monitor for signals of covert 
bioterrorist attacks. Regional systems are being 
established through the integration of local 
surveillance data across multiple facilities.  We 
studied how different methods of data integration 
affect outbreak detection performance. We used 
a simulation relying on a semi-synthetic dataset, 
introducing simulated outbreaks of different 
sizes into historical visit data from two hospitals.  
In one simulation, we introduced the synthetic 
outbreak evenly into both hospital datasets 
(aggregate model). In the second, the outbreak 
was introduced into only one or the other of the 
hospital datasets (local model). We found that 
the aggregate model had a higher sensitivity for 
detecting outbreaks that were evenly distributed 
between the hospitals. However, for outbreaks 
that were localized to one facility, maintaining 
individual models for each location proved to be 
better. Given the complementary benefits offered 
by both approaches, the results suggest building 
a hybrid system that includes both individual 
models for each location, and an aggregate 
model that combines all the data. We also 
discuss options for multi-level signal integration 
hierarchies.  
 

INTRODUCTION 
 
The threat of bioterrorism has thrown into 
greater relief the critical need for timely 
detection of infectious outbreaks.1 This 
awareness has resulted in a greatly accelerated 
time frame for major enhancements to the public 
health infrastructure.2 The emerging discipline of 
syndromic surveillance enables the real-time 
monitoring of pre-diagnostic information for the 
first signs of a covert biological warfare attack.  
Such an attack could be detected as an 
exceedence in the expected numbers of victims 
seeking health care and engaging in health care-
related behaviors. For example, patients with 

early-stage anthrax infection may develop 
influenza-like symptoms and might visit primary 
care physicians or emergency departments (EDs) 
for treatment1.  By detecting a surge in visits of 
patients with flu-like symptoms, a public health 
authority could get an early warning of a covert 
anthrax attack,3 perhaps within the first two days, 
enabling prompt identification, containment, 
treatment, and prophylaxis. 
 
In a given region, simultaneous interpretation of 
multiple data streams from different sources is 
often necessary. One example of this signal 
integration challenge is the need to interpret 
syndromic data from two different emergency 
departments in a given region. Another is the 
higher level integration of data from multiple 
regions. With multi-tiered syndromic 
surveillance systems being deployed across the 
country at the local, state and national levels, the 
question of how best to integrate data from 
multiple local systems is of critical importance.  
 
We consider two modeling methods for 
integrating surveillance data across multiple 
systems. The first is to maintain separate local 
models for each system. This effectively creates 
a collection of many individually localized 
syndromic surveillance systems that report their 
results to one central authority. The second 
method is to combine the data from all the 
systems into one aggregate model that covers 
many locations. 

 
We set out to study the effects of different 
integration methods on overall system 
performance, including model accuracy and 
detection sensitivity. We did so by constructing 
both local and aggregate models of historical 
visit data from two hospitals. We then introduced 
simulated outbreaks of various sizes and 
measured the overall detection performance of 
the various models.  
 



METHODS 
 
Settings and Subjects. Data were extracted 
from two hospital information systems.  Hospital 
1 is an urban, academic, tertiary care general 
hospital with an ED that sees approximately 
50,000 patients annually.  Hospital 2 is an urban, 
academic, tertiary care pediatric hospital with a 
similar catchment area and also having an annual 
ED census of approximately 50,000 visits. 
Eligible subjects were all patients seen in 
Hospital 1 and Hospital 2 between June 1, 1998 
and December 25, 2002.  This time period 
included 1,668 consecutive days at each hospital. 
No patient identifying information was used in 
this study.  Institutional review board approval 
for the study was obtained at both hospitals. 
 
Syndromic Grouping . The chief complaints and 
ICD (International Classification of Disease) 
codes of eligible patients were used to select 
those ED encounters that were related to 
respiratory illness.  At Hospital 1, chief 
complaints are entered in free text during the 
triage process.  We used two procedures to 
classify complaints.  One was to search for 
words in the complaint that occur with high 
frequency among patients with respiratory ICD 
codes.  The other was to utilize a Bayesian 
classification program developed at the 
University of Pittsburgh, and made publicly 
available4,5. Default probabilities from a 
Pennsylvania ED dataset, supplied with the 
software, were applied to the Hospital 1 data.  At 
Hospital 2, chief complaint codes were chosen 
during the triage process, from an online 
constrained list with 181 choices.  A previously 
validated subset of the constrained chief 
complaint set was chosen a priori for inclusion in 
the respiratory syndromic grouping. 6 
 
ICD diagnostic codes for patients at both 
hospitals are assigned after the ED visit and then 
again during the billing process.  ICD codes 
were grouped into the respiratory syndromic 
classification according to the military Electronic 
Surveillance System for the Early Notification of 
Community-based Epidemics (ESSENCE)7 
respiratory syndrome classification (available at 
www.geis.ha.osd.mil).  
 
For each hospital, to determine if a given visit 
was classifiable as a respiratory syndrome we 
included those visits that had either a respiratory-
related chief complaint or a respiratory-related 
ICD diagnostic code.  

 
Modeling. The next step in building syndromic 
surveillance systems after assembling and 
categorizing the input data is building a 
historical model.8 We constructed three historical 
models: (1) based on the daily visit totals for 
Hospital 1; (2) based on the daily visit totals for 
Hospital 2; (3) based on the daily visit totals for 
Hospital 1 and Hospital 2 combined. These three 
models are referred to as Hospital 1, Hospital 2,  
and COMB, respectively. 
 
We used 80% of the data (1,334 days) to train 
the models, and the remaining 20% of the data 
(334 days) to test the model accuracy. 
 
We have previously described the historical 
modeling methodology9. The general approach 
was to separate the signal into its various 
stationary and periodic components. First, the 
overall mean of the entire data series was 
calculated and subtracted out. An average 
weekly trend was then calculated from the 
remaining signal and subtracted out as well. 
Finally, an average yearly trend was calculated 
from the re maining signal. The resulting model 
consisted of the sum of these three components: 
the overall mean, the weekly signal, and the 
yearly trend.  Using these models, predictions 
were generated for the daily respiratory-related 
visit totals in the test range (the final 20% of the 
time period covered by the data). 
 
Detection.  The next stage in building a 
syndromic surveillance system is detection--
evaluating the significance of the difference 
between predictions made by the historical 
model and the actual visit totals recorded in the 
hospital. 
 
In order to test the effects of data integration 
methods on detection performance, we 
introduced simulated disease outbreaks into the 
three daily visit time series and presented them 
to the three models -- Hospital 1, Hospital 2 and 
COMB. We evaluated the detection sensitivity of 
these models under two sets of conditions. First, 
we introduced a 30% increase in daily visits, 
evenly distributed across both hospitals. This led 
to a 30% increase in the COMB signal as well.  
 
Second, we introduced a 30% increase in only 
one of the hospitals, with no increase in the other  



 AVG STDDEV  MAPE 
Hosp 1 20.90 5.37 22.03 % 
Hosp 2 40.39 8.20 23.04 % 
COMB  61.29 10.24 16.93 % 

 
Table 1. Evaluation of the historical models based on 
daily respiratory -related visits seen at Hospital 1, 
Hospital 2 and at both hospitals combined (COMB): 
Average daily visits; the standard deviation of the 
error signal for the models; the Mean Absolute 
Percentage Error (MAPE) achieved by the model. 
 
hospital. This meant that the simulated outbreaks 
were localized to one facility, and led to a 
smaller increase in the overall COMB signal. 
 
The methods for simulation were in keeping with 
those previously described9. Briefly, 110 
simulated outbreaks, each seven days long, and 
spaced 15 days apart, were inserted over the 
1,668 days. During every day of an outbreak, a 
fixed number of visits (the magnitude of the 
outbreak) were added to the daily visit totals. We 
set the magnitude of the outbreaks to 30% of the 
average number of respiratory-related daily visits 
for that mo del. This fixed ratio of outbreak size 
to average daily volume allowed comparison of 
detection performance across the different time 
series. 
 
Sensitivity was calculated as the total number of 
outbreak days with an alarm divided by the total 
number of outbreak days. Specificity was 
calculated as the total number of non-outbreak 
days without alarms divided by the total number 
of non-outbreak days. In order to compare 
sensitivities across the different models, we set a 
fixed false alarm rate (1-specificity). Alarm 
thresholds were calibrated to achieve a 
benchmark false alarm rate of 7% (specificity of 
93%), selected to allow comparison across all the 
different models. This rate can be changed to suit 
the needs of any particular system. It is not 
expected that different rates will have dramatic 
effects on the results reported here. 
 

RESULTS 
 
Model Error. Table 1 shows that the error 
variability did not scale linearly with the average 
number of daily visit numbers. Instead, the 
models with more average visits per day seemed 
to have relatively less noise. 
 

 Outbreak 
 size 30% 
visits/day 

Sensitivity  
[95% CI] 

Hosp 1 6.27 0.36  [0.33, 0.40] 
Hosp 2 12.12 0.43  [0.39, 0.46] 
COMB  18.39 0.69  [0.66, 0.72] 

 
Table 2. Simulation results for evenly-distributed 
outbreaks. The combination model achieved a better 
sensitivity than the individual model. 

 
 
 

 
 
The model error, measured as mean absolute 
percentage error, also decreased with larger 
numbers of average daily visits.  
 
Detection. Table 2 shows that when both 
hospitals  had increases of 30%, the COMB 
model achieved significantly higher sensitivity 
than the two individual models.  
 

 Sensitivity to 
local Hospital 1  

[95% CI] 

Sensitivity to local 
Hospital 2  
[95% CI] 

Hosp 1 0.36 [0.33, 0.40] - 
Hosp 2 - 0.43 [0.39, 0.46] 
COMB  0.15 [0.13, 0.18] 0.34 [0.30, 0.37] 
 
Table 3. Simulation results for localized outbreaks. In 
both cases, the localized model achieved a better 
sensitivity than the combination model. 
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Figure 1. Sensitivity of the individual and aggregate 
models in detection outbreaks of different sizes. The 
results show that the aggregate model maintains a 
significant sensitivity advantage over a wide range of 
outbreak sizes. 
 



 
 
Figure 1 shows that the sensitivity advantage for 
the  COMB model held for a wide range of 
outbreak sizes. Table 3 shows that when only 
one hospital had a 30% increase, the individual 
model for that hospital achieved a better 
sensitivity than the COMB model.  Figures 2 and 
3 show that this sensitivity advantage for 
localized outbreaks held true over a wide range 
of outbreak sizes. 
 

DISCUSSION 
 
We have found that combining data across 
institutions is optimal if outbreaks are expected 
to cause excess visits at both institutions.  This is 
consistent with the findings that the larger 
combination model has relatively less noise than 
the individual models. In our analysis, model 
error decreased as the average daily visit number 
grew, as would be expected from the law of large 
numbers. 
 
On the other hand, the results suggest that 
maintaining individual models is better for 
detecting localized outbreaks. One could 
envision an outbreak that had a differential effect 
on the population of two different hospitals.  One 
hospital may serve a different catchment area 
than the other.  Or there may be fundamentally 
different populations at each hospital.  In our 
study, we looked at data from both a pediatric 
and an adult hospital--clearly these populations 
could be differentially infected by, for example, 
an exposure at a school.  Local models proved 
better at identifying outbreaks primarily having 
an impact on patients seeking care at one facility.  
 
 
 
 

 
 
Given the different advantages of local and 
aggregate models, we recommend constructing 
hybrid systems that maintain both individual and 
aggregate models. It is expected that this 
approach enables a system to gain better 
sensitivity for both widely distributed outbreaks  
as well as for outbreaks that are localized to one 
or more facilities. 
 
It is also possible to aggregate the data at 
multiple different levels. Supervised or 
unsupervised clustering techniques could be 
employed to create multi-tiered hierarchies of 
data groupings. If grouped wisely, these mid-
level combination models would achieve 
increased sensitivity by aggregating across 
facilities (e.g. all pediatric hospitals, or all 
downtown hospitals) without losing the 
sensitivity to localized outbreaks. 
 
CONCLUSIONS 
 
The results suggest that while an aggregate 
model has a higher sensitivity for detecting 
outbreaks that are evenly distributed across 
multiple locations, individual models are better 
for detecting localized outbreaks.  These findings 
are independent of the outbreak size.  
 
We recommend a hybrid approach that maintains 
both localized and aggregate models, each 
providing its own complementary advantages in 
increased detection performance. The data may 
also be grouped at multiple levels of aggregation 
to provide additional meaningful perspectives on 
the data.  These findings and recommendations 
can be put to practical use today in guiding the 
development of surveillance systems being built 
at the local, state and national levels.  
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Figure 2. Comparing sensitivity to localized 
Hospital 1 outbreaks for a variety of outbreak 
sizes. 

Figure 3. Comparing sensitivity to localized 
Hospital 2 outbreaks for a variety of outbreak 
sizes. 
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