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ABSTRACT

Genes are discovered almost on a daily basis and
new names have to be found. Although there are
guidelines for gene nomenclature, the naming
process is highly creative. Human genes are often
named with a gene symbol and a longer, more
descriptive term; the short form is very often an
abbreviation of the long form. Abbreviations in
biomedical language are highly ambiguous, i.e., one
gene symbol often refers to more than one gene.
Using an existing abbreviation expansion algorithm,
we explore MEDLINE for the use of human gene
symbols derived from LocusLink. It turns out that just
over 40% of these symbols occur in MEDLINE,
however, many of these occurrences are not related
to genes. Along the process of making an inventory, a
disambiguation test collection is constructed
automatically.

INTRODUCTION

In the current era of genomics and proteomics, the
massive analysis of biological data has become the
default modus operandi in research. The data and
possibly their interpretation with respect to, for
instance, function and diseases, are put into huge
online databases. In each of the databases, a gene has
been assigned a unique identifier (UID). However,
users will most likely not query a database with a
UID; instead, they will search with a gene name or
with other natural language terms indicating, for
instance, a gene’s function.

As genes and their products are discovered on a
daily basis, new names have to be created constantly.
Researchers are creative in this process, and few
conventions exist. Gene names for Drosophila (fruit
fly), for instance, are highly imaginative with
examples such as a la voile et a la vapeur, ken and
barbie, lost in space, hu li tai sho, cheap date, and
broken heart. With respect to human genes, naming
defaults to using a symbol, i.e., a combination of
some, mostly capitalized, letters and digits and

dashes. Also, there is often a longer or extended
name. In many cases, the symbol is an abbreviation
or acronym of the longer name. The symbol A2MP,
for instance, expands to alpha-2-macroglobulin
pseudogene.

Shows et al published the first guidelines for
human gene nomenclature back in 1979 [1]. Since
then, the Human Gene Nomenclature Committee
(HGNC), part of the Human Genome Organisation
(HUGO), has released guidelines and has developed
a nomenclature database [2]. The practice of naming
genes, however, shows that researchers do not strictly
adhere to these guidelines, and it is often the case that
a gene has more than one name or symbol, i.e. it has
several synonyms. For instance, the symbols GNPDA
and GNPI refer to one human gene, viz.
glucosamine-6-phosphate deaminase. Also, one
symbol may refer to more than one gene, which is a
case of homonymy. The term NAPI1, for instance,
relates to at least five genes. One of the current tasks
of the HGNC is therefore to assign one preferred
name to a gene and compile a list of synonyms and
also indicate homonyms.

Synonymy and homonymy pose serious chal-
lenges to genetic database indexing and retrieval
systems. A user’s query on GNPDA, for instance,
should retrieve database records both on GNDPA and
GNPI. In contrast, a query on NAP1 should first ask
the user which of the different genes he or she is
interested in, and then it should only retrieve records
on the specified NAP1 gene. Synonymy can be
handled adequately using a thesaurus, homonymy, on
the other hand, asks for a more experimental
approach of employing word sense disambiguation
(WSD) algorithms. WSD algorithms decide on the
basis of textual context which meaning is correct for
a particular instance of a homonym. To train and test
these algorithms, (manually) disambiguated data is
necessary.

The extent of gene symbol usage in natural
language text is not known. Additionally, the breadth
of gene symbol homonymy, both for in-thesaurus and
not-in-thesaurus meanings is unknown. The goal of
this paper is therefore two-fold. First, we will provide
an inventory of the actual use of gene symbols in
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MEDLINE. Second, we will describe how to
automatically compile a collection of homonyms
with their disambiguated gene senses that can be used
for testing disambiguation algorithms.

RELATED RESEARCH

Recently, WSD has seen an increased research
interest, both in Natural Language Processing (NLP)
and in biomedical informatics. Ambiguity is
pervasive in natural language, and automatic systems
that process language should be able to correctly
disambiguate ambiguous expressions in order to
achieve highly accurate results. The Senseval
workshops' have become the major NLP arena for
testing WSD algorithms.

Sometimes, it is claimed that language in
restricted (research) environments is more specific
and that there is less ambiguity. However, recent
studies of both the UMLS and MEDLINE show that
medical ambiguity is substantial [3-5]. Compared to
normal language, medical language has one
phenomenon for which ambiguity is paramount:
Abbreviations. Medical terms often consist of
multiple words, and the important terms are often
abbreviated in the interest of economy. PSA, for
instance, is used in MEDLINE as an abbreviation for
prostate specific antigen, but also for psoriasis
arthritis and poultry science administration, among
others. Liu ef al [5] showed that 81.2% of frequent
MEDLINE abbreviations have more than one
expansion, and thus are homonyms. Gene naming is a
similar process: There is an abbreviation, or gene
symbol, and there is the official gene name, the
expansion of the abbreviation. In this paper, we use
the term long form (LF) to refer to the full expansion,
and short form (SF) to refer to the abbreviation or
gene symbol.

Current research efforts in gene nomenclature
can be grouped into two categories. First, there is the
thesaurus-based approach in which groups of
researchers try to compile a list of approved gene
symbols. Most of these efforts are related to the
genetic databases (HUGO, Swissprot). The other type
of research is based on text mining in that different
natural language text analysis techniques are
employed to extract gene symbols from MEDLINE
abstracts and digital full paper collections. This
means, principally, that for each word in the text it
has to be decided whether it is a gene symbol or
another kind of word. A recent study on this form of
gene tagging is [6]. As gene symbols are generally
abbreviations of their longer form gene names, this

" http://www.senseval.org

kind of research boils down to employing
abbreviation expansion algorithms [4, 5, 7-10].
Schwartz and Hearst [11] provide an extensive
overview.

The research effort described in this paper tries
to combine both approaches. It uses the Schwartz &
Hearst abbreviation expansion algorithm to analyze
MEDLINE. However, we are not interested in all
abbreviations or all potential gene symbols, but
restrict ourselves to those that are included in a
thesaurus we derived from LocusLink’, one of the
more comprehensive genetic databases. Although this
has several restrictions, we assume that the symbols
in the thesaurus are referring (among others), to
genes.

Disambiguation algorithms need data to be
trained and tested for accuracy. The manual
compilation of such test collections is a tedious
exercise [3], and only few of those collections exist
in the biomedical domain [3, 12]. Liu et a/ [7, 8] used
an automatic approach to collect data for testing their
abbreviation expansion algorithms by looking for
explicit short form/long form (SF/LF) alignments in
text. As an example, they use the SF CSF with four
different LFs. Each MEDLINE abstract that contains
CSF and one of the four long forms was retrieved and
was assigned the meaning of the relevant long form.
They compiled a test collection for 35 ambiguous
three-character SFs. Liu et al [5] study the nature of
three-character MEDLINE abbreviations and their
coverage in the UMLS. Our approach is similar to
Liu’s, but our focus is on gene abbreviations, and we
also will quantify the not-in-thesaurus meanings, i.e.
other long forms of the homonymous short form.

MATERIALS AND METHODS

Using the LL3 030203 (February 2003) LocusLink
data file, we compiled a thesaurus of gene symbols
from the human gene records. We opted for
LocusLink because it is one of the more
comprehensive genetic databases with a rich set of
gene name fields per record. We use the symbol
record fields® to find symbols or short forms and the
name record fields® to find the long forms. Note that
we included the protein names as well. Although
these are not strictly referring to genes, it is common
practice in biomedicine do discuss genes by
discussing their products (mRNA, proteins). This can
also be observed in the naming of genes in

? http://www.ncbi.nlm.nih.gov/LocusLink/

3 OFFICIAL_SYMBOL, PREFERRED SYMBOL, ALIAS SYMBOL
4 OFFICAL_GENE_NAME, PREFERRED GENE_NAME, PRE-
FERRED_PRODUCT, ALIAS_PROT
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LocusLink. Many preferred gene names are actually
protein names. LocusLink ID (LLID) 1, for instance,
has the official symbol A1BG and the official gene
name is alpha-1-B glycoprotein. We think that the
decision whether a symbol is a gene, protein or
mRNA, if this distinction is needed at all, is better
postponed to after identifying the symbol [13].

To align the SF to the potential LFs, we use the
Schwartz & Hearst [11] algorithm of abbreviation
expansion. The main reason for this choice is that it is
a simple, efficient, and fast algorithm that does not
need training. The accuracy of the algorithm is
comparable to the more sophisticated (and
computationally more intensive) machine learning
algorithms that exist today. The principal idea of the
algorithm is that it searches for a combination of a
word within parentheses and it tries to match this
word (on a character basis) to the preceding words.

After applying the algorithm, we obtain a list of
aligned SF/LF pairs. As there are spelling variants in
the LF (different uses of case, spaces instead of
parenthesis or dashes, plural/singular issues), we
normalize (and sort the words) of each LF using the
UMLS® Specialist Lexicon [14]. When we use the
term LF in the subsequent part of this paper, we
actually use the normalized form of the LF. It is also
possible that one SF aligns to more than one LF
within one LocusLink record. If this is the case, the
different LFs are synonyms and we still consider it as
one SF/LF pair.

We assume that the expansion of the SF to the
LF resolves the ambiguity of the SF. However, it
turns out that this does not always hold true for the
LocusLink data. There are SF/LF pairs that represent
more than one gene meaning (i.e., LLID). In the
current approach, it is not possible to distinguish
these SF/LF pairs and they are therefore excluded
from the analysis.

In gene symbol naming conventions, it is
generally accepted that case does matter. Sometimes,
case variants are used to distinguish the gene from its
protein. However, there is no strict adherence to this
convention. We therefore have a thesaurus variant in
which all gene symbols are transformed to lowercase
in order to match SFs case insensitive.

To study the use of gene symbols in MEDLINE,
we compiled two databases. The SF database lists all
occurrences of all LocusLink SFs in MEDLINE titles
and abstracts from 1990 to 2002. For storage and
computational efficiency, we only stored the SF in
the exact LocusLink case variant. More specifically,
we did not extract the lowercase variants from
MEDLINE because it turned out that a number of

* http://umlsks.nlm.nih.gov

lowercase SFs are highly frequent generic words.®

Using the Schwartz & Hearst algorithm, we also
compiled the MEDLINE SF/LF database of all
available SF/LF pairs in MEDLINE 1990-2002.

To compile the disambiguation test collection,
we executed the following procedure. For every SF in
LocusLink, we extract all corresponding LFs from
the SF/LF MEDLINE. If there was an exact match
with a LocusLink LF, we added the PubMed ID
(PMID) to the collection and recorded the meaning,
i.e. the LLID. For example, the SF A2M has the
LocusLink LF of alpha-2-macroglobulin. 1f a
(normalized) MEDLINE LF exactly matched this
(normalized) LF, the PMID in which this expansion
occurred, is assigned the LLID of 2.

During initial experimentation we observed that
there is not always an exact match between a
MEDLINE LF and a LocusLink LF while the
meaning is identical. In order not to contaminate the
NIT data with in-thesaurus data, we decided to apply
a strict “not matching” rule, i.e. only if a MEDLINE
LF did not have any word in common with all
possible LocusLink LFs for that particular SF, then
the PMID was assigned the LLID of 0 representing
the NIT meaning. If there was some partial overlap
between MEDLINE and LocusLink LFs, they were
not included in the test collection. We executed this
test collection compilation procedure for case
sensitive and case insensitive SFs separately.

RESULTS

There is a total of 49,867 different gene symbols or
short forms in LocusLink. 20,720 (41.5%) of those
occur in MEDLINE. From the 24,786 SF that have an
aligned LocusLink LF, 12,638 (51.0%) occur in
MEDLINE. Figure 1 provides the frequency
distributions for the LocusLink SFs in MEDLINE.
Both distributions have a Zipfian shape, which means
that few SFs occur very frequently in MEDLINE, and
many SFs occur rarely.

There are 24,393 human genes in Locuslink, of
which 12,533 (51.4%) have at least two symbols (or
synonyms). 16,828 genes have a matching LF. Of
these genes, 5,812 (34.5%) have more than one SF.
When we ignore case variation, the number of genes
with more than one SF decreases slightly (51.1%
respectively 34.4%).

Before turning to the overall homonym data, we
will present the data obtained for one example: PSA.
In Locuslink, the SF PSA has been assigned to five
different genes (Table 1). One of those does not have
a LF. The fourth column provides the number of

¢ Among others: as, on, in, not, at, an, in, of, was, can, for, up.
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Figure 1. Frequency of LocusLink gene symbols in MEDLINE 1990-2002. Panel I provides the data for
all 49,867 LocusLink gene symbols, Panel II for the 24,786 gene symbols that have an aligned long form.

PMIDs of each SF/LF combo. The SF/LF pair of
PSA/protein s, alpha does not appear in MEDLINE,
whereas the prostate specific antigen meaning of PSA
is frequent. If we ignore case, we observe an increase
in PMIDs (column 5): two additional PMIDs for
LLID 9520, and 210 for the not-in-thesaurus (NIT)
meaning. The final column shows the number of case
variants in MEDLINE. For LLID 9520, the variants
are PSA and Psa; for the NIT meaning, the variants
are: PSA, PsA, Psa, PSa, psa, and pSA. In the
MEDLINE SF/LF database there was a total of 182
different LFs for PSA.

Of the 49,867 different gene symbols in
LocusLink, 1877 (3.8%), refer to more than one
gene, and are therefore homonyms. Of the 24,786
SFs that have one or more LF alignments, 563 are
homonyms (2.3%), which amounts to a total of
25,480 different SF/LF pairs. When case is ignored,
the percentages remain about equal (4.0% and 2.3%).
There were 61 cases with homonymous SF/LF pairs.
An example is ZNF408/ zinc finger protein 408. This
SF/LF pair refers to two different LLID. All 61 cases
have been excluded from the analysis.

For each of the 24,786 different SFs, an
additional LLID of 0 is included representing a
potential not-in-thesaurus (NIT) meaning. There are

25,480 + 24,786 = 50,266 SF/LF entries possible.
6,340 of these SF/LF pairs (12.6%) were found at
least once in MEDLINE. 3,012 had an in-thesaurus
LF, 3328 had a NIT LF (52.5%). When the SF was
matched case insensitive, there were 7,268 SF/LF
pairs (14.6% increase over case sensitive) that appear
in MEDLINE, of which 3,856 had a NIT LF (15.9%
increase). Table 2 provides more detailed
information. There are for instance 1,194 short forms
that have 2 different meanings or LLIDs in
MEDLINE. One of these two meanings is not-in-
thesaurus for 1,187 of those SFs.

The disambiguation test collection consists of all
SFs for which at least two different LLIDs were
found, i.e. the final three rows in Table 2. This means
there are 1,247 different SFs included.

The number of PMIDs per meaning varies
considerably. The case sensitive test collection
consists of 425,577 PMIDs of which 157,167
represent a LocusLink meaning. The case insensitive
test collection consists of 493,555 PMIDs, a 16.0%
increase, of which 176,164 have a LocusLink
meaning (12.1% increase). Detailed counts can be
obtained from the test collection itself.

Table 1. Example MEDLINE data for gene symbol or SF PSA. LLID = Locus Link ID, LF = long form, CS =
case sensitive, CI = case insensitive, Variants = number of SF variants used in the case insensitive counts.

LLID LF # PMID CS #PMID CI # Variants
354 prostate specific antigen 3830 3830 1
5627 protein s, alpha 0 0 0
7996 - - - -
9520 puromycin-sensitive aminopeptidase 10 12 2
29968 phosphoserine aminotransferase 1 1 1
0 not in thesaurus (NIT) 418 628 6

AMIA 2003 Symposium Proceedings — Page 707



Table 2. MEDLINE counts of SF/LF combinations.
CS = case sensitive, CI = case insensitive, NIT =
not in thesaurus.

LLID/SF  CS:#SF(#NIT) CI #SF (# NIT)

0 19,750 18,938

1 3,789 (2088) 4,216 (2373)

2 1,194 (1187) 1,433 (1423)

3 49 (49) 54 (54)

4 4 (4) 6 (6)
DISCUSSION

The analysis of LocusLink genes showed that
synonymy is a general phenomenon: more than half
the genes have at least two different known symbols.
Homonymy of gene symbols, however, is low in
LocusLink (only 3.8%). It is likely that database
curators try to reduce homonymy for indexing.
However, the actual use of symbols in MEDLINE
shows that homonymy is widespread. The main
reason is that there are many not-in-thesaurus (NIT)
expansions of the gene symbols. We also expect that
the combination of different thesauri derived from
different genetic databases will increase the in-
thesauri homonymy.

Indexing systems should be able to distinguish
between the different expansions. The automatically
created test collection may assist in testing
disambiguation algorithms for such purposes. The
test collection developed for this paper is available at
http://www.biosemantics.nl

Use of case is not uniform in natural language.
Gene symbols may occur in different case variants. If
the SF is found in MEDLINE with case insensitivity,
the number of SF/LF pairs increases by about 15%
Also, the number of PMIDs in the test collection
increases by 16%; however, it turns out that the
increase is higher for NIT meanings.

The test collection uses the alignment of long
form to short form in order to disambiguate.
Although the Schwarz & Hearst algorithm has not an
100% accuracy [11], the test collection is not likely
to reflect the (few) flaws of the algorithm. Only if
there is an exact match between the MEDLINE and
the LocusLink LF the data is included in the test
collection. This probably means that there are more
correct SF/LF alignments in MEDLINE than we have
included, but we expect a near 100% precision of our

test collection.

The Zipfian distribution of short forms in
MEDLINE (Figure 1) shows that abbreviations are a
typical natural language phenomenon in that many
entities occur with a low frequency while only a few
entities have a high frequency of use.

Our thesaurus-based approach has the drawback
of ignoring recently discovered genes because there
is a delay between discovery and thesaurus
incorporation. Recent text mining research for
finding new gene names and synonyms [15, 16] may
help overcome this drawback.
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