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ABSTRACT 
 
We developed a novel method for the discovery of 
functional relationships between pairs of genes based 
on gene expression profiles generated from 
microarrays. This approach examines all possible 
pairs of genes and identifies those in which the 
relationship between the two genes changes in 
different diseases or conditions.   In contrast to 
previous methods that have focused on differentially 
expressed genes, this method attempts to find 
changes in the correlation between genes.   These 
changes may be indicative of the functional 
relationships related to a disease mechanism. We 
demonstrate the utility of this approach by applying it 
to an oral squamous cell carcinoma (OSCC) 
microarray data set.  Our results suggest new 
directions for future experimental investigations. 

INTRODUCTION 

Microarray technology has provided the biomedical 
research community with a powerful method for 
identifying transcriptional changes on a genome-wide 
scale. Gene expression studies using microarrays 
have thus far yielded considerable new insights into 
the transcriptional changes in different tissues and 
have contributed substantially to the classification of 
diseases. However, the volume and the complexity of 
gene expression data have also created new 
opportunities and challenges in the extraction of 
knowledge from data. Various computational and 
statistical methods have been developed in both 
private and public domains for analysis of microarray 
data [1]. These tools range from simple analysis such 
as fold change and basic statistical tests for 
differential expression to more complex algorithms 
such as neural networks and other machine-learning 

techniques. Typical unsupervised methods include 
clustering techniques such as hierarchical clustering 
[2] and self-organizing maps [3]. In the supervised 
setting, various methods have been applied for the 
purpose of class discovery as well as class prediction 
of samples [4]. 

A difficulty in analyzing microarray data is our 
incomplete understanding of gene interactions for 
most biological systems. As a result, most studies 
have simply focused on each gene independently, 
attempting to find a set of genes whose expression 
levels change across various conditions or 
experiments.  For example, many studies have 
compared two sets of samples, such as cancer and 
normal tissues, and found thousands of genes that are 
differentially expressed between the groups; other 
studies have compared three or more groups. We 
have recently taken this approach to examine the 
progression of oral cancer [5].  
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Figure 1. Comparing the two approaches:  1) finding differential 
expression between two genes; 2) finding the change in the 
relationship between two genes.  

In the present study we seek a different question: we 
ask not whether a particular gene is highly expressed 



in a diseased tissue when compared to a normal 
tissue, but, more fundamentally, whether the 
functional relationships between two genes change 
across    different     conditions    or         experiments. 

In Figure 1, we illustrate the new approach of 
examining a pair of genes instead of one gene at a 
time. For example, Gene A and B may be positively 
correlated in the normal condition, but negatively 
correlated in the diseased case. Interpretation of this 
analysis may potentially provide more information 
about the mechanism or function underlying the 
disease.  Focusing on one gene at a time can only 
provide a partial view of this interaction. The most 
interesting pairs of genes would be those that behave 
inversely in the two conditions.  In the following 
sections, we describe the statistical method and then 
apply it to an OSCC data set to verify its usefulness. 

MATERIALS AND METHODS 
 
The oral cancer gene expression data set was 
obtained from OSCC tissue samples as reported by 
Mendez et al [6]. The experimental design included 
tumor samples from patients diagnosed with 
squamous cell carcinoma and normal tissue samples 
obtained from healthy patients who were scheduled 
for an oral surgical procedure not related to cancer. 
The collected samples were prepared for RNA 
isolation, linearly amplified, labeled, and hybridized 
to Affymetrix HuGeneFL microarrays, which 
contained 7,070 genes. 
 
For the analysis, we had expression profiles from a 
total of 36 patients (28 cancer and 8 normal samples). 
The data were pre-processed through multiple 
filtering steps: 

 
• The expression values less than 50 were set to 

“50”; below this value, expression values can be 
considered noise and unreliable.  Since this was 
an older generation Affymetrix array, many 
negative values were present, and these were 
replaced in the same way. 

• About a thousand genes that had uniformly 
negative or very low values for most samples in 
both conditions were removed. 

• Those genes with low overall variance across all 
the samples were eliminated since they are of 
limited interest. 

 
Without filtering, many top scoring pairs had high 
correlations due to the negative outlier values.  
Eliminating these cases using proper filtering reduced 
the amount of noise in interpreting the data. 
 

For each group of samples, the pairwise Pearson 
correlations were calculated and represented in a 
correlation matrix (Figure 1). For each correlation 
coefficient for a pair of genes, a Fisher’s Z-
transformation was applied. The transformation is 
given by the equation, 
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This transformation results in the change of the range 
of the variable, and makes it possible to derive (or 
apply)  a  statistical    test.  For    any    given    set  of  
 

P1 P2 P3 P4 P5
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Figure 1. Computation of Z-scores after using Fisher’s Z-
transformation. (a) We computed the correlation coefficients 
between gene A and gene B and then obtain a statistic to see 
whether the change in correlation coefficient is statistically 
significant. (b) This process was carried out for all pairwise 
combinations.  The numbers from the two similarity matrices were 
transformed using the Fisher z-transformation and the Z-scores 
computed from the pair of transformed values and stored in a new 
matrix. 
 



observations, the range of the correlation is 
11 ≤≤− p , but after transformation the range of 

the new variable is ∞≤≤∞− z . More 
importantly, the Fisher’s transformation improves the 
distributional property and allows a statistical test to 
be devised under normality assumptions. 
 
Using transformed values, a statistical test was then 
applied to see whether the change in the correlation 
for that gene is statistically significant. The larger Z-
scores indicate that the gene pair relationships are 
statistically significant. The Z-score is given by the 
equation, 
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where N1 and N2 are the sample sizes for the two 
groups.  If the Pearson correlation coefficient is used, 
the assumption is that the underlying relationship is 
linear between two variables.  A problem using this 
measure is that if the relationship were not linear, it 
would not provide a valid measure of their 
association. More importantly, it can be severely 
distorted by undue influence from outliers, and thus 
may not provide an accurate description of the 
underlying behavior of the genes. Outliers can 
significantly change the results, especially for 
Affymetrix data, where extremely high values may 
be present. To reduce the effects of outliers, one 
could remove the outliers and recalculate the 
correlations; alternatively, one could use a non-
parametric test.  For the dataset we studied, we 
applied both parametric and non-parametric 
correlations, and we observed that the results 
improved in general when the non-parametric 
Spearman rank correlation was applied to the data. 
 
The significant gene-pairs we obtained were entered 
into a literature cluster analysis program called 
PubGene [7]. We used the PubGene MeSH and 
literature network tools. All other analyses were 
performed using MATLAB (Math Works, Natick, 
MA). 
 

RESULTS 
 
The p-values generated by comparing the Pearson 
correlation similarity matrices of the OSCC and 
normal samples were obtained and ranked. Table 1 
shows the top ten gene pairs and their associated p-
values. The pairs of genes with the most significant 
scores were plotted in Figure 2.  We found that some 
of the plots investigated showed the presence of 

outliers as in Figure 2. Of the top 10 gene pairs, 6 
were found to be associated to some type of cancer 
(highlighted in red) when linked to disease MeSH 
terms.  Among the six, three gene pairs CORO1A 
and CXCR4, CORO1A and CR2, CXCR4 and CR2 
were linked to oral cancer MeSH terms in particular. 
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Figure 2. Scatterplot of gene pairs ICSBP1 and an EST using 
Pearson correlation coefficient. (a) Cancer samples and (b) Normal 
samples. Notice that the correlation is almost 1 in the Normal 
group. 
 

 
 
Figure 3. Scatterplot of gene pairs CD2 and CALML2 using 
Spearman-rank correlation. Top two are plots of the gene 
expression values of the gene pairs in the cancer and normal 
groups and bottom two are the plots of the ranks. 
 
Since using the Pearson coefficient was not always 
suitable, Spearman rank correlations was also used. 
We noticed when examining the high ranked genes in 
this group, they were different from those obtained 
using the Pearson Correlation measure (Figure 3). In 
Table 2, the p-values generated from the Spearman 
rank correlation matrix were obtained and ranked. 
Most of the gene pairs were paired with ESTs or 



unknown genes, indicating potential novel genes that 
have relevant functions. The top three gene-pairs in 
this group based on disease MeSH terms was found 
to be associated with neoplasms, genetic 
predisposition to a disease, and disease progression.  
Interestingly, the top gene pair, PIN and IGFBP4 was 
linked to a “precancerous condition” from the disease 
MeSH terms. 
 
Table 1. P-values of the top ten gene pairs from the Pearson 
correlation similarity matrix  
 

Gene 1 Gene 2 
Cancer 

Samples 
Normal 
Samples P-value 

EST ICSBP1 0.0278 0.999974 < 0.00001 
CORO1A CXCR4 0.0045 0.999909 < 0.00001 

CD48 CD79B -0.0881 0.999303 < 0.00001 
IGL TRB 0.0002 0.999386 < 0.00001 
ALK TFF1 0.0657 0.999190 < 0.00001 

CORO1A CR2 -0.1328 0.998793 < 0.00001 
MS4A1 EST -0.1064 0.998518 < 0.00001 

EST HLA-DPB1 -0.1957 0.998061 < 0.00001 
CXCR4 CR2 0.3282 0.999296 < 0.00001 
APOE POU2AF1 -0.2053 0.997812 < 0.00001 
 
 
The histograms of the overall Z-scores for both 
Pearson (Figure 4) and Spearman (not shown) 
approaches displayed a standard normal distribution, 
as the number of pairwise combinations were very 
large. The areas of interest would be those with Z-
scores that lie at the tails of the curve. 
 
Table 2. P-values of the top ten gene pairs from the Spearman-rank 
correlation similarity matrix  
 

Gene 1 Gene 2 
Cancer 
Samples 

Normal 
Samples P-value 

EST CASP4 -0.6124 0.999 < 0.00001 
EST EST -0.5649 0.999 < 0.00001 
EST LCP1 -0.5386 0.999 < 0.00001 
PIN IGFBP4 -0.5073 0.999 < 0.00001 

CALML3 CD2 0.5013 -0.999 < 0.00001 
FABP5 AKT1 -0.4718 0.999 < 0.00001 

EST SNRPD2 -0.4641 0.999 < 0.00001 
HLA-DQA1 EST -0.4592 0.999 < 0.00001 

CD14 EST -0.4381 0.999 < 0.00001 
RPS28 EMP3 -0.4345 0.999 < 0.00001 

 

DISCUSSION 
 
Finding differential correlation as described above is 
a novel approach for detecting functional 
relationships among gene pairs. This method attains 

its effectiveness by examining pairs of genes 
exhaustively and evaluating their significance. The 
idea is to examine pairs of genes under different 
conditions, and find the genes whose relationship has 

 
 
Figure 4. Histogram of the Z-scores for changes in the Pearson 
correlation coefficients for the cancer and normal samples. 
 
changed significantly across the conditions. The 
general hypothesis is that genes that behave 
differently in different disease conditions are more 
likely to be related to a disease mechanism. When the 
number of samples is large for each condition, the 
correlation coefficients become a good 
approximation to the true values and the method is 
likely to find significant functional relationships. 
 
OSCC is a multi-step process in which there is a 
sequential activation of oncogenes and inactivation of 
tumor suppressor genes. These genetic changes 
generate concomitant phenotypic changes in the 
tumor cells that allow the cells to continue to survive 
and expand. Constructing signaling pathways through 
the identification of specific gene-pairs and the 
sequence in which they appear can be beneficial in 
our understanding of the mechanisms involved in the 
development of OSCC. Examining a subset of gene-
pairs we found, CORO1A and CXCR4, CORO1A 
and CR2, CXCR4 and CR2 were very interesting, 
since all three genes were somewhat related to each 
other. For example, the primary function of 
CORO1A, an actin binding protein, is that it plays a 
role in signal transduction pathways of chemotaxis 
and its pair CXCR4 is a receptor for the C-X-C 
chemokine SDF-1, which tranduces a signal by 
increasing intracellular calcium ion levels. So both of 
these genes not only have similar functions but also 
are involved in signal transduction pathways.  CR2, a 
complement component receptor was found to have a 
similar role as CXCR4.  



 
 Figure 5. Literature network of genes CORO1A, CR2 and 
CXCR4. For each link (line), the numbers indicate the number of 
abstracts for which the two linked genes were found in the same 
abstract in MEDLINE. 
 
The PubGene literature network revealed that all 
three genes were somehow connected to P53 (Figure 
5), a tumor suppressor gene, known to be associated 
with OSCC. Independent PubGene searches of the 
three gene-pairs all had a link to p53 (not shown). 

We used both the Pearson and the Spearman 
correlation coefficients, although the Pearson 
correlation sometimes gave spurious results due to 
the outlier effect. In both cases, we were able to find 
some interesting gene-pair relationships, which 
indicates the effectiveness of this approach.  

 
The results from this  study are very interesting, but 
these are preliminary findings and further studies are 
necessary, which also include controlled experiments. 
Other future directions include the expansion of this 
approach to analyze multiple pairs of genes and 
eventually a network of genes. Algorithmic 
improvements would also include other metric 
comparisons.  
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