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Abstract
Background: Correlations between polymorphic markers and observed phenotypes provide the
basis for mapping traits in quantitative genetics. When the phenotype is gene expression, then loci
involved in regulatory control can theoretically be implicated. Recent efforts to construct gene
regulatory networks from genotype and gene expression data have shown that biologically relevant
networks can be achieved from an integrative approach. In this paper, we consider the problem of
identifying individual pairs of genes in a direct or indirect, causal, trans-acting relationship.

Results: Inspired by epistatic models of multi-locus quantitative trait (QTL) mapping, we propose
a unified model of expression and genotype to identify quantitative trait genes (QTG) by extending
the conventional linear model to include both genotype and expression of regulator genes and their
interactions. The model provides mapping of specific genes in contrast to standard linkage
approaches that implicate large QTL intervals typically containing tens of genes. In simulations, we
found that the method can often detect weak trans-acting regulators amid the background noise of
thousands of traits and is robust to transcription models containing multiple regulator genes. We
reanalyze several pleiotropic loci derived from a large set of yeast matings and identify a likely
alternative regulator not previously published. However, we also found that many regulators can
not be so easily mapped due to the presence of cis-acting QTLs on the regulators, which induce
close linkage among small neighborhoods of genes. QTG mapped regulator-target pairs linked to
ARN1 were combined to form a regulatory module, which we observed to be highly enriched in
iron homeostasis related genes and contained several causally directed links that had not been
identified in other automatic reconstructions of that regulatory module. Finally, we also confirm
the surprising, previously published results that regulators controlling gene expression are not
enriched for transcription factors, but we do show that our more precise mapping model reveals
functional enrichment for several other biological processes related to the regulation of the cell.

Conclusion: By incorporating interacting expression and genotype, our QTG mapping method
can identify specific regulator genes in contrast to standard QTL interval mapping. We have shown
that the method can recover biologically significant regulator-target pairs and the approach leads
to a general framework for inducing a regulatory module network topology of directed and
undirected edges that can be used to identify leads in pathway analysis.
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Background
Recently several data sets of both whole genome genotype
and expression data have been published [1-4]. In a major
departure from conventional genetic trait analysis, now
105 to 106 phenotypic traits are represented by distinct
gene expression measurements. Theoretically, chromo-
somal regions can be linked to the expression of each of
the many measured genes. Thus, this data provides the
basis for determining the role of genetic variation in dif-
ferential gene expression and the identification of poly-
morphic genes that regulate, directly or indirectly,
transcriptional control.

Genetics of gene expression
The three most significant studies to date include whole
genome expression and genotyping for a collection of 113
segregants from a mating of two isogenic yeast strains [5],
a collection of 111 selfed progeny from a mating of two
inbred mice strains [2], and 32 recombinant inbred mice
strains [6]. The yeast regulatory system is simpler, recom-
bination rates are higher, and the number of available
samples is greater than in the recombinant inbred mouse
dataset currently available; therefore, we focus on the
work of Brem and colleagues exclusively. With sufficient
sampling, the principles of our work should be applicable
to other model systems.

Quantitative trait loci (QTL) are regions on a genome in
which the genetic variation is significantly correlated with
a phenotypic trait, here the expression of a gene. Interval
mapping [7] models assume an additive relationship of
genotype to phenotype according to a mixture model of
the form:

P(Ti|Qj) = (β0 + β1Qj, σ)

where Ti is the expression of the ith transcript and Qj is a

numeric genotype value corresponding to the jth site in the
genome. (Genotypes usually take on three values, -1, 0,
and 1 for biallelic sites in diploids. Genotypes for haploid
or back-crossed individuals are only two-valued, i.e. 0 and
1.) For an observed Ti, all possible j are considered and the

β terms fit by regression. When measured markers are
sparse, Qj is usually sampled in regular intervals between

the markers, in which case, Qj is estimated according to a

maximum likelihood approach. Consecutive regions
along a chromosome with log odds

( ) greater than

some threshold are identified as candidate QTL intervals,
within which are genes believed responsible for the phe-
notypic variation. In our case, each QTL interval puta-

tively contains a regulator gene. The identification of the
specific regulator gene is referred to as fine mapping.

In Brem [4], expression levels were measured for 5727
ORFs and genotype data obtained for 2957 markers regu-
larly spaced across the yeast chromosomes. They found
that a large fraction of differential gene expression was
due to genetic variation and Yvert, et al [8] showed that,
perhaps surprisingly, the genes in the QTL intervals were
not enriched for transcription factors or any particular
gene function. This observation could possibly be
explained by the large size of the QTL intervals, typically
containing ten or more genes, however we will show that
our more precise models still do not implicate transcrip-
tion factors as dominant upstream regulators. Thus, one
must conclude that regulatory influence is a complex
process such that "upstream regulator" is interpreted in
the broadest of contexts.

Polymorphisms affecting gene expression are convention-
ally divided into cis- and trans-acting effects, i.e. polymor-
phisms that are proximal to the gene, such as in the
promoter or 3' end, and those in another gene (generally
speaking on a different chromosome). Detecting cis-acting
QTLs is straightforward using interval mapping and such
QTLs tend to be highly significant [2]. On the other hand,
trans-acting variation accounts for most differential gene
expression, but the variation is due to a large number of
weak actors [5]. This is consistent with a model of gene
regulation in which multiple factors contribute in macro-
molecular complexes and in many different stages of cell
regulation such as signaling, transport, and so on.

Inferring regulatory networks from correlated gene 
expression
Independent of the data sets described so far, large collec-
tions of gene expression over time course [9] or varying
environmental conditions [10,11] have been studied to
reveal dependent variation among genes and thereby
deduce regulatory relationships. A dominant model used
in such analyses was first proposed by Friedman, et al [12]
in which each gene is a random variable with conditional
distribution dependent on a small number of parent vari-
ables according to the Bayesian network (BN) formalism.

In such a model, nodes in a graph are random variables
representing gene expression and edges connect nodes in
a directed acyclic graph (DAG).

In the BN modeling method, the key design factors are (1)
the estimation of the conditional probability term
P(Ti|Pa(Ti)) – abstractly a score function, where Pa(Ti) are
the parents of gene Ti – and (2) an efficient means of dis-
covering the set Pa(Ti). Both parametric continuous and
non-parametric discrete score functions have been consid-
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ered. The discrete case is common in the literature; relative
gene expression is discretized usually into categorical
increased, decreased, and unchanged values and condi-
tional probability tables (CPT) are constructed from tal-
lied observations of the values among parents and child.
A CPT model can theoretically capture complex relation-
ships among the parents, but this power is usually limited
by the binning of expression values into a few values in
order to achieve adequate conditional density estimates.

Continuous models are attractive because parameters are
estimated from the totality of the data, but computational
efficiency concerns have conventionally limited the class
of models considered to simple linear Gaussian models
with a small number of parameters of the form

Each parent adds an independent contribution to Ti, elim-
inating the potential interacting effects among parents.
But interacting effects can be important under limited cir-
cumstances and we will suggest below a relaxed Gaussian
model that is computationally acceptable.

The major drawback of the BN approach for analyzing
gene expression data alone is that the dependencies
inferred among variables do not necessarily imply causal-
ity. Indeed, while it is possible to determine causality in
some cases [13], in general, for any BN solution there is an
equivalence class represented by a partially directed acy-
clic graph (PDAG) of alternative solutions with different
edge directions that have the same joint probability.

Pe'er, et al [14] describe how to infer causality under cer-
tain gene expression perturbation experiments. (In some
sense, our genotype/expression data sets represent the
ideal randomized perturbation experimental design,
where allelic expression is perturbed by random recombi-
nation.) Inother work, transcription factor binding sites
(either predicted or experimentally determined) have
been added to infer direction of regulation [15,16]. A lim-
itation of these approaches is that strong priors over
allowable structures are implicitly or explicitly applied,
which limits the relationships that may be discovered. For
example, Segal, et al [16] limit their search to downstream
targets of a small set of known transcription factors. How-
ever, gene expression regulation is much more complex,
involving other direct and indirect factors such as post-
translational modification or protein signaling cascades.

(Note that BNs also lack cycles that exist in real biological
networks. This can be overcome using Dynamic Bayesian
Networks [17] when time course data is available, which
is not the case here.)

Previous work
Zhu, et al [18] describes a method to build comprehensive
BN reconstructions of regulatory networks based on gen-
otype/expression data sets. Their work is motivated, as we
are, by the recognition that correlation between genotype
and expression does imply causality. Genotype assign-
ments represent random shuffling during meiosis, so cor-
relations observed must be the effect of causative
polymorphisms. Their approach is to weight the BNs with
priors according to rules regarding the chromosomal posi-
tions of genes and the differences in QTLs between pairs
of genes. A key idea in this work is that related genes will
share multiple QTLs. More recently, the same group has
described a protocol for inferring the causal nature
between two traits – in particular, their method can be
applied to the expression levels of a pair of genes [19]. In
their approach, pairs of traits that share multiple QTLs are
tested for causal orientation based on independence con-
ditioned on the genotypes of the shared QTLs.

Li, et al [20] also addressed this problem by filtering the
set of candidate parent genes of a target gene to only those
genes with coding SNPs located within QTL intervals with
stringent LOD scores. With a much smaller set of possible
model configurations it was possible to exhaustively
search all BN configurations using a score function based
on gene expression alone.

Lastly, in a similar strategy, Bing and Hoeschele [21] rec-
ommend an analysis protocol for genotype/expression
data in which individual genes within a QTL interval are
considered as parents according to their expression corre-
lation to the target gene.

In all of the above cited works, regulatory relationships
are derived roughly according to a two-step process in
which standard QTL interval mapping is first applied –
which serves to filter the set of parent genes – followed by
a selection of regulator-target pairs according to gene
expression correlation or conditional independence tests.
It is conceivable that the interaction between polymor-
phisms in and expression of a regulator may have a signif-
icant effect, not observed by either factor alone. We
propose such a simple, unified model for the scoring of
candidate regulator-target pairs that considers all scenar-
ios of cis- and trans- effects, allowing for interaction
among gene expression and genotype. (Note that we do
not model the interacting effects of multiple QTLs (epista-
sis) [22]. While it has been estimated that at least 14% of
genes are controlled by epistatic effects between two
simultaneous linkages, the ability to detect such pairs in
small sample sets is very limited [23].)
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Results
Function enrichment
As with networks derived from gene expression alone,
connectivity between genes does not necessarily imply
physical interactions. Yvert, et al previously observed that
genes within QTLs of gene expression traits were not
enriched for transcription factors or any other function
[8]. Nevertheless, we wondered whether this lack of func-
tional enrichment was due to the imprecise mapping of
intervals that contain usually tens of candidate genes. We
hypothesized that our QTG mapping method, which
identifies specific candidate genes, might show enrich-
ment for transcription factors or other functional catego-
ries.

To test this hypothesis, we analyzed the yeast set consist-
ing of 6164 gene expression measurements and 2957 gen-
otype markers across 113 matings between two distinct
isogenic strains [5]. We computed the pairwise depend-
ency among all pairs of genes according to the full and
reduced model scores, selecting those pairs with a p <
0.00001 based on exhaustive permutation tests (required
for each pair for the full model and expression reduced-
model). This resulted in 22,923 predicted interacting pairs
yielding a modest false discovery rate of 1.7%. Finally, to
avoid linkage disequilibrium effects, putative cis-trans-act-
ing regulators (using a conventional 0.05 p-value cutoff)
were excluded and regulator-target pairs residing on the
same chromosome were removed. This filtering likely
removed some true pairs, but we chose to favor conserva-
tive selection in order to detect any group-wide trends that
would be obscured by noise from false positives. Our final
set consisted of 4268 pairs.

We then considered the significance of each Gene Ontol-
ogy (GO [24]) category in the "biological process" and

"molecular function" ontologies with respect to the
known GO assignments to the candidate regulators using
the standard hypergeometric distribution test. Unlike pre-
vious reports, we found some highly significant classes
shown in table 1. However, we did not find enrichment
among transcription factors or related activity, in agree-
ment with Yvert, et al [8]. It is interesting that there is
enrichment in many different regulatory and control
related activities, including cell cycle regulation, metabo-
lism, and kinase activity, but most enrichment is for func-
tions and processes related to protein translation.
Ribosomal proteins and related genes are well known to
be highly co-expressed, but this analysis supports the
stronger claim that these genes are auto-regulated to a
high degree [25].

Even though no functional enrichment in transcription
factors was found, we still examined the predicted targets
of transcription factors for evidence of physical interac-
tion. Considering all the predicted targets of each tran-
scription factor that met the selection criteria above, we
searched 500nts upstream of the target for matches to
known binding site motifs (TRANSFAC [26]). We found
no significant enrichment for targets containing known
binding regardless of sequence similarity thresholds. For
example, only 35 of 719 putative targets contained
matches to known binding sites. And of those, only 8 were
known targets of their respective transcription factor regu-
lators.

In a final attempt to recover a bias for transcription fac-
tors, we hypothesized that QTGs associated with multiple
target genes would be enriched for transcription factors.
We extracted those regulators from our set of 4268 pairs
that had ten or more target genes. The set included well
known transcription factors FKH1, FKH2, MSN1, KSP1,

Table 1: Functional enrichment of regulators in GO. The set of GO terms from the "molecular function" (F) and "biological process" 
(P) categories showing significant enrichment among the candidate QTG. Total number of genes in yeast genome is 6164. Total 
number of regulators in filtered set is 823.

# in genome # of regulators P-value GO Type GO ID GO Term

216 50 10-30 F GO:0003735 structural constituent of ribosome
264 57 10-29 P GO:0006412 protein biosynthesis
60 19 10-22 P G0:0006364 rRNA processing
62 19 10-21 P G0:0006365 35S primary transcript processing
46 14 10-16 P G0:0030490 processing of 20S pre-rRNA
39 12 10-14 P G0:0000027 ribosomal large subunit assembly and maintenance
91 19 10-12 P GO:0006468 protein amino acid phosphorylation
145 27 10-12 F G0:0003723 RNA binding
8 5 10-11 P G0:0006109 regulation of carbohydrate metabolism
25 8 10-11 P G0:0000074 regulation of cell cycle
14 6 10-10 P G0:0000183 chromatin silencing at ribosomal DNA
33 9 10-10 F G0:0003899 DNA-directed RNA polymerase activity
53 12 10-10 F G0:0004672 Protein kinase activity
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and ZAP1, but there was no significant enrichment in the
total set for transcriptional regulators. All these observa-
tions further confirm that regulatory behavior captured in
genotype/expression networks is not likely to be physical
interactions, but more complex, indirect relationships as
suggested by the functional enrichment found above.

Robustness
Next we wondered how well a causal relationship could
be inferred when the regulator was part of a multi-factor
regulon. Using the yeast data set of n = 6164 genes, we
simulated an n + 1 target gene according to an additive
model of k = 2 ... 5 regulators, with only one regulator
having genotypic effect. Specifically, we simulated

Tn+1 = β1T1 + ... + βkTk + βk'TkQk + ε

where βk' was set at random values such that the genotypic

effect between the two alleles, (µa - µb)/σ, was uniformly

selected between 0.5 and 3.0. The other β's were selected
from (0,1). Using the QTG trans model we attempted
to recover the causal regulator of the simulated target
among the background of the other n genes. By modifying
the full model threshold for equation 2 we obtained differ-
ent tradeoffs between recall and precision. We compared
this approach to the standard QTL mapping approach and
to a more liberal, but realistic, test in which we defined a
true positive as correctly identifying the interval containing
the regulator (false positives were intervals not containing
the true regulator). We found that our QTG model was suc-
cessful in identifying the correct regulating gene, even for
larger values of n (figure 4). Not surprisingly, conventional
QTL mapping alone, being a function of only the flanking



Table 2: ILV6 targets. The putative targets of a novel regulator gene, ILV6, in the "group 2" loci from [4]. The list includes five 
additional targets not previously identified.

Novel Target Gene QTG Score QTL Score Description

Y YLR040C 49 35 hypothetical protein
Y STE3 43 36 Receptor for a factor receptor, transcribed in alpha cells and required for mating by alpha cells, 

couples to MAP kinase cascade to mediate pheromone response; ligand bound receptors are 
endocytosed and recycled to the plasma membrane; GPCR,

N LEU4 29 7 Alpha-isopropylmalate synthase (2-isopropylmalate synthase); the main isozyme responsible for 
the first step in the leucine biosynthesis pathway

N ILV3 24 7 Dihydroxyacid dehydratase, catalyzes third step in the common pathway leading to 
biosynthesis of branched-chain amino acids

N ILV2 22 7 Acetolactate synthase, catalyses the first common step in isoleucine and valine biosynthesis and 
is the target of several classes of inhibitors, localizes to the mitochondria; expression of the 
gene is under general amino acid control

N SNZ1 20 6 Protein involved in vitamin B6 biosynthesis; member of a stationary phase-induced gene family; 
coregulated with SNO1; interacts with Snolp and with Yhrl98p, perhaps as a multiprotein 
complex containing other Snz and Sno proteins

N ALD5 20 7 Mitochondrial aldehyde dehydrogenase, involved in regulation or biosynthesis of electron 
transport chain components and acetate formation; activated by K+; utilizes NADP+ as the 
preferred coenzyme; constitutively expressed

N BAT1 19 9 Mitochondrial branched-chain amino acid aminotransferase, homolog of murine ECA39; highly 
expressed during logarithmic phase and repressed during stationary phase

N OAC1 19 10 Mitochondrial inner membrane transporter, transports oxaloacetate, sulfate, and thiosulfate; 
member of the mitochondrial carrier family

N YLR089C 18 4 Putative alanine transaminase (glutamic pyruvic transaminase)
N DIC1 18 7 Mitochondrial dicarboxylate carrier, integral membrane protein, catalyzes a dicarboxylate-

phosphate exchange across the inner mitochondrial membrane, transports cytoplasmic 
dicarboxylates into the mitochondrial matrix

N BAP2 17 9 High-affinity leucine permease, functions as a branched-chain amino acid permease involved in 
the uptake of leucine, isoleucine and valine; contains 12 predicted transmembrane domains

N YOR225W 16 10
Y CTF13 15 4 Subunit of the CBF3 complex, which binds to the CDE III element of centromeres, bending the 

DNA upon binding, and may be involved in sister chromatid cohesion during mitosis
Y SN01 15 4 Protein of unconfirmed function, involved in pyridoxine metabolism; expression is induced 

during stationary phase; forms a putative glutamine amidotransferase complex with Snzlp with 
Snolp serving as the glutaminase

N ISU2 14 5 Conserved protein of the mitochondrial matrix, required for synthesis of mitochondrial and 
cytosolic iron-sulfur proteins, performs a scaffolding function in mitochondria during Fe/S 
cluster assembly; isu1 isu2 double mutant is inviable

Y PMI40 9 4 Mannose-6-phosphate isomerase, catalyzes the interconversion of fructose-6-P and mannose-
6-P; required for early steps in protein mannosylation
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markers, failed to accurately predict the precise regulating
gene, but the QTL interval was typically identified with rea-
sonable success in our simulation.

Prediction of novel regulators
We next considered six candidate QTL intervals analyzed
in [4] representing highly pleiotropic loci. The intervals
were each predicted as containing a regulator gene associ-
ated with a large number of target genes, although the pre-
cise gene was unknown. In the paper, a putative gene
within each interval was predicted manually by the
authors according to published gene function annota-
tions of regulator and target genes. For the most part, QTG
analysis was disappointing in these cases; as it turned out,
loci 1 through 5 were coincident with cis-acting QTLs. As
a result, the gene expression of most of the putative regu-
lators are highly linked and the manually predicted genes
are no better fit than the neighboring genes.

However, we predicted a likely alternative regulator for
the second of the six loci. The region on chromosome III
represented a common QTL for 21 genes identified by
Brem, who predicted that LEU2 was the putative regulator
based on its similar function to these 21 target genes. But
we identified ILV6, about 13 kb from LEU2, as the more
likely candidate. ILV6 is the best fit for the full and
reduced models for 12 of the 21 genes with no other can-
didate gene showing significant fit for more than a few tar-
gets. Scanning the genome, we also found an additional
five target genes not previously identified (table 2). This
set of 17 putative targets of ILV6 are significantly enriched
for genes associated with branched chain family amino
acid biosynthesis (p-value 1.8 × 10-8) and related amino
acid metabolism GO terms. Moreover, ILV6 has been
shown through direct assays to be part of the super-path-
way for leucine, isoleucine, and valine as the regulatory
sub-unit of acetolactate synthase [27]. Thus, ILV6 and its
targets are functionally related and it is highly plausible
that modulation of ILV6 directly affects the abundance of
these other genes.

Prediction of novel structure
Finally, we constructed a putative network from the seed
gene, ARN1, as a demonstration of the characteristics of a
regulatory module that might be derived from our mod-
els. Regulatory modules of the iron homeostasis pathway
have been previously constructed from the gene expres-
sion data of Hughes, et al [11,14,28,29].

For the purposes of this work, we consider networks con-
structed simply according to the pairwise relationships;
that is, the network is not a BN, but its edges are derived
from Markov pairs according to our derived score func-
tions. In order to concretely demonstrate the advantage of
incorporating the variation data and compare with a

structure that might be derived from an approach such as
by Pe'er et al, we also constructed a BN from the Markov
Blanket of ARN1 [30]. The BN structure was constructed
using the K2 algorithm on discretized gene expression val-
ues [31].

Most genes in our module reconstruction in figure 5 are
iron homeostasis and many that were found were com-
mon to previous reconstructions based on a different
expression data set. Both the reductive mechanism
directly associated with ARN1 (ARN2, SIT1, FTR1, SMF3,
FITS) and the non-reductive transport (FRE6) mechanism
were implicated in the network. Interestingly, two key
genes in this pathway, FTR1 and FET3, although not
directly linked to ARN1, are both involved in iron uptake
and were found to have significant bi-directional causal-
ity, implying an auto-regulatory mechanism.

Methods
We represent the genotypes and the expression measures
as numeric random variables in a graphical model. In the
general case of QTL interval mapping using sparse marker
data, the genotype at a site of interest is an unknown ran-
dom variable, Qj, dependent on the observed genotypes of
the nearest upstream and downstream flanking markers,
Mj,L,Mj,R. The conditional probability of the unobserved
genotype is a well-known function of the recombination
distances among Qj, and Mj,L,Mj,R [32]. Assuming that
some observed phenotype (here gene expression, Ti,
where i ranges over the number of genes) is dependent on
Qj, then the graphical model is shown in figure 1a. QTL
interval mapping is then the maximum likelihood esti-
mate of each Qj and the selection of those Qj where the log
likelihood exceeds some threshold.

We are concerned with the class of trans-acting regulators
in which the expression of the target is dependent on the
expression of the regulating gene. We consider three sub-
classes of genotypic effect: cis-, trans-, and cis-trans-acting
sites. For example, a variation in the promoter region or 3'
end of the target gene may have a cis-acting effect on the
expression level of the target; a variation in the coding
region of the regulator may have a trans-acting effect,
either directly or indirectly, on the expression of a target
gene, such as through the modification of a DNA-binding
motif in a transcription factor; and variation in or around
the regulator gene may have a cis-acting effect on the reg-
ulator's expression which indirectly affords a trans-acting
effect on the target, i.e. cis-trans. We make no specific
assumptions in our model regarding the precise mecha-
nism of the allelic effect even though it is convenient to
imagine examples of transcription factor binding. Varia-
tion can have direct or indirect effects on transcript abun-
dance through a variety of mechanisms such as protein
levels, RNA degradation rates, splicing, and so on.
Page 6 of 12
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If we consider only the genotype sites at the locations of the
protein-coding genes in a fully annotated genome, then we
can conveniently reference both genotypes and genes with a
common index, i.e. Qi represents the genotype for the gene
i with expression Ti. Figure 1b naturally follows. We refer to
this model as the full QTG model for a single quantitative
trait gene and the process of estimating regulatory genes for
a given target as "QTG mapping". The three genotype sub-
classes are subgraphs of the full model shown in figure 1c–f.

Case 1: trans-acting Regulator
In this paper we address only the trans-acting regulator
sub-class of figure 1d where the target is dependent on
both the genotype and expression of the regulator. It is
important to recognize that this is a biologically reasona-
ble scenario with many relevant examples in the data. For
example, the scatter plots in figure 2 show the relation-
ships among the expression of a target gene and the
expression and genotype of putative regulators. In these
cases only the combination, and sometimes interaction,
of the regulator's genotype and expression can adequately
model the target expression.

Therefore, to consider the possible interactions among
genotype and expression, our full model is

P(Ti|Qj, Tj, θ) = (β0 + β1Tj + β2Qj + β3TjQj, σ)  (1)

where θ is the β and σ model parameters.

As with standard interval mapping, Maximum likelihood
estimation can be achieved using an expectation maximi-
zation (EM) approach in which the genotype, Qj, and the
variables, θ, are alternatively estimated until convergence.
But the advantage of this model over the standard map-
ping and multi-step approaches previously proposed is
that individual loci are automatically mapped in a single
step by simultaneously considering all available evidence.

Note that the strength of the genotypic effect is directly
related to our ability to infer causality. That is, as the con-
tribution of the β2 and β3 terms decreases, our confidence
in the causal direction between genes i and j is reduced.
We can be precise about this directionality by comparing
our model with the simpler model of no genotypic effect
(figure 1f). From equation (1), for each tested gene pair, i
and j, we can determine the strength of a relationship (the
full model score) as

and the directionality (genotype reduced-model score)
according to
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Interacting effectsFigure 2
Interacting effects. Three examples of the combined and interactive effects of the genotype and expression of a regulator 
gene on target gene expression in yeast. X and Y axes are expression of regulator and target, respectively. + and × are the two 
genotypes. Open circles are ambiguous genotypes when flanking markers differ. Regression lines are drawn for expression 
alone (blue) and by genotype (black and green). For the first example, the regulation and target gene expression appear anti-
correlated, but are correlated with respect to genotype. The second example shows the importance of an interacting term to 
capture the change in the slope. The third example shows significant overlap in the range of target expression for the two alle-
les, but a clear separation with respect to regulator expression and genotype.
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Moreover, if the β2 and β3 terms are weak, then it indicates
that the major effect is the QTL interval and so our confi-
dence in the specific regulator gene is correspondingly
weak. Thus, confidence in the gene, Tj, as the actor in the
relationship is found with the expression reduced-model
score

And so a hypothesis of a causal regulator-target relation-
ship requires significant values from the full model and
reduced-model scores (equations 2, 3, and 4). However,
interesting results can be achieved when some, but not all,
scores are significant. For example, assuming that Tj con-
trols Ti, there may be a functional polymorphism in gene
j's sequence, but no observed variation in expression level,
Tj. In that case, the expression reduced-model score will
not be significant and we cannot confidently implicate
gene j versus its nearby linked neighbors. On the other
hand, suppose there is no polymorphism in gene j, but
expression levels Ti and Tj are highly correlated. Then the
genotype reduced-model score will not be significant, but
the expression reduced-model score will be significant. In
such a case, we can infer that a relationship exists between
genes i and j, but cannot make any claim about the type of
relationship, which could be causal in either direction or
driven by a hidden actor.

Cases 2 and 3: cis- and cis-trans-acting Regulators
Since we are interested here in fine mapping, we specifi-
cally avoid in this analysis modeling the cis control of tar-
get or regulator, directly or indirectly, i.e. the cis and cis-
trans models. Such cis effects can be detrimental to fine
mapping because linkage disequilibrium causes tran-

scripts in local regions to be highly correlated. Disam-
biguating among different neighboring genes under cis-
trans control can be accomplished, in principle, as
implied by figure 1e, by conditioning on the genotype,
but we don't pursue that further in this paper. Such a cis-
trans local linkage problem can be framed as a kind of
pleiotropy test and attempts are described elsewhere for
fine mapping in such contexts [19].

Mapping and structure inference
Our model can be used to produce a QTG map (figure 3)
for each target gene. These maps are similar to conven-
tional QTL maps, but differ in that peaks are usually nar-
row (unless confounded by local linkage) and there is no
genome-wide LOD significance threshold. Instead, the
local significance threshold at each test site is subtracted
from the LOD score such that positive values are signifi-
cant.

In addition to basic mapping, the QTG model described
above leads us to propose a seed-based partially directed
graph of regulatory relationships built from confident
Markov pairs, much like the regulatory modules studied
by [14] and others. Deriving such a sub-network is com-
putationally tractable and biologically relevant, since
most biological analysis is concerned with a pathway cen-
tered around a gene of interest. Such a seed-based
approach yields a network of dependent genes as nodes
whose edges are directed when causal influence is signifi-
cant and undirected otherwise (figure 5). (Inferring a
complete network is not reasonable for any single data set
where the perturbations are incomplete and the data is
too sparse. In particular, with genotype/expression data
sets, regardless of the number of matings, without allele-
specific differential expression no characterization of a
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target gene can be inferred. Without polymorphisms in
upstream candidate regulators, no relationships can be
hypothesized.)

Discussion and Conclusion
We proposed an improved, principled method for map-
ping causal loci involved in transcriptional control when
analyzing data sets of whole genome genotype and
expression data. Our "QTG" model is a natural applica-
tion of epistatic models to gene expression, allowing for
interactions among gene expression and genotype. From
a genetics perspective, our model is a more complex scor-
ing function for the identification of a single, causative
gene instead of the conventional multi-gene QTL interval.
And from a bioinformatics perspective, it is an improved
score function for BN regulatory module reconstruction.
Here we considered the simplest question of detecting
relationships between regulator-target pairs, but we plan
to extend this to the construction of Markov blankets.

We only presented results for the sub-model describing
trans-acting genes, but the generality of the QTG model
allows for incorporation of cis-acting effects for targets and
regulators. Of note, when all polymorphic sites are
known, but the haplotype is unknown for any sample, as
is the case when crossing two fully sequenced genomes,
then one may choose the full model or a sub-class of the
full model as appropriate. For example, if there is no pol-
ymorphic sites in the non-coding regions of the target
gene then the cis-acting model parameters can be dropped
since the genotype is likely to be uninfor-mative.

We contrast this work with other related efforts as follows.
First, other integrative work has attempted to incorporate
interactions among variables. For example, Jiang and
Zeng [33] describe a general method to simultaneously fit
multiple effects to a common QTL by introducing multi-
ple dependent variables and leveraging the covariance
structure among them. Such an approach could theoreti-
cally be used to more confidently map pleiotropic loci. In
our method, we instead introduce interactions among
multiple regressors, namely the simultaneous considera-
tion of genotype and expression of a regulator gene. Sec-
ond, methods such as [20] and [21] have attempted to
finely map regulators by first selecting candidate QTLs
and then identifying candidate genes within these QTLs
by expression correlation. Our main contribution is that
we show how to do this simultaneously, and thereby con-
sider the interacting effects that allow for fine mapping.
Lastly, work by Schadt and colleagues infer causality by
applying conditional independence [19] or by placing pri-
ors on causal relationships according to the numbers of
QTLs and the location of the transcripts with respect to
their QTLs [18]. We do not consider conditional inde-
pendence or QTL count arguments, but do consider spe-
cifically the relative location of QTLs and transcripts as in
[18]. The main difference is that we eliminate confound-
ing effects from cis-QTLs and close linkage and that our
score function incorporates interacting effects.

There are significant limitations to our model. With small
sample sizes, many relations will go undetected. Small
sample size also emphasizes linkage effects, which under-
mine our model. Nearby genes may appear to be regula-
tor-target pairs due to close linkage. Relatedly, regulators
that are themselves under cis control have strong linkage
effects on neighboring genes, which makes fine mapping
impossible, as was demonstrated on the Brem candidate
loci. In practice, we recommend excluding candidate reg-
ulator-target pairs sharing the same chromosome and
excluding regulators that are cis-regulated themselves.

Another major source of difficulty is missing (latent) var-
iables. We assume that all expressed transcripts are known
and correctly measured by the mi-croarray. In fact, even in

Multiple regulatorsFigure 4

Multiple regulators. A plot of recall  preci-

sion  for varying full model scores. QTG: our 

model; a positive classification is a regulator whose score 
exceeds the threshold; Multiple plots for QTG are shown for 
k = 2 ... 5 as the number of additional regulators in the regu-
lon, i.e. extra noise terms. QTL: the conventional QTL 
score where a positive is measured as with QTG; QTLI: an 
easier test using the QTL score where a true positive is 
called when the true regulator gene is found within the QTL 
interval.
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yeast, as much as 5% of the proteome is believed to be
unannotated small protein-coding genes [34]. Other non-
coding RNA genes, including miRNAs, are believed to
play a large role in transcriptional regulation. Protein
expression is assumed to correspond to mRNA abun-
dance, but overall correlation has been shown to be only
0.66 between yeast mRNA and protein products [35].
And, of course, the true dynamics of transcriptional con-
trol are rate-based. Latent variables and kinetics can be
included in BN modeling [36], but at the expense of addi-
tional complexity, which requires more samples for
parameter estimation. On the bright side, when variables
are missing from expression data, it has been shown that
predicted network structures usually roughly approximate
the correct solution [37].

With the finer mapping precision of the QTG model and
judicious filtering, we found some functional enrichment
among regulators that had not been observed in previous
reports. However, as was reported elsewhere, we con-
firmed that transcription factors were not among the
enriched functional classes, which indicates the degree of
complexity of transcriptional control even in yeast.
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