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A controversial topic in the recent climate modeling literature is the
fashion in which metastable low-frequency regimes in the atmo-
sphere occur despite nearly Gaussian statistics for these planetary
waves. Here a simple 57-mode paradigm model for such metasta-
ble atmospheric regime behavior is introduced and analyzed
through hidden Markov model (HMM) analysis of the time series
of suitable low-frequency planetary waves. The analysis of this
paradigm model elucidates how statistically significant metastable
regime transitions between blocked and zonal statistical states
occur despite nearly Gaussian behavior in the associated proba-
bility distribution function and without a significant role for the
low-order truncated nonlinear dynamics alone; turbulent backscat-
ter onto the three-dimensional subspace of low-frequency modes
is responsible for these effects. It also is demonstrated that suitable
stochastic mode reduction strategies, which include both aug-
mented cubic nonlinearity and multiplicative noise, are also capa-
ble of capturing the metastable low-frequency regime behavior
through a single stochastic differential equation compared with
the full turbulent chaotic 57-mode model. This feature is attractive
for issues such as long-term weather predictability. Although there
have been many applications of HMM in other sciences, this work
presents a previously undescribed application of HMM analysis
to atmospheric low-frequency variability and points the way
for further applications including their use in extended range
predictability.

hidden Markov models � predictability � stochastic modeling � atmospheric
low-frequency variability

Current evidence utilizing the �50-year observational record
suggests that much of the low-frequency variability of the

Northern Hemisphere midlatitude atmosphere is summarized
through a few teleconnection patterns such as the North Atlantic
Oscillation (NAO) and the Pacific�North American (PNA)
pattern (1, 2). The structure of the low-frequency metastable
regime transitions among these patterns is an issue of central
importance for both enhanced long-range weather prediction
and climate change projection (3, 4). Besides statistical analysis
of the observational record, the main current research tools in
understanding the above issue are comprehensive atmospheric
general circulation models (AGCMs) (refs. 5–8 and references
therein) and multilevel quasi-geostrophic models (9–12), which
faithfully reproduce many features of the midlatitude low-
frequency variability mentioned above.

The statistical observational record from nature necessarily
yields a short time series (1, 2, 13), whereas the time series
generated by the above numerical models can be extremely long
(5–7, 12) or moderate in size (10, 11) according to the resources
available; of course, longer time series yield the opportunity for
more reliable statistical processing of time series. In this context,
a controversy has emerged, which is the central focus of the
present work: On the one hand, statistical processing of data is
often reported as highly non-Gaussian in the probability distri-
bution function (PDF) of the low-frequency planetary wave
patterns with multiple extrema (1, 2, 13). On the other hand, the
PDFs of the planetary waves in the numerical models with long
integration (5–7, 12) are nearly Gaussian without any multiple

extrema even after low-frequency time filtering (5, 6). Starting
with the seminal work of Charney and DeVore (14), low-order
truncated models have been utilized to predict low-frequency
atmospheric regimes as largely dominated by chaotic nonlinear
dynamics among the planetary waves (ref. 3 and references
therein). Despite the above controversy, a large emphasis has
been made on the nonlinear dynamic multimode PDF interpre-
tation of the large-scale circulation (4).

In the present work, a paradigm model is utilized to elucidate
and explain a number of scientific issues in the above controversy
in an unambiguous fashion. The model used here is a simplified
57-mode model for the angular momentum of the atmosphere
(15–19); it has the attractive feature that the low-order truncated
model is exactly the 3D Charney–DeVore model without dissi-
pation and forcing, and the low-frequency planetary wave be-
havior of the 57-mode model resides on the same 3D subspace,
which consists of a mean flow and two topographic Rossby
waves. The nonlinear statistical dynamics produced by turbulent
backscatter on this low-frequency 3D subspace produces time
series for long integrations, which are nearly Gaussian as in the
AGCMs. Thus, the central issue in the above controversy is
exhibited transparently in the above model. The long time series
for the low-frequency variability variables are processed statis-
tically here through a hidden Markov model (HMM) analysis;
the HMM approach utilized here is a scientifically mature
framework to objectively determine simultaneously both the
PDFs and metastable regime transitions in a time series (20–24).
In the last 30 years HMM analysis has been applied widely from
speech recognition (20) to molecular dynamics (24), but this
work presents a previously undescribed application of the HMM
technique to problems in atmospheric science. Of course, there
has been the recent use of other interesting statistical approaches
to determine the PDFs of low-frequency variability (2, 6, 11, 25)
or given these PDFs the low-frequency regime transitions (11,
26). However, the HMM statistical approach is the only one
utilized so far that determines the PDFs and low-frequency
regime transitions simultaneously and objectively from the ob-
served time series, with even an objective optimal path.

In outline, the remainder of the work begins with the basic
features in the paradigm model and various applications of the
HMM analysis to time series in the model. Key issues in the
above controversy are elucidated and explained in the paradigm
model along the way. The final section deals with the important
practical topic of reduced low-order stochastic modeling (5, 6, 15,
16) and the capability of such procedures to capture both
nonlinear statistical dynamics and low-frequency metastable
regime behavior simultaneously with highly reduced dynamics.

The Paradigm Model
The barotropic quasi-geostrophic equations with a large-scale
zonal mean flow U on a 2� � 2� periodic domain are given by
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where q is the potential vorticity, U is the large-scale zonal mean
flow, � is the streamfunction, and h is the topography. In Eq. 1,
the mean flow changes in time through the topographic stress;
this effect is the analogue for periodic geometry of the change
in time of angular momentum due to mountain torque in
spherical geometry (15–17). Here, as in ref. 16, single-mode,
large-scale topography is utilized of the form h(x, y) � h0[cos(x)
� sin(x)]. Substituting the special 3-mode truncated form

��x, y, t� � a�t� sin�x� � b� t� cos�x� , [2a]

h�x, y� � H�sin�x� � cos�x�� , [2b]

yields an exact nonlinear solution of Eq. 1, provided U, a, and
b satisfy

ȧ � 	UH � �U � ��b , [3a]

ḃ � UH � �U � ��a, [3b]

U̇ �
H
2

�a � b�. [3c]

It is easy to show that the above equations, after a 45° rotation
of a and b, are identical to the equations of Charney and DeVore
(14) for nonlinear regime behavior without dissipation and
forcing; the integrable phase portrait of solutions of Eq. 3 has
either one stable equilibrium or two stable and one unstable
equilibrium (19). From Eqs. 2 and 3, U is the amplitude of the
zonal mean flow, while a and b are amplitudes of the topographic
Rossby waves. The same spectral truncated 57-mode version of
the model in Eq. 1 with a magnitude of topography of h0 � 1.06,
with all parameter values corresponding to case c in table 5 and
figures 12 and 13 from ref. 16 was integrated numerically in a
fully turbulent statistical steady state for the long time of 500,000
time units with a time step 2.5 � 10	3 after a spin-up time of
5,000 time units; a long time series sampled every 0.25 time units
is utilized in the HMM statistical analysis below. As already
reported in ref. 16, most of the statistical mean energy as well as
the longest correlation times are concentrated in the zonal mean
flow U, and the large-scale topographic Rossby waves with
amplitudes denoted by a � ��10 and b � ��10. Thus, these three
wave patterns are the analogue of the low-frequency planetary
waves in the paradigm model.

As depicted in Figs. 1 and 2a, the PDF for U and the joint PDF
for U and a � ��10 are clearly quasi-Gaussian without any
discernible multimode peaks; the same behavior is satisfied for
all the other joint PDFs for the 3D subspace that are not
displayed here. Clearly, all of these features in the paradigm
model transparently mimic the low-frequency statistical behav-
ior of the more comprehensive numerical models when inte-
grated sufficiently long in time (5–7, 12). To compare this
statistical behavior with the nonlinear dynamical behavior of the
three-mode truncated model in Eqs. 2 and 3 the steady states of
the dynamical system in Eq. 3 are evaluated at the mean energy
value in these three modes from the full 57-mode system; in this
regime, there is only one single stable equilibrium of the
truncated system in Eq. 3 and its projection on the U, ��10
subspace is presented in Fig. 2. Clearly, this steady state is distant
from the unique PDF maximum and apparently plays no active

role in the fully turbulent statistical dynamics of the 57-mode
model. As already mentioned above, the equilibrium solutions
are for the inviscid case and therefore are different from the
dissipative solutions of the original Charney–DeVore model,
which includes form-drag.

All of the above facts demonstrate that the 57-mode model for
Eq. 1 is an excellent paradigm model for elucidating the scientific
issues in the controversy described in the introduction. An
objective analysis of the time series for U, a, and b through HMM
analysis is developed next.

HMMs
In a HMM, a given observation sequence Y � Y1, . . . , YT is
explained in terms of a hidden Markov chain X. The Markov
chain X has N hidden (i.e., not explicitly observed) states; over
time, the chain switches between these N states according to a
stochastic matrix A. Each hidden state has an associated output
probability distribution Bn for the observed variable Y; distri-
butions of different states can be overlapping (i.e., Bn � Bm 

� with n 
 m). We shall identify atmospheric flow regimes with
hidden states that are metastable (i.e., persistent). In this section,
we briefly describe HMMs and apply them to the 57-mode model
data in the next section.

The conditional independence relations between X and Y are
defined by the factorization

P�X1 , . . . , XT , Y1 , . . . , YT�

� P�X1�P�Y1�X1� �
t�2

T

P�Xt�Xt	1�P�Yt�Xt�. [4]

A HMM is defined by the following components:

Y N hidden states S � s1, s2, . . . , sN,
Y The observation space V � �d,
Y A (N � N) stochastic transition matrix A � (aij),
Y A stochastic vector that describes the initial state distribution

�(1) � (�1
(1), . . . , �N

(1)), and
Y Probability distributions Bn, n � 1, . . . , N on V.

Since S and V are already implicitly defined, the short-hand
notation � � (A, B, �(1)) is used for the model. The tuple (A,
�(1)) defines the hidden Markov chain X, and the Bn values are

Fig. 1. Climatological marginal PDF of U (solid line) and weighted condi-
tional PDFs of hidden states 1 (dashed line) and 2 (dashed–dotted line).
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output distributions conditioned on the hidden state, i.e.,
P(Yt�Xt � sn) � Bn � N(	n, �n).

We are interested in interpreting a d-dimensional observation
sequence Y by a HMM specified by a fixed number of hidden
states N and multivariate normal distributions Bn, n � 1, . . . ,
N. For the identification of the N2 � N � Nd � Nd2 parameters,
a maximum likelihood approach is used based on the likelihood
L(��Y). The factorization (Eq. 4) of the joint probability distri-
bution allows for an efficient HMM analysis of Y via the
Expectation-Maximization (EM) and Viterbi algorithms.

EM Algorithm. The EM algorithm is used to fit the HMM
parameters to Y. It locally maximizes L(��Y) by iterating a fully
specified initial model �(1). Typically, the initial model is set up
with equidistributed or random parameters that match the range
of Y. A stopping criterion for the iteration is

�ln L�� �j��Y� � ln L�� �j	1��Y� � 
 � , [5]

for some threshold � (� � 0.1 here). There is no guarantee to
converge to a global maximum in L, nor can it be checked from
the iteration alone how close one gets to a global maximum. It
is good practice to start EM with different initial models to
compare their likelihood and check if they converge to the same
or similar �*.

Viterbi Algorithm. For given Y and �, the Viterbi algorithm
computes the most probable hidden state sequence Q* �
q1, . . . , qT, the Viterbi path, which is defined as

Q* � arg max
Q

P�Q �Y , �� . [6]

See refs. 20–24 for more details regarding the HMM algorithm
described above and used below.

HMM Analysis for Metastable Regimes
As reported in figure 12c of ref. 16, the variable with the longest
correlation time is the zonal mean flow U. First, the HMM
analysis is applied to every 1.25 time units to decorrelate the
observation sequence sufficiently to better reflect an indepen-
dent output behavior within each hidden state; there are still 4 �
105 time units in the basic times series. Next, the HMM algorithm
is applied with a mixture of two Gaussians for the observed data,
i.e., N � 2 hidden states in HMM. In this situation, the EM
algorithm converges after 26 steps to

A0.2 � �0.985 0.015
0.016 0.984�, [7a]

B1 � N�	0.035, 0.304� , B2 � N�	0.789, 0.119�

[7b]

eigenvalues of A0.2:�1�A0.2� � 1, �2�A0.2� � 0.969

[7c]

invariant distribution of A0.2: �0.529, 0.471� . [7d]

The fifth root (every fifth output sample has been used for
HMM analysis) of the transition matrix A0.2 reflects normaliza-
tion back to the basic sampled time unit, 0.25, of the original
system. According to general theory, the unit eigenvalue is
associated with the invariant measure, and the value near one,
0.969, for the second eigenvalue indicates the metastability of
both states; this is also reflected in the mean residence times of
20 and 15 time units for hidden state 1 and 2, respectively. These
mean residence times are much longer than the correlation time
of U of �5 time units. Also note that the two Gaussian mixture
distributions have substantial overlap as reported in Eq. 7 and
depicted in Fig. 1. To check robustness of the results, the original
HMM analysis is repeated 10 times by chopping up the original
time series into 10 equal nonoverlapping pieces; the resulting
analysis is remarkable similar with �2 � 0.969 
 0.002 in all 10
cases.

Next, the same time series is analyzed by HMM with four
hidden states and yields the following results

�0.2 � �
0.817 0.0 0.0 0.198
0.0 0.966 0.037 0.0
0.0 0.013 0.953 0.039
0.069 0.0 0.035 0.897

�, [8a]

B1 � N�0.597, 0.143�, B2 � N�	1.064, 0.055� , [8b]

B3 � N�	0.690, 0.106� , B4 � N�	0.254, 0.169�

[8c]

eigenvalues of A0.2:�1�A0.2� � 1.0, �2�A0.2� � 0.972,

[8d]

�3�A0.2� � 0.930, �4�A0.2� � 0.731 [8e]

invariant distribution of A0.2: �0.137, 0.125, 0.345, 0.393� .

[8f]

Note that there is a pronounced spectral gap between the
fourth eigenvalue in Eq. 8e and the others, indicative of meta-
stability. We claim that the metastable behavior of the four-

Fig. 2. Joint PDFs. (a) Climatology. (b) Gaussian PDF of hidden state 1. (c) Gaussian PDF of hidden state 2. The dot denotes the single stable equilibrium state.
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hidden-state model is well approximated by the two-state model
reported in Eq. 7 in the sense that states 1 and 4 lumped (added)
together from Eq. 8 approximate state 1 in Eq. 7 while states 2
and 3 lumped together approximate state 2 in Eq. 7 (see ref. 24
for more details). First, note that this is true approximately for
the invariant distribution in Eq. 8 lumped by the recipe com-
pared with the invariant distribution in Eq. 7. Also, the second
metastable eigenvalue from Eq. 8, �2 � 0.972, is very close to the
metastable eigenvalue �2 � 0.969 from Eq. 7.

All these results illustrate that the HMM analysis identifies
two hidden states, which provide an excellent description of the
metastable regime behavior of the paradigm model. Moreover,
the third eigenvalue of Eq. 8 gives rise to further substructure
and would lead to a decomposition of the lumped states 2 and
3, which, however, is less metastable. Furthermore, the substruc-
ture yields two phase-shifted zonal f low states with similar
structure as hidden state 2 in Fig. 3b.

Next, the Viterbi path, the path obtained by assigning each
data point to a hidden state, is utilized to supply a physical
interpretation of the metastable dynamics. The velocity field
conditioned on the Viterbi path of the HMM analysis for U is
reported in Fig. 3. Hidden state 1 is clearly a state of topograph-
ically blocked flow, whereas hidden state 2 is clearly a state of
enhanced stronger westerly zonal f low. The metastability illus-
trated by the Viterbi path is compared with the actual time series
for U over a rather short, randomly selected time interval in Fig.
4 to illustrate the coarse-grained significance of the Viterbi path
for the time series.

The present HMM analysis establishes unambiguously in the
paradigm model that physically reasonable metastable regime
transitions between blocked and zonal f lows occur in a system
with nearly Gaussian PDFs. In the paradigm model there is
substantial overlap in the two-state Gaussian mixture distribu-
tions, similar to what occurs in the AGCMs (6).

Finally, to gain further confidence in the metastability results
reported in Eq. 7, we take the same observation sequence but
randomly permute the members before applying the two-state
HMM analysis. The algorithm after 116 iterations yields the
results

A � �0.494 0.506
0.498 0.502�, [9a]

B1 � N�0.006, 0.303�, B2 � N�	0.778, 0.107� [9b]

eigenvalues of A:�1�A� � 1, �2�A� � 	0.00031.

[9c]

Note that the normal distributions in Eq. 9 are nearly identical
to those in Eq. 7 because the PDF is approximated well, yet the
metastability in the hidden state Markov model has disappeared
completely in the randomly shuffled case with second eigenvalue
essentially zero with high precision.

Next, results are reported briefly for the HMM analysis
applied to 2D time series in the subspace spanned by the
low-frequency planetary waves, U, ��10, and ��10. In these cases
the HMM analysis yields

Y U and ��10

A0.2 � �0.985 0.015
0.015 0.985�, [10a]

eigenvalues of A0.2:�1�A0.2� � 1, �2�A0.2� � 0.970,

[10b]

Y U and ��10

A0.2 � �0.985 0.015
0.015 0.985�, [10c]

eigenvalues of A0.2:�1�A0.2� � 1, �2�A0.2� � 0.970,

[10d]

Y U and �(��10)2 � (��10)2

A0.2 � �0.985 0.015
0.016 0.984�, [10e]

Fig. 3. Velocity field conditioned on the Viterbi path of a HMM analysis in the subspace U for hidden states 1 (a) and 2 (b). The mountain ridge is at x � 5.

Fig. 4. U (Upper) and Viterbi path (Lower) of Eq. 7. For U path black crosses
and red circles denote states that correspond to hidden states 1 and 2,
respectively.
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eigenvalues of A0.2:�1�A0.2� � 1, �2�A0.2� � 0.969.

[10f]

The notable result is the strong stability of the metastable
eigenvalue, �(A0.2), for all three different 2D time series in Eq.
10 as well as the excellent agreement of this eigenvalue with the
two- and four-state hidden models for U alone in Eqs. 7 and 8.
Fig. 2 b and c show the joint PDFs conditioned on hidden states
1 and 2 for the Viterbi path for the 2D subspace spanned by U
and ��10. Clearly there is substantial overlap of the two con-
ditional PDFs in Fig. 2 b and c, which in combination approx-
imate the nearly Gaussian PDF depicted in Fig. 2a in a fashion
like that in the AGCM data (6). Similar to Fig. 3, the hidden state
1 is associated with blocking, whereas hidden state 2 is associated
with strong zonal f low; according to the Markov model in Eq. 10,
the mean residence times in the blocked and unblocked states are
26 and 29 time units, respectively.

All of these results provide unambiguous evidence for the fact
that in the paradigm model, statistically significant metastable
regime transitions between zonal and blocked states occur
despite the nearly Gaussian PDFs that occur in the time series
for the low-frequency variables. Our results imply that there can
be atmospheric regimes without multiple extrema in the corre-
sponding PDFs; thus, the association of regimes with multiple
extrema, an interpretation put forward by refs. 2 and 13 (and
many others), can be misleading. Furthermore, these low-
frequency regimes have significant overlap in their conditional
distributions and have been demonstrated to exhibit very little
relation with the nonlinear dynamics in Eqs. 2 and 3 truncated
to the low-frequency subspace.

Low-Order Stochastic Modeling and Metastable Regimes
A topic of wide current interest (refs. 5, 6, 12, 15, and 16 and
references therein) is the extent to which the nonlinear dynamics
of a low-frequency planetary scale variable such as U can be
approximated by a reduced-order stochastic differential equa-
tion (SDE)

dU � B�U�dt � 	A�U�dW, [11]

where B(U) is the drift coefficient, A(U)�2 � 0 is the diffusion
coefficient, and W is Brownian motion. Reduced-order stochas-
tic models are interesting in answering the extent to which the
turbulent chaotic low-frequency dynamics can be approximated
by simpler closed stochastic models with fewer degrees of
freedom (5, 6, 12); such reduced atmospheric models also have
practical importance for predictability and coupling with the

ocean over longer time scales provided they can successfully
reproduce the low-frequency variability of the full dynamical
model with sufficient accuracy.

The most popular traditional ad hoc regression strategy in the
atmosphere–ocean community involves linear regression fits
where B(U) is linear and A(U) is constant (12, 15); in refs. 15 and
16 an a priori stochastic mode reduction strategy has been
developed and utilized to predict the coefficients B(U) and A(U)
in an a priori fashion for the present 57-mode model as an
application of a general stochastic mode reduction theory. In
particular, the a priori predictions from equations 4.7 and 4.8 in
ref. 16 are an explicit odd nonlinear function for B(U) and an
even nonlinear function for A(U); furthermore, these a priori
predictions were shown to be superior to those obtained through
a purely linear Langevin regression model as regards the cor-
relation functions. This is an example of both multiplicative noise
and nonlinearity governing the reduced-order stochastic dynam-
ics for a low-frequency variable. For the two central issues
mentioned below (Eq. 11), it is of interest to see whether it is
possible to develop a regression fitting strategy for the drift and
diffusion coefficients in Eq. 11 from the time series of U, which
attempts to capture the low-frequency variability in U. Such a
systematic reconstruction method has been developed very
recently (27, 28); it focuses on capturing the correct leading
eigenmodes of the Fokker–Planck equation associated with Eq.
11. Here it is applied with the simplest implementation of equal
relative weights for all eigenvectors and eigenvalues in the cost
function. By comparing the actual correlation function of U from
the 57-mode model with the correlation functions of the SDE
resulting from the approach in refs. 27 and 28 and from the a
priori prediction from ref. 16 it is revealed that both methods
capture the long-term trends in the correlation function for U,
but surprisingly the a priori prediction is a slightly better overall
fit at short time scales (data not shown). The strategy from refs.
27 and 28 recovers the PDF of U in Fig. 1 with high accuracy
(data not shown). The time series for U was broken into 10
nonoverlapping segments, and the drift and diffusion coeffi-
cients for Eq. 11 were determined through the reconstruction
procedure (27, 28). The results for the drift and diffusion
coefficients for these 10 cases are reported in Fig. 5, respectively.
The cubic polynomial nonlinearity for the drift and the quartic
polynomial nonlinearity in the diffusion coefficient from Fig. 5
show very little fluctuation among the 10 nonoverlapping time
series segments and confirm the general form of the a priori
stochastic mode reduction procedure from ref. 16. Furthermore,
these examples together with those in ref. 12 show that it is not
necessarily possible to model the low-frequency variability of

Fig. 5. Reconstructed drift B (a) and diffusion A (b) from time series variable U. The open circles are the result of the reconstruction, carried out 10 times on
10 different (nonoverlapping) segments of the time series. The solid line is the 3rd-degree polynomial (for drift) and 4th-degree polynomial (diffusion) curve
fitted through all the results.
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atmospheric variability by a regression strategy based on qua-
dratic nonlinearity alone, as recently proposed in ref. 29.

A much more subtle question is whether the SDE in Eq. 11
with the coefficient from Fig. 5 also captures the metastable
regime transitions present in the original 57-mode model and
documented in the previous section with reasonable accuracy.
This is a question of central importance for the use of such
models in extended range predictability. To explore this possi-
bility, a two-state HMM analysis is applied to the time series
generated by numerical integration of the SDE in Eq. 11 with the
drift and diffusion shown in Fig. 5 with the same sampling
interval utilized earlier. The results of the HMM analysis are

A0.2 � �0.990 0.010
0.016 0.984�, [12a]

B1 � N�	0.748, 0.086� , B2 � N�0.209, 0.200�

[12b]

eigenvalues of A0.2:�2�A0.2� � 0.9744. [12c]

The metastable eigenvalue �2(A0.2) from Eqs. 12 and 7 are
nearly identical; on the other hand, the Gaussian mixture in the
SDE model as reported in Eq. 12 displays somewhat less overlap
when compared with the two-state HMM analysis of U from the
full 57-mode model in Eq. 7. These are excellent encouraging
new results regarding the capability of the regression fit SDE
from Eq. 11 with the strategy from refs. 27 and 28 to generate

time series that approximate the metastable statistical features
of U from the complex 57-mode model. These results suggest the
possibility that the reduced stochastic model could be used for
long-range predictability studies.

Concluding Discussion
A simple paradigm model for metastable atmospheric regime
behavior has been introduced and analyzed here through HMM
analysis of the time series of suitable low-frequency planetary
waves. The analysis of this model demonstrates how statistically
significant metastable regime transitions between blocked and
unblocked statistical states can occur despite nearly Gaussian
structure for the PDFs of the low-frequency variables. There is
no special significant role here for the low-order truncated
quadratically nonlinear dynamics alone; it is the stochastic
backscatter onto these low-frequency modes that is responsible
for the metastable regime transitions. It also was demonstrated
here that suitable stochastic mode reduction strategies, which
include both augmented cubic nonlinearity and multiplicative
noise, are also capable of capturing the metastable low-
frequency regime behavior through a single SDE compared with
the full turbulent chaotic 57-mode model. This result obviously
has implications for the practical use of reduced stochastic
models in long-range forecasting.
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