Molecular Cloning of Endo-β-D-1,4-Glucanase Genes, *rce1*, *rce2*, and *rce3*, from *Rhizopus oryzae*

Tatsuki Moriya,¹ Koichiro Murashima,²* Akitaka Nakane,² Koji Yanai,¹ Naomi Sumida,¹ Jinichiro Koga,² Takeshi Murakami,¹ and Toshiaki Kono²

Microbiological Resources and Technology Laboratories¹ and Health and Bioscience Laboratories,² Meiji Seika Kaisha, Ltd., Saitama 350-0289, Japan

Received 23 September 2002/Accepted 25 November 2002

Three endoglucanase genes, designated the *rce1*, *rce2*, and *rce3* genes, were isolated from *Rhizopus oryzae* as the first cellulase genes from the subdivision *Zygomycota*. All the amino acid sequences deduced from the *rce1*, *rce2*, and *rce3* genes consisted of three distinct domains: cellulose binding domains, linker domains, and catalytic domains belonging to glycosyl hydrolase family 45. The *rce3* gene had two tandem repeated sequences of cellulose binding domains, while *rce1* and *rce2* had only one. *rce1*, *rce2*, and *rce3* had various lengths of linker sequences.

Cellulose is the most abundant biological polymer on the earth and is degraded by cellulases in nature (20). It is thought that degradation of cellulose is achieved by the synergistic action of three types of cellulase components: endoglucanases (EC 3.2.1.4, endo- β -D-1,4-glucanases) (EG), cellobiohydro-lases (EC 3.2.1.91) (CBH), and β -glucosidases (EC 3.2.1.21) (BGL) (9). Cellulases are known to be produced by a broad range of organisms including fungi (23), bacteria (5), plants (16) and insects such as termites (11). Among them, fungal cellulases have been studied extensively and have been effectively used for industrial purposes, since fungi produce large amounts of cellulases (10).

So far, fungal cellulases have been isolated mainly from the members of the subdivision Deuteromycotina (25), which have no sexual reproduction and which mainly reproduce by conidia. Generally, the cellulase systems of the subdivision Deuteromycotina contain various cellulase components belonging to different glycosyl hydrolase families. For example, Trichoderma reesei produces eight cellulase components belonging to seven different glycosyl hydrolase families (CBHI [family 7], CBHII [family 6], EGI [family 7], EGII [family 5], EGIII [family 12], EGV [family 45], BGLI [family 3], and BGLII [family 1]) (25). These cellulase components have been shown to degrade crystalline cellulose synergistically (9). The variety of cellulase components might arise mainly through multiple gene transfer events rather than gene duplication events, since it is thought that genes encoding cellulase components belonging to the different glycosyl hydrolase families evolved from different ancestral genes (13).

Although many fungal cellulase genes from members of the subdivision *Deuteromycotina* have been isolated and characterized, to our knowledge, the isolation of endoglucanase genes from members of the subdivision *Zygomycota*, which reproduce sexually by zygospores, has not been reported. To determine

the cellulase system of the subdivision *Zygomycota*, we screened cellulase-producing fungi belonging to *Zygomycota* from soil. As a result, we obtained *Rhizopus oryzae* FERM BP-6889, a member of the subdivision *Zygomycota*, and purified two major endoglucanases, designated RCE1 and RCE2, from the culture supernatant of *R. oryzae* (14). RCE1 and RCE2 were shown to possess similar hydrolytic properties. Also, both RCE1 and RCE2 possessed homologous N-terminal and internal amino acid sequences, indicating that the endoglucanases were highly homologous, although their molecular masses were different (41 kDa for RCE1 and 61 kDa for RCE2) (14).

To understand the cellulase system of *R. oryzae*, the DNA sequences of *rce1* and *rce2*, encoding RCE1 and RCE2, should provide important information. Therefore, in this study, we cloned and sequenced the *rce1* and the *rce2* genes. Also, we obtained the *rce3* gene, whose derived protein had not been found in the supernatant of *R. oryzae*.

Cloning of rce1. To obtain the partial DNA fragment of the rcel gene, the primers were designed based on the N-terminal and internal amino acid sequences of the purified RCE1 from R. oryzae determined previously (14). PCR was performed with forward primer R1-F (5'-AARAAYTGGAAYGGXCCNAC-3'), corresponding to the N-terminal amino acid sequence of the native RCE1 (KNWNGPT), and with primer R1-R1 (5'-TTRAACCARTTRAANCG-3') or R1-R2 (5'-TTRAACCA RTTRAAYCT-3'), corresponding to one of the internal amino acid sequences (RFNWFK) determined previously (14). PCR with primers R1-F and R1-R1 and with R. oryzae chromosomal DNA as the template yielded no specific band, but PCR with primers R1-F and R1-R2 yielded an amplified band of about 800 bp. The amplified DNA was then subcloned into the pT7Blue-T vector designated pRD05. Nucleotide sequencing of the 800-bp fragment indicated the presence of an open reading frame encoding RCE1. The amino acid sequence deduced from the 800-bp fragment was in perfect agreement with the internal amino acid sequence determined from the purified RCE1 from R. oryzae (14).

For cloning the rce1 gene, the chromosomal DNA isolated

^{*} Corresponding author. Mailing address: Health and Bioscience Laboratories, Meiji Seika Kaisha, Ltd., 5-3-1 Chiyoda, Sakado-shi, Saitama 350-0289, Japan. Phone: 81-492847592. Fax: 81-492847598. E-mail: koichiro_murashima@meiji.co.jp.

from *R. oryzae* was partially digested with *Sau*3AI and separated on an 0.8% agarose gel. The DNA fragments in the molecular size range of 9 to 23 kbp were collected and ligated into a *Bam*HI-treated Lambda DASH II vector to prepare the genomic library for cloning the *rce1* gene. pRD05 was digested with *Bam*HI, and a DNA fragment of 800 bp was collected by use of 0.8% agarose gel electrophoresis. Plaque hybridization was performed with this 800-bp fragment as a probe against the *R. oryzae* genomic library for *rce1* by use of an ECL direct DNA/RNA labeling detection system (Amersham). Sixteen positive phage clones were obtained from about 50,000 phage plaques, and one of the strongly hybridized clones was isolated. The phage DNA extracted from the positive clone was digested with *Xba*I, and the resultant 3.5-kbp fragment was subcloned into the *Xba*I site of pUC119.

The nucleotide sequencing of the 3.5-kbp fragment indicated the presence of a single open reading frame encoding a predicted 338-residue protein. This open reading frame was designated the *rce1* gene (Fig. 1). Residues 24 to 39 of the deduced amino acid sequence encoded by *rce1* coincided perfectly with the N-terminal amino acid sequence of the purified RCE1 from *R. oryzae* (14), indicating that residues 1 to 23 constituted the signal peptide. Also, all four internal amino acid sequences of RCE1 determined previously were found in the amino acid sequence deduced from the *rce1* gene (Fig. 1). Therefore, the *rce1* gene was considered to encode RCE1. Based on the deduced amino sequence of RCE1, its mature molecular mass was 32,454 Da.

Cloning of rce2 and rce3. When the genomic DNA of *R. oryzae* digested with *SacI* was Southern blotted with the *rce1* gene as a probe, one strong signal and two weak signals at about 10 and 3 kbp appeared (data not shown). These results suggested the presence of genes homologous with *rce1*. Therefore, we cloned the *rce1*-homologous genes, which were located on DNA fragments of about 10 and 3 kbp and which were designated the *rce2* and *rce3* genes, respectively.

To clone the *rce2* gene, we performed plaque hybridization with the *rce1* gene as a probe against the genomic library by using the 10-kbp regions of DNA fragments from the R. oryzae genomic DNA digested with SacI. Two positive phage clones were obtained from about 10,000 phage plaques, and both of these clones were considered to contain the rce2 genes as judged by Southern hybridization. The phage DNA extracted from one of positive clones was digested with BamHI, and the resultant 2-kbp fragment was subcloned into the BamHI site of pUC118. The nucleotide sequencing of the 2-kbp fragment indicated the presence of a single open reading frame encoding a predicted 360-amino-acid protein (Fig. 2). Residues 24 to 38 of the amino acid sequence deduced from rce2 coincided perfectly with the N-terminal amino acid sequence of purified RCE2 from R. oryzae determined previously (14), indicating that residues 1 to 23 comprised the signal peptide. Also, all four internal amino acid sequences of RCE2 determined previously (14) were found in the amino acid sequence deduced from the rce2 gene (Fig. 2). These results suggested that the rce2 gene encoded RCE2 (14). The molecular mass of the mature RCE2 was calculated to be 35,097 Da.

To clone the *rce3* gene, plaque hybridization was performed with the *rce1* gene as a probe against the genomic library by using the 3-kbp regions of DNA fragments from the *R. oryzae* genomic DNA digested with SacI. Three positive phage clones were obtained from about 10,000 phage plaques, and all these clones were considered to contain the rce3 genes detected by Southern hybridization. The phage DNA extracted from one of the positive clones was digested with SacI, and the resultant 3-kbp fragment was subcloned into the SacI site of pUC118. The nucleotide sequencing of the 3-kbp fragment indicated the presence of a single open reading frame encoding a predicted 366-amino-acid protein, designated RCE3 (Fig. 3). Since the amino acid sequence up to residue 24 of RCE3 was homologous with the N-terminal sequences of RCE1 and RCE2 (Fig. 4), residues 1 to 23 were considered to comprise the signal peptide (Fig. 3). The calculated molecular mass of mature RCE3 was 35,712 Da. Since we could not find the endoglucanase encoded by rce3 in the culture supernatant of R. oryzae (14), rce3 is considered to be expressed in only small amounts, if at all.

Domain structures of RCE1, RCE2, and RCE3. FASTA searches for sequences homologous to the amino acid sequences deduced from *rce1*, *rce2*, and *rce3* revealed that RCE1, RCE2, and RCE3 consist of catalytic domains belonging to glycosyl hydrolase family 45, linker domains, and cellulose binding domains (CBDs). Interestingly, RCE3 had two CBDs (CBD1 and CBD2; Fig. 3) repeated at its N terminus; on the other hand, both RCE1 and RCE2 had only one CBD. The two CBDs of RCE3 were connected by a short linker sequence consisting of 10 amino acids (linker 1; Fig. 3). The schematic domain structures of RCE1, RCE2, and RCE3 are shown in Fig. 5.

The N-terminal CBDs of RCE1, RCE2, and RCE3 were highly homologous to the CBDs from fungi, such as CBDs of CBHII from *Trichoderma reesei* (24), CEL3 from *Agaricus bisporus* (2), and XYLB from *Neocallimastix patriciarum* (1) (data not shown). Also, the four CBDs of RCEs were highly homologous to each other as shown in Fig. 4. Especially, the CBD of RCE1 and both CBDs of RCE3 were highly homologous, with 94.6% homology. On the other hand, the homology between the CBD of RCE2 and the CBDs of RCE1 and RCE3 (67.5%) was lower than that between the CBD of RCE1 and both CBDs of RCE3.

The C-terminal catalytic domains of RCE1, RCE2, and RCE3 were homologous to the catalytic domains of endoglucanase type K from Fusarium oxysporum (21), EGV from Humicola insolens (3), EGL3 from Humicola grisea (22), EGI from Scopulariopsis brevicaulis (15), EGL4 from Humicola grisea (22), EG1 from Ustilago maydis (17), and endoglucanase B from Pseudomonas fluorescens (6) (data not shown). All these endoglucanases, which are homologous to RCEs, belong to glycosyl hydrolase family 45 (7, 8). Also, the deduced amino acid sequences of RCEs contained the consensus residues of glycosyl hydrolase family 45, (S or T or A)-T-R-Y-(F or Y or W)-D-X-X-X-X-(C or A) (7, 8) (Fig. 1 to 3). Therefore, the catalytic domains of the RCEs were considered to belong to family 45. Also, the catalytic domains of RCEs were highly homologous with each other as shown in Fig. 6. Especially, the catalytic domain of RCE1 and that of RCE3 were highly homologous, with 98.6% homology. The homology between the catalytic domain of RCE1 and that of RCE2 was 81.3%, and the homology between those of RCE2 and RCE3 was also 81.3%.

	SIGNAL PEPTIDE																				
1	1 ATGAAGTTTATTACTATTGCCTCTTCCGCTCTCTGGCTCTCGCCCTCGGTACTGAAATG														60						
1	М	к	F	Ι	т	Ι	Α	S	S	Α	L	L	Α	L	Α	L	G	Т	Е	М	20
			->	-						CE	ELLU	JL0	SE-	BIN	DIN	IG D	OM/	١N			
61	GCO	тст	GCT	GCT	GAA	TGT	AGC	:AAA	TTO	TAT	GGT	CAA	TG	rggt	GGT	ΓΑΑ	SAA G	TG	GAAT	GGC	120
21	Α	S	Α	Α	Ε	С	S	К	L	Y	G	Q	С	G	G	К	Ν	W	Ν	G	40
121	CCT	АСТ	TGT	TGT	GAA	тст	GGA	тсо	ACC	TGT	AAA	GTA	AGG		GAT	TAC	TAC	TC1	CAA	TGT	180
41	Ρ	т	С	С	Ε	S	G	S	Т	С	к	v	S	Ν	D	Y	Y	S	Q	С	60
	→	-					Ē	IN	(ER	DO	MAI	N									
181	СТТ	CCC	тст	GGA	AGC	AGT	ัรรดั	TAA	ΆΑΑ	тст	тст	GAA	AGT	ГGCT	CAC	CAAC	5AAG	GACT	ACC	ACT	240
61	L	Ρ	S	G	S	S	G	N	K	5	S	Ε	S	Α	Н	к	к	т	т	Т	80
241	GCT	GCT	CAC	AAC	iaag	аст	АСТ	ACC	GCT	GCT	CAT	AAA		GACT	ACO	CACT	GCT	гсст	GCT	AAG	300
81	Α	Α	Н	κ	κ	Т	т	т	Α	Α	Н	к	к	Т	т	т	Α	Ρ	Α	К	100
301	AAC	аст	ACA	ACT	GTT	GCC		GCT	тсс	ACC	сст	тст	AAC	тст	AGO	тст	AGO	тс	AGC	GGC	360
101	К	т	т	т	۷	Α	к	Α	S	Т	Ρ	S	N	S	S	S	S	S	S	G	120
							-				• •				C/	ATA	LYT	IC	DOM	AIN	
361	AAA	TAT	тсс	GCT	GTC	тст	GGT	GGT	GCC	тст	GGT	AAC	GGT	GTC		ACT	CGI	TAT	TGG	GAT	420
121	к	<u>Y</u>	S	Α	V	S	G	G	Α	S	G	Ν	G	۷	T	Т	R	Y	W	D	140
421	TGC	TGT	AAG	iGCC	тсс	TGT	AGC	TGG	icco	GGT	AAG	GCC	CAAT	GTC	AGT	тст		GTO	AAG	тсс	480
141	<u>C</u>	C	к	Α	S	<u> </u>	S	W	Ρ	G	К	Α		¥	5	S	Ρ	۷	К	S	1 60
481	TGT	AAC	AAA	GAT	GGT	σто	ACT	GCC	CTT	AGT	GAC	AGC		GCC	CAA	AGT	GGG	TGT	AAC	GGT	540
161	С	Ν	к	D	G	۷	Т	Α	L	S	D	S	Ν	Α	Q	S	G	С	Ν	G	180
541	GGT	AAC	AGT	ТАС	ATG	TGT	AAC	GAC	AAC	CAA	сст	TGG	igct	GTA	AAC	GAC	:AAC	стт	GCC	TAT	600
181	G	Ν	S	Y	М	С	Ν	D	Ν	Q	Ρ	W	Α	۷	Ν	D	Ν	L	Α	Y	200
601	GGT	ттс	GCT	GCT	GCT	GCC	ATC	AGT	GGT	GGT	GGT	GAA	тст	CGC	TGG	itgo	TGT	тст	TGT	ттс	660
201	G	F	Α	Α	Α	Α	Ι	S	G	G	G	Е	S	R	W	С	С	S	С	F	220
661	GAA	CTT	АСТ	TTC	ACT	тст	ACC	тст	GTT	GCT	GGT	AAG	iAAG	GATG	igtt	GTC	CA/	GTC	ACT	AAC	720
221	Е	L	Т	F	Т	S	Т	S	۷	Α	G	κ	κ	М	۷	۷	Q	۷	т	Ν	240
721	ACT	GGT	GGT	GAT	СТТ	GGC	тсс	тст	АСТ	GGT	GCT	CAC	TTT	GAC	TTO	icaa	ATC	icco	GGT	GGT	780
Z4 1	Т	G	G	D	L	G	S	S	Т	G	A	Н	F	D	L	Q	М	Ρ	G	G	260
781	GGT	GTT	GGT	ATT	ттс	AAT	GGT	TGT	тсс	AGC	CAA	TGG	GGT	GCT	CCC	TAA	GAC	GGT	TGG	GGC	840
261	G	۷	G	Ι	F	Ν	G	С	5	S	Q	W	G	Α	Ρ	Ν	D	G	W	G	280
841	TCA	AGA	TAC	GGT	GGT	ATT	тст	тст	GCA	тст	GAC	TGC	тст	AGT	стт	сст	тсс	GCA	стс	CAA	900
281	S	R	<u>Y</u>	G	G	Ι	S	S	Α	S	D	С	S	S	L	Ρ	S	Α	L	Q	300
901	GCT	GGT	TGT	AAA	TGG	AGA	TTC	AAC	TGG	ттс	AAG	AAC	GCT	GAT	AAC	CCA	AGC	ATG	АСТ	TAC	960
301	Α	G	С	к	W	R	F	Ν	W	F	K	N	Α	D	N	Р	S	М	Т	Y	320
																		-			
961	AAG	GAA	GTT	ACC	TGT	сст	AAG	GAA	ATC	ACC	GCC	AAG	ACA	GGT	TGT	тса	AGA	AAA	TAA	АСТ	1020
321	<u> </u>	Ε	۷	Т	С	Ρ	К	Ε	Ι	Т	Α	К	т	G	С	5	R	к	*		339

FIG. 1. Nucleotide sequence of the *rce1* gene from *R. oryzae* and deduced amino acid sequence. Arrows, border of each domain: signal peptide, CBD, linker domain, and catalytic domain. The N-terminal and internal amino acid sequences of the purified RCE1 from *R. oryzae*, determined previously (14), are underlined. The consensus amino acid residues of glycosyl hydrolase family 45 are double underlined. Potential N-linked glycosylation sites (N-X-S/T) are shaded.

The deduced amino acid sequences of the RCEs suggested that the cellulolytic system of *R. oryzae* was comparatively simple and consisted mainly of glycosyl hydrolase family 45 endoglucanases, in contrast to the cellulase systems of *Deuteromycotina*, which contain various glycosyl hydrolase families of cellulases (25). Genes encoding different cellulases which belong to different glycosyl hydrolase families probably evolved from different ancestral genes. If so, the fungi belonging to *Deuteromycotina* should have obtained various kinds of cellulase genes by multiple gene transfer events (13). On the other hand, the CBD and catalytic domain sequences of RCEs were highly homologous, suggesting that the *rce1*, *rce2*, and *rce3* genes evolved from the same ancestral *rce* gene by gene duplication rather than by multiple gene transfer events. Further-

	SIGNAL PEPTIDE																				
1	ATG	AAG	TTC	стт	ACC	ATT	GCC	тсс	тсс	GCT	ATC	TTG	GCA	CTT	GCC	GTC	GGT	ACT	GAA	ATG	60
1	М	К	F	L	Т	Ι	Α	S	S	Α	Ι	L	Α	L	Α	۷	G	Т	Е	М	20
				►			_		C	ELL	ULC)SE	BI	NDI	NG	DOM	AIN				
61	GCC	CAT	GCT	GCT	GAA	TGT	AGC	AAG	GCT	TAC	TAC	CAA	TGT	GGT	GGT	AAG	iaac	TGG	GAT	GGA	120
21	Α	Н	Α	A	Ε	С	S	К	Α	Y	Y	Q	С	G	G	Κ	Ν	W	D	G	40
121	CCT	ACC	TGC	TGT	GAA	тст	GGC	тст	АСТ	TGC	GTT	GAT	TAT	ССТ	GAC	:AAT	сст	ттс	TAC	тсс	180
41	Ρ	Т	С	С	Ε	S	G	S	Т	С	۷	D	Y	Ρ	D	Ν	Ρ	F	Y	S	60
			▶◀	ι						LIN	IKEF	R DO	OMA	IN							
181	CAA	TGT	GTT	ссс	AAT	GAA	AAC	стс	ACC	тсс	ACT	AAC	AAA	тст	тст	CAC	AAA	ACC	ACC	АСТ	240
61	Q	С	۷	Ρ	Ν	Е	N	I.	T	S	Т	N	K	5	S	Н	К	Т	Т	Т	80
241	ACT	GAG	AGT	GCC	AAG	AAG	ACT	ACC	ACT	АСТ	AAA	GGT	тсс	AAG	AAG	ACC	ACC	ACT	ACT	GAA	300
81	Т	Е	S	Α	К	Κ	T	Т	т	Т	К	G	S	Κ	Κ	т	Т	Т	Т	Е	100
30 1	GCC	тст	AAG	AAG	ACC	ACC	ACT	ACT	GAA	GCT	тсс	AAG	AAG	ACC	ACC	АСТ	АСТ	GAA	GCC	тст	360
101	Α	S	К	ĸ	т	Т	т	т	Е	Α	S	К	К	Т	Т	т	T.	Е	Α	S	120
361	AAG	AAG	ACC	ACC	АСТ	АСТ	АСТ	AAG	AAG	GCT	тст	ACC	тсс	ACT	тсс	тст	тсс	тст	тст	тст	420
121	К	К	Т	т	Т	Т	т	К	Κ	Α	S	Т	S	Т	S	S	S	S	S	S	140
														-	_0	ATA	ALY1	IC	DC)MAI	N
421	GCT	тст	ACA	AAC	ТАС	тсс	GCT	GTC	тст	GGT	GGT	GCC	ŤCC	GGT	AAT	GGT	GAA	ACC	ACT	CGC	480
141	Α	S	т	N	Y	S	Α	۷	S	G	G	Α	S	G	Ν	G	Е	T	Т	R	160
481	TAC	TGG	GAT	TGT	TGT	AAG	ССТ	тст	TGC	AGT	TGG	ссс	GGT	AAG	GCT	GAT	GTC	ACC	тсс	сст	540
161	<u>Y</u>	W	D	С	С	K	<u>P</u>	5	<u></u>	S	W	Ρ	G	К	A	D	۷	т	S	Ρ	180
541	GTT	GGC	TCC	TGT	AAC	AAG	GAT	GGT	AAG	ACT	СТТ	GCT	GAT	AAC	AAC	ACT	CAA	AAC	GGC	TGT	600
181	۷	G	S	C	Ν	К	D	G	К	Т	L	Α	D	Ŋ	N		Q	N	G	С	200
601	GTT	GGT	GGT/	AGC	AGC	TAC	ACC	TGT	AAT	GAC	AAT	CAA	ССТ	TGG	GTT	GTT	AGC	GAC	GAC	СТТ	660
201	۷	G	G	S	S	Y	Т	C	Ν	D	Ν	Q	Ρ	W	۷	۷	S	D	D	L	220
661	GCC	TAC	GGT	ттс	GCC	GCT	GCT	тсс	ATT	тст	GGT	GGT	AGC	GAA	GCT	ACT	TGG	TGT	TGT	GCC	720
221	Α	Y	G	F	Α	Α	Α	S	Ι	S	G	G	S	Е	A	Т	W	С	С	Α	240
721	TGT	TTC	GAA	стс	ACA	TTC	ACC	тст	ACT	GCC	GTC	AAG	GGT	AAG	AAG	ATG	GTT	GTT	CAA	GTA	780
241	С	F	E	L	т	F	Т	S	Т	Α	V	K	G	К	Κ	М	V	V	Q	V	260
781	ACC	AAC		GGT	тст	GAC	СТТ	GGC	тст	AAC	АСТ	GGT	GCT	CAC	TTT	GAC	TTG	CAA	ATG		840
261	Т	Ν	Т	G	S	D	L	G	S	N	Т	G	Α	Н	F	D	L	Q	М	Р	280
841	GGT	GGT	GGT(GTT	GGT	ATC	ТАС	AAT	GGT	TGT	GCC	АСТ	CAA	TGG	GGT	GCT	CCC	ACC	GAT	GGT	900
281	G	G	G	V	G	I	Y	Ν	_G	_C	Α	Т	Q	W	G	A	P	Т	D	G	300
901	TGG	GGT	GCA/	AGA	ТАС	GGC	GGT	GTT	тст	тст	GCC	тст	GAC	TGT	тст	AAC	CTT	ССТ	тст	GCC	960
301	W	G	A	R	<u>Y</u>	G	G	V	5	<u>S</u>	A	<u> </u>	D	<u> </u>	5	N		<u>Р</u>	<u>S</u>	<u>A</u>	320
961	CTTO		GCTO	GGT	TGT	AAG	TGG	AGA	TTC	GGC	⊺GG			AAC	GCT	GAT	AAC	CCA.	ACC.	ATG	1020
321	L	Q	Α	G	C	К	W	<u>R</u>	F	G	W	<u> </u>	<u>_ K</u>	<u>N</u>	<u>A</u>	D	N	Р		<u>M</u>	340
1004					~		T C T			~~~			~~~		T ~~			TC ·		►	1000
1021	ACC T		4AA(GII.		161		AAG	GC I.	AIC.		۵CC.	AAG	ICT c	66C	IGT C	ICA.	AGA		1080
541 1001		<u> </u>	K	Q	۷	I	C	Ч	К	А	T	I	A	К	2	G	C	2	к	К	300
1801	IAA 																				
301	*																				

FIG. 2. Nucleotide sequence of the *rce2* gene from *R. oryzae* and deduced amino acid sequence. Arrows, border of each domain: signal peptide, CBD, linker domain, and catalytic domain. The N-terminal and internal amino acid sequences of the purified RCE2 from *R. oryzae*, determined previously (14), are underlined. The consensus amino acid residues of glycosyl hydrolase family 45 are double underlined. Potential N-linked glycosylation sites (N-X-S/T) are shaded.

	SIGNAL PEPTIDE																				
1	ATGAAGTTTATTACTATTACCTCTTCCGCTCTTGGCTCTCGCCCTTGGTACTGAAATG															60					
1	М	K	F	I	Т	I	Т	S	S		L	L	A	L	A	L	G	Т	Ε	М	20
61																170					
21	A CC	. тст с	۵C1 ۸		I AAA K	по С	AGC C	.AA(V		A IL	00	ربي ا م	(10) C	۵۵ ۲	، مەر م			. roc w		000	10
121		Улст	а тат	н таа	СУУ	с тст	د ريم:		∟ مرد	т стст	0 ГАА/	у Асти	uce Not	ں ۱۸۸۰	0 °C A T	л Тл	Тл	и ТСТ	וא רב א א	тст	190
101	D	T	гот С	ru(LUAA E	c	6	۱۰۵ د	TAC	۲۵۱ ۲	1 AA) V	ر ا ی. ر	4AU(.AA\ N	ואט. ח		. TAC	ריד. כ		(101) C	100
			C	с 1 т1		-1	U	J 	1	b	N.	v	ר ביי	יי	U	'		C	ų	C	00
101	CTT		сст							TCT				4	• • • •		.			тст	240
101 61		•		GAF	vauc c		.000. C				c	E UAP	יוט וי ר	AGC C				6		(101 C	240
741	L CCT	A CCT	А А С		ב דרר	и А А Т	0 				с СТС	е С Л I	U UTCT	د ۲۰۲۰		L ۲۰۰۰	י דרדי	ט יאא־	V VCTA		90
241 01	6	رون م			טטיו. ש		000	יישט.	T	וויו ר	- C	LUAA	۱۲۲۱ د	400 C		ACU. T	וטו. כ	AAA	401P V	AUC	100
01	0	U	ĸ	U		IN	U	P		Ļ	C		3		د - م		C	ĸ	v	3	TOO
201																200					
101		GAI			. I C I		(10) C				GA/	AGU د		500	I AA I			ICI c	GAA		120
261		U CAT	1 • • • •		• АСТ	V ACT				۲ ۲ <i>.</i>	E	5 7 4 4 7		0 4 T T				د ۰۰۰		о ССТ	120
171	GCI						ACC	AC I.	IGCI		.90.1		אטנ ר	ан т			ACI	GCC	.888		420
121	А	п	ĸ	1	I		I.	1	А	Р	А	ĸ	E	T	I	I	1	А	ĸ	А	140
471	TCA		тст	тст	• • • •	тст			• • • •		· т с л	^ A TT		т с т	-						400
421			IUI		AAC			.000 C	.884		. TCC	LAT I		וטו. ב	461 C			ורו. כ	661		480
141	2	0						G	ĸ	T	2	T	v	3	647	0	A (TT)	2	6		100
404	<u> </u>	с т с				-										AL				ALN	= 40
481	661		ACT.		CGI		166	IGAI	IGC	. I G I	AA	3GC(.100	. I G I	AGC	.166		.GG I	AAG	GCC	540
101	6 • • • •	V CTC			K		W			<u> </u>	<u>K</u>	A	<u> </u>		د ۱۰۲	W	۲ ۲۰	G	К - с • с	A	180
541	AA I	GIC	AGI	ICI c					.161		.884	1 GA	661	GIC	.AC I	GCC		AGI	GAC	AGC	600
181		X	.	د ۰	۲ ۰۰۰۰	V TCT	K	د ددت	(N	K	D	6	V	1	A	L	S	D	5	200
501	AAI	GIC		AGI	660	IGI		.661	661		.AGI		AIG	G	AAC	.GAC	.AAC	.CAG		166	660
201	N	V CTA	Q	ک د ب	G	с стт	N	Т. т. т	6 	N	د دد:	Y	M		N	U	N	Q	P	W	220
001 221	GCI	GIA		GAI				IAI	661	-	.GCI	GCI	GCI		.ATC	AG I	661	661	661	GAA	720
221	A	v ccc		U TCC	N	L	A	1 	6 	F	A	A	A	A	1	د حد	6 	6	6 	E	240
741	r Ci		100		.101	ICI c			.GAA	(CT	ACI	- T C	AC1	ICI C	ACC	. I C I	611		661	AAG	780
24⊥ 701	3	к лтс	M CTT	с 4тс	с. с.) Стс	L L		E	L 	1	۲ ۲	। 	3	і тсс) тст	V	A	ы Сст	K	260
701	AAG	DIA M	011/ V						ACI. T	001	661	GAI	- CH		.100	ICI c		661	GCI		840
201	к ттт	M	V TTC	т С л л	V ATC	v	і сст	N CCT	ו רכד	Стт	ט רכרי	U • • • • •	L 	6	Сст	3 760		- G	A	H	280
84⊥ 201	-	GAC	116		AIG		661 C	501	661	G	661	AT	-		661					IGG	900
201	г сст	U		Q AAT	M	۲ ۲	ы тсс	ы ССС	ы тсс	V	ы т.с	1	۲ ۲	N	G TCT	L TCT	2	K TCT	Q	W	300
201	661	GCT			GAC	661	166	660	.106	AGA		.661	661	AII -	ICI c	ICI	GCA	ICI	GAC	IGC	960
301	G	A	۲ ۲.	N CCT	U	G	W	6	5	K	Y	G 	G	1	5	5	A	<u>د</u>	D	(320
70T	ICI c	AGI			rtt r	ULA				6 61	161	AAA	. 1 G G	AGA	- TC	AAC	166	110	AAG	AAC	1020
321	د حت	د 		۲ ۲ د ۲۰	5	A	L	ų TIC	A	6	(~~	K	W	K	+	N	W	F	K	N	340
1021	GCE	GA L	AAC		AGC	AIG.	AC I		.AAG	GAA r	GIT	ACC -	IGT		AAG	GAA		ACC -	GCC	AAG	1080
341	Α	ט	N	٢	2	М	I	Ŷ	к	F	۷	I	C	٢	к	E	1	Γ	Α	К	360
1001		с <i>с</i> т			101	•															4464
		001	101	r CA	AGA.	AAA V	i AA ≁														1101
361	Г	G	C	S	ĸ	К	*														367

FIG. 3. Nucleotide sequence of the *rce3* gene from *R. oryzae* and deduced amino acid sequence. Arrows, border of each domain: signal peptide, CBDs (CBD 1 and CBD 2), linker domains (linker 1 and linker 2), and catalytic domain. The consensus amino acid residues of glycosyl hydrolase family 45 are double underlined. Potential N-linked glycosylation sites (N-X-S/T) are shaded.

FIG. 4. Alignment of the amino acid sequences of the CBDs of RCE1, RCE2, and RCE3. Amino acids identical to those of the CBD of RCE1 are indicated by white letters in black boxes.

more, the similarity between the CBDs of RCE1 and RCE3 was higher than that between the CBDs of RCE1 and RCE2, and the similarity between the catalytic domains of RCE1 and RCE3 was also higher than that between catalytic domains of RCE1 and RCE2. These results indicate that the *rce1* and *rce3* genes are evolutionarily nearer to each other than to the *rce2* gene.

Comparison of linker domains of RCE1, RCE2, and RCE3. Figure 7 shows the alignment of the linker domains for RCE1, RCE2, and RCE3. This alignment suggests that the linker domains of RCEs were divided into three segments, designated conserved segment 1, repeated segment, and conserved segment 2 (Fig. 7).

Conserved segment 1 was located at the N termini of all linker domains and was highly conserved in the linkers of RCE1, RCE2, and RCE3 (Fig. 7). Conserved segment 2 was located at the C termini of the linkers of RCE1 and RCE2 and at the second linker of RCE3. The amino acid sequences of conserved segment 2 were also highly conserved in RCE1, RCE2 and RCE3. About 50% of the amino acids of conserved segment 2 consisted of serine or threonine.

The repeated segment was located between conserved seg-

FIG. 5. Modular structures of RCE1, RCE2, and RCE3. CBDs (Fig. 4), conserved segment 1 (Fig. 7), repeated units in repeated segments (Fig. 7), conserved segment 2 (Fig. 7), and catalytic domains (Fig. 6) are shown as boxes to simplify the structure of each domain. Arrow, length of 50 amino acids.

J. BACTERIOL.

FIG. 6. Alignment of the amino acid sequences of the catalytic domains of RCE1, RCE2, and RCE3. Amino acids identical to those of the catalytic domain of RCE1 are indicated by white letters in black boxes.

ments 1 and 2. Interestingly, there were many (H/K)K(K/T)TTT sequences present in this segment as repeated units. The lengths of linkers of RCE1, RCE2, and RCE3 were different from each other because of different numbers of repeated units. The linker of RCE2, which was the longest of the linkers of RCEs, contained the KKTTTT(K/E)(G/A)S sequence four times. The linker of RCE1, which was the second longest, contained the HKKTTTA(A/P) sequence three times. The second linker of RCE3, which was the shortest, contained only one HKTTTTTAP sequence. The linker of RCE2 had another HKTTTT sequence between conserved segment 1 and the repeated segment. The linker domain sequence of xylanase B from the anaerobic fungus Neocallimastix patriciarum is known to contain 57 repeats of an octapeptide unit (XSKTLPGG, where X is S, K, or N) (1). The linker domain sequence of the xylanase A from Ruminococcus flavefaciens is also known to be composed of some reiteration of the octapeptide QQQN NDWN (28). Based on these facts, the duplication and/or deletion of the repeated peptides might be one of the common evolutionary processes producing diverse linker lengths of plant cell wall-degrading enzymes.

Expression of the *rce1*, *rce2*, and *rce3* genes in *Saccharomyces* cerevisiae. To express the rce1, rce2, and rce3 genes in S. cerevisiae, these rce genes were inserted between the GAP promoter and terminator on S. cerevisiae expression vector pY2831 (27). To facilitate cloning, BglII sites were incorporated upstream of the start codons and downstream of the stop codons of the rce1 and rce3 genes and the BamHI sites were those of the rce2 gene. Incorporation was performed by using a Mutagen M13 in vitro mutagenesis kit (Bio-Rad). The primers for mutagenesis were as follows: for rce1, 5'-GTAATAAACT TCATAGATCTATGTAAAAAGAATG-3' (forward primer; underlining indicates the BglII site) and 5'-GGATGAGTA TAAAAGATCTTATTTTCTTGAAC-3' (reverse primer; underlining indicates the BglII site); for rce2, 5'-GCGGAT CCATGAAGTTCCTTACCATTGCC-3' (forward primer; underlining indicates the BamHI site) and 5'-GCGGATCCT TATTTTCTTGAACAGCCAGA-3' (reverse primer; underlining indicates the BamHI site); for rce3, 5'-GTAATAAACT TCATAGATCTATGTAAAAAGAATG-3' (forward primer;

FIG. 7. Alignment of the amino acid sequences of the linker domains of RCE1, RCE2, and RCE3. Conserved segment 1, the repeated segment, and conserved segment 2 are shown. Boxed sequences, repeated units consisting of (H/K)K(K/T)TTT in the repeated segments. Conserved amino acids are indicated by letters in black or gray boxes.

underlining indicates the BglII site) and 5'-CAAGAAAATA AGATCTTTTATACTCCTACT-3' (reverse primer; underlining indicates the BglII site). The resultant plasmids were digested with BglII or BamHI, and the rce1, rce2, or rce3 fragment was subcloned into the BamHI site of pY2831 and placed between the GAP promoter and GAP terminator of S. cerevisiae. The resulting plasmids were designated pYRCE1, pYRCE2, and pYRCE3, respectively. S. cerevisiae strain MS161 (MATa trp1 ura3 Suc⁻) was transformed with pYRCE1, pYRCE2, or pYRCE3 by the lithium acetate method described by Ito et al. (12). S. cerevisiae transformants were selected on a selective medium containing 0.67% yeast nitrogen base without amino acids (Difco), 2% glucose, 0.005% uracil, and 1.5% purified agar (Sigma). For expression of the *rce* genes, the transformants were grown in a production medium containing 0.67% yeast nitrogen base without amino acids, 2% glucose, 0.005% uracil, and 2% Casamino Acids.

To confirm the expression of recombinant RCE1, RCE2, and RCE3, the supernatants of S. cerevisiae transformants harboring the plasmid pY2831, pYRCE1, pYRCE2, or pYRCE3 were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis using ready-made 10% polyacrylamide gels (Tefco). After electrophoresis, the gels were either silver stained or immunostained. For immunostaining, proteins in the gel were transferred to a polyvinylidene difluoride membrane and detected on the membrane by using the antibody against the purified RCE1 from R. oryzae (14) in combination with anti-rabbit (goat) antibodies conjugated with horseradish peroxidase as secondary antibodies. Culture supernatant of S. cerevisiae harboring the rce1, rce2, or rce3 gene showed broad bands around 100, 50, or 100 kDa by Western blotting with anti-RCE1 (data not shown); on the other hand, that of S. cerevisiae without the gene did not show any bands. These results indicated that the recombinant RCE1, RCE2, and RCE3 were expressed successfully. The positions of these bands indicated molecular weights much higher than the calculated molecular weights of RCE1, RCE2, and RCE3. The amino acid sequences of RCEs contained potential N-linked glycosylation sites (N-X-S/T) at positions 68, 113, and 153 for the RCE1 (Fig. 1); at 67, 72, 144, and 194 for RCE2 (Fig. 2); and at 68, 115, 142, 145, and 181 for RCE3 (Fig. 3). Therefore, the recombinant RCEs in S. cerevisiae were considered to be

hyperglycosylated at some of these N-linked glycosylation sites, which are often found in recombinant proteins expressed by the yeast (26).

Characterization of the recombinant RCE1, RCE2, and RCE3. The activities of culture supernatants of S. cerevisiae harboring the rce1, rce2, or rce3 gene against carboxymethylcellulose (Tokyo Kasei Kogyo Co., Ltd.; for endoglucanase), Avicel (Asahi Chemical Co.; for Avicelase), xylan from birch-(Sigma), laminarin (Sigma), galactan (Lupin; wood Megazyme), linear arabinan (Megazyme), and mannan (ivory nut; Megazyme) were determined. Briefly, the activities were measured under standard conditions by using reaction mixtures that contained 10 mg of substrate in 1.0 ml of 50 mM sodium acetate buffer (pH 6.0) and that were incubated for 30 min at 50°C. For Avicelase activity, reaction mixtures were incubated for 24 h at 50°C. One unit of activity was defined as the amount of enzyme releasing 1 µmol of reducing sugar per min. All three supernatants of the recombinant RCEs showed much higher activities against soluble cellulose (endoglucanase) than against crystalline cellulose (Avicelase). The culture supernatants of S. cerevisiae harboring the rce1, rce2, or rce3 gene had endoglucanase activities of 245, 100, and 42 U/liter, respectively, and Avicelase activities of 0.240, 0.185, and 0.188 U/liter, respectively, whereas S. cerevisiae without any of the genes did not have any activity. The ratios of Avicelase activity to endoglucanase activity for the culture supernatants of S. cerevisiae harboring rce1, rce2, or rce3 genes were 0.00098, 0.00185, and 0.00449, respectively. Two tandem CBDs might be more effective for degradation of crystalline cellulose than one CBD, since the recombinant RCE3, which had two tandem CBDs, had higher relative Avicelase activity than the recombinant RCE1, which possessed only one CBD. The culture supernatants of the recombinant RCEs did not show any activities against hemicelluloses. The specific activities of endoglucanase of the native RCE1 and RCE2 purified from the culture supernatant of R. oryzae were 272.5 and 110.8 U/mg, respectively (14). Therefore, the calculated amounts of the recombinant RCE1 and RCE2 produced by S. cerevisiae harboring the rce1 or rce2 gene were 0.90 and 0.91 mg/liter, respectively.

The sugars generated upon hydrolysis of cellooligosaccharides by the recombinant RCEs were also determined by thinlayer chromatography. The products formed upon hydrolysis of cellotriose (3G), cellotetraose (4G), cellopentaose (5G), and cellohexaose (6G) with the recombinant RCEs were analyzed. The reaction mixtures (1 mg of substrate and 0.25 U of the culture supernatant of RCE1, RCE2, or RCE3 in 1 ml of 50 mM sodium acetate buffer, pH 6.0) were incubated at 50°C for 2 h. The reaction was terminated by boiling the reaction mixtures for 5 min. The hydrolytic products were developed and visualized as described previously (14). The three recombinant RCEs showed similar hydrolytic patterns. The 6G was completely hydrolyzed to produce 4G and cellobiose (2G) with very small amounts of 3G. The 5G was also completely degraded to form 3G and 2G. On the other hand, only small amounts of 4G were hydrolyzed to produce 2G with very faint spots of 3G. The recombinant RCEs did not act on 3G. These hydrolytic patterns were in good agreement with that of EGV from H. insolens, which also belongs to family 45 (18). The EGV from H. insolens is known to have six subsites in its active site, and the cleavage site is between the fourth and fifth subsites, as determined through substrate specificity studies (19) and crystal structure analysis (4). Based on the similarities of hydrolytic patterns and amino acid sequences between EGV and RCEs, the active sites of RCEs might be similar to that of EGV determined by crystal structure analysis (4).

The effect of temperature was measured under the standard conditions described above by varying the temperature from 30 to 70°C. The optimum temperatures of recombinant RCE1, RCE2, and RCE3 were 55, 50, and 50°C, respectively. The optimum temperatures of recombinant RCE1 and RCE2 were almost same as those of the native RCE1 and RCE2 from culture supernatants of *R. oryzae* (14).

Endoglucanase activity under several different pH conditions was also measured by using 50 mM sodium acetate (pH 3 to 6), sodium phosphate (pH 7 to 8), or glycine-NaOH (pH 9 to 11) buffer. The optimum pH for recombinant RCE1 was 7.0, whereas the optimum pH for the native RCE1 was 6.0. The optimum pH for the recombinant RCE2 was 5.0, and the activity remained at 90% of the highest activity between pH 4 and 7.7. Since the activity of purified RCE2 from culture supernatants of *R. oryzae* remained at 90% of the highest activity between pH 5 and 7 (14), recombinant RCE2 was considered to have higher pH tolerance than purified RCE2 from culture supernatants of *R. oryzae*. The optimum pH of recombinant RCE3 was 7.7, and the high activity was also maintained at a broad pH range (above 90% of the highest activity between pH 5 and 7.7).

Nucleotide sequence accession numbers. The nucleotide sequences of the *rce1* gene from *R. oryzae* FERM BP-6889 have been assigned accession no. AB047927 in the DDBJ database, and the nucleotide sequences of the *rce2* and *rce3* genes have been assigned accession no. AB056668.

We thank Roy H. Doi (UC Davis) for correction of the manuscript. We thank Don M. Carlson (UC Davis) for discussions about repeated sequences. We are grateful to C. Nojiri (Meiji Seika Kaisha, Ltd.) for performing TLC analysis.

REFERENCES

 Black, G. W., G. P. Hazlewood, G. P. Xue, C. G. Orpin, and H. J. Gilbert. 1994. Xylanase B from *Neocallimastix patriciarum* contains a non-catalytic 455-residue linker sequence comprised of 57 repeats of an octapeptide. Biochem. J. 299:381–387.

- Chow, C. M., E. Yague, S. Raguz, D. A. Wood, and C. F. Thurston. 1994. The cel3 gene of Agaricus bisporus codes for a modular cellulase and is transcriptionally regulated by the carbon source. Appl. Environ. Microbiol. 60:2779– 2785.
- Dalboege, H., B. Diderichsen, T. Sandal, and S. Kauppinen. November 1997. Method of providing novel DNA sequence. World patent 9743409.
- Davies, G. J., G. G. Dodson, R. E. Hubbard, S. P. Tolley, Z. Dauter, K. S. Wilson, C. Hjort, J. M. Mikkelsen, G. Rasmussen, and M. Shulein. 1993. Structure and function of endoglucanase V. Nature 365:362–364.
- Doi, R. H., J. S. Park, C. C. Liu, L. M. Malburg, Y. Tamaru, A. Ichiishi, and A. Ibrahim. 1998. Cellulosome and noncellulosomal cellulases of *Clostridium cellulovorans*. Extremophiles 2:53–60.
- Gilbert, H. J., J. Hall, G. P. Hazlewood, and L. M. Ferreira. 1990. The N-terminal region of an endoglucanase from *Pseudomonas fluorescens* subspecies *cellulosa* constitutes a cellulose-binding domain that is distinct from the catalytic centre. Mol. Microbiol. 4:759–767.
- Henrissat, B., and A. Bairoch. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293:781–788.
- Henrissat, B., and A. Bairoch. 1996. Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 316:695–696.
- Henrissat, B., H. Driguez, C. Viet, and M. Schulein. 1985. Synergism of cellulases from *Trichoderma reesei* in the degradation of cellulose. Bio/Technology 3:722–726.
- Himmel, M. E., M. F. Ruth, and C. E. Wyman. 1999. Cellulase for commodity products from cellulosic biomass. Curr. Opin. Biotechnol. 10:358–364.
- Inoue, T., K. Murashima, J. I. Azuma, A. Sugimoto, and M. Slaytor. 1997. Cellulose and xylan utilization in the lower termite *Reticulitermes speratus*. J. Insect Physiol. 43:235–242.
- Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
- 13. Ljungdahl, L. G., X.-L. Li, and H. Chen. 1998. Evidence in anaerobic fungi of transfer of genes between them from aerobic fungi, bacteria and animal hosts, p. 187–197. *In J. Wiegel and W. W. Adams (ed.)*, Thermophiles: the keys to molecular evolution and the origin of life? Taylor and Francis Inc., Philadelphia, Pa.
- Murashima, K., T. Nishimura, Y. Nakamura, J. Koga, T. Moriya, N. Sumida, T. Yaguchi, and T. Kono. 2002. Purification and characterization of new endo-1,4-β-D-glucanases from *Rhizopus oryzae*. Enzyme Microb. Technol. 30:319–326.
- Nakatani, F., T. Kawaguchi, G. Takada, J. I. Sumitani, Y. Moriyama, and M. Arai. 2000. Cloning and sequencing of an endoglucanase gene from *Scopulariopsis brevicaulis* TOF-1212, and its expression in *Saccharomyces cerevisiae*. Biosci. Biotechnol. Biochem. 64:1238–1246.
- Ohmiya, Y., M. Samejima, M. Shiroishi, Y. Amano, T. Kanda, F. Sakai, and T. Hayashi. 2000. Evidence that endo-1,4-beta-glucanases act on cellulose in suspension-cultured poplar cells. Plant J. 24:147–158.
- Schauwecker, F., G. Wanner, and R. Kahmann. 1995. Filament-specific expression of a cellulase gene in the dimorphic fungus *Ustilago maydis*. Biol. Chem. Hoppe-Seyler 376:617–625.
- Schou, C., G. Rasmussen, M. B. Kaltoft, B. Henrissat, and M. Schulein. 1993. Stereochemistry, specificity and kinetics of the hydrolysis of reduced cellodextrins by nine cellulases. Eur. J. Biochem. 217:947–953.
- Schulein, M., D. F. Tikhomirov, and C. Schou. 1993. *Humicola insolens* alkaline cellulases. Found. Biotech. Ind. Ferment. Res. Publ. 8:109–116.
- Schwarz, W. H. 2001. The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 56:634–649.
- Sheppard, P. O., F. J. Grant, P. J. Oort, C. A. Sprecher, D. C. Foster, F. S. Hagen, A. Upshall, G. L. McKnight, and P. J. O'Hara. 1994. The use of conserved cellulase family-specific sequences to clone cellulase homologue cDNAs from *Fusarium oxysporum*. Gene 150:163–167.
- Takashima, S., H. Iikura, A. Nakamura, M. Hidaka, H. Masaki, and T. Uozumi. 1999. Comparison of gene structures and enzymatic properties between two endoglucanases from *Humicola grisea*. J. Biotechnol. 67:85–97.
- Teeri, T. T. 1997. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol. 15:160–167.
- Teeri, T. T., P. Lehtovaara, S. Kauppinen, I. Salovuori, and J. Knowles. 1987. Homologous domains in *Trichoderma reesei* cellulolytic enzymes: gene sequence and expression of cellobiohydrolase II. Gene 51:43–52.
- Tomme, P., R. A. Warren, and N. R. Gilkes. 1995. Cellulose hydrolysis by bacteria and fungi. Adv. Microb. Physiol. 37:1–81.
- Van Arsdell, J. N. 1987. Cloning, characterization, and expression in Saccharomyces cerevisiae of endoglucanase I from Trichoderma reesei. Bio/Technology 5:60–64.
- Yanai, K., A. Nakane, A. Kawate, and M. Hirayama. 2001. Molecular cloning and characterization of the fructooligosaccharide-producing beta-fructofuranosidase gene from *Aspergillus niger* ATCC 20611. Biosci. Biotechnol. Biochem. 65:766–773.
- Zhang, J. X., and H. J. Flint. 1992. A bifunctional xylanase encoded by the xynA gene of the rumen cellulolytic bacterium *Ruminococcus flavefaciens* 17 comprises two dissimilar domains linked by an asparagine/glutamine-rich sequence. Mol. Microbiol. 6:1013–1023.