
Stochastic models for regulatory networks
of the genetic toggle switch
Tianhai Tian* and Kevin Burrage*

Advanced Computational Modelling Centre, University of Queensland, Brisbane QLD 4072, Australia

Edited by Charles R. Cantor, Sequenom, Inc., San Diego, CA, and approved March 31, 2006 (received for review September 8, 2005)

Bistability arises within a wide range of biological systems from the
� phage switch in bacteria to cellular signal transduction pathways
in mammalian cells. Changes in regulatory mechanisms may result
in genetic switching in a bistable system. Recently, more and more
experimental evidence in the form of bimodal population distri-
butions indicates that noise plays a very important role in the
switching of bistable systems. Although deterministic models have
been used for studying the existence of bistability properties under
various system conditions, these models cannot realize cell-to-cell
fluctuations in genetic switching. However, there is a lag in the
development of stochastic models for studying the impact of noise
in bistable systems because of the lack of detailed knowledge of
biochemical reactions, kinetic rates, and molecular numbers. In this
work, we develop a previously undescribed general technique for
developing quantitative stochastic models for large-scale genetic
regulatory networks by introducing Poisson random variables into
deterministic models described by ordinary differential equations.
Two stochastic models have been proposed for the genetic toggle
switch interfaced with either the SOS signaling pathway or a
quorum-sensing signaling pathway, and we have successfully
realized experimental results showing bimodal population distri-
butions. Because the introduced stochastic models are based on
widely used ordinary differential equation models, the success of
this work suggests that this approach is a very promising one for
studying noise in large-scale genetic regulatory networks.

genetic regulatory network � stochastic modeling �
stochastic simulation � noise

One of the major challenges in systems biology is the
development of quantitative mathematical models for

studying regulatory mechanisms in complex biological systems.
Bistability is a fundamental behavior of biological systems and
has been studied extensively through experiments, theoretical
analysis, and numerical simulations (1–5). A bistable system has
two distinct steady states, and any initial setting of a system state
will eventually lead the system into one of the steady states.
Biological examples of bistable systems include the � phage
lysis–lysogeny switch (6–9), the genetic toggle switch (10–12),
the lactose operon repressor system (13–15), cellular signal
transduction pathways (16–19), and the system of cell-cycle
control (20). In contrast to monostable systems, regulatory
mechanisms are the key in realizing switching of bistable sys-
tems. Regulatory mechanisms in bistable biological systems
include inhibition�activation, positive feedback, double-negative
feedback, and multisite phosphorylation (19). A bistable system
can switch from one steady state to the other by increasing
stimulation or inhibition or by changing other regulatory mech-
anisms. Recent studies through biological experiments have
indicated that noise plays a very important role in the dynamic
behavior of bistable systems. For example, bimodal population
distributions have been observed in the genetic switching of
bistable systems such as the genetic toggle switch and lactose
operon system (10, 11, 15).

Deterministic models have been widely used for analyzing
bistability properties of biological systems in terms of regulatory
mechanisms and kinetic parameters (10, 11, 15, 16, 21). Al-

though bifurcation analysis can clearly indicate the existence of
bistability properties under various system conditions, a deter-
ministic model can only describe the averaged behavior of a
system based on large populations but cannot realize fluctua-
tions of the system behavior in different cells, such as the case
of the bimodal population distributions in bistable systems.
Recently, there has been an accelerating interest in the investi-
gation of the effect of noise in genetic regulations through
stochastic modeling (1, 2, 7–9, 21–27). Stochastic models have
been developed based on detailed knowledge of biochemical
reactions, molecular numbers, and kinetic rates and have real-
ized important characteristics of biological systems in genetic
switching of the � phage lysis-lysogeny system and in robustness
of circadian rhythms. However, data availability and regulatory
information usually cannot provide a comprehensive picture of
biological regulations, and although a number of methods have
been proposed for the study of noise in large-scale genetic
regulatory networks, such as stochastic Boolean models (28, 29)
and probabilistic hybrid approach (30), there is not a realistic,
common approach for studying kinetic dynamics of large-scale
genetic regulatory networks in a stochastic setting.

Here we introduce a previously undescribed general technique
for the development of quantitative stochastic models based on
widely used deterministic ordinary differential equation (ODE)
models. Instead of studying noise from detailed information of
biochemical reactions, we will develop stochastic models by using
macroscopic variables at some intermediate levels. Based on
recent progress in stochastic simulation, the key idea is to use
Poisson random variables to represent chance events in protein
synthesis, degradation, molecular diffusion, and other biological
processes in genetic regulatory networks. The proposed tech-
nique is also consistent with the stochastic model in ref. 27 where
Poisson random variables have been used for realizing the
chance events in transcription and translation.

We demonstrate the power of this technique by analyzing the
stochastic behavior of the genetic toggle switch interfaced with
either the SOS signal pathway or the quorum-sensing signal
pathway. The genetic toggle switch, which is the first engineered
switching network implemented on plasmids in Escherichia coli
(10, 11) and in mammalian cells (12), is a robust bistable system
comprising two genes and regulated by a double-negative feed-
back loop. Although the noise-induced transitions between the
steady states are rare (11), transitions can be induced by a signal
such as the SOS or the quorum-sensing signal pathways, and
noise has significant impact on the dynamic behavior of the
bistable systems in transitions. Based on successful numerical
realization of experimental results showing bimodal population
distributions, insights are obtained for the role of noise in the
transitions of the genetic toggle switches.
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Discussion
In this work, we have discussed the development of stochastic
models based on widely used deterministic ODE models with
macromolecular variables. The motivation is to study the stochastic
dynamics of biological systems when the detailed information of
biochemical reactions is not available. The theoretical background
of this approach comes from the �-leap methods that link the
stochastic simulation of biochemical reaction systems to the Euler
method for solving ODEs via the mean. Compared with probabi-
listic Boolean models and hybrid models, this approach is one step
further toward the quantitative descriptions of the stochastic dy-
namics of biological systems. In addition, this approach gives an
appropriate technique for introducing noise into deterministic
models to study robustness properties (sensitivity) of deterministic
models. We have proposed two stochastic models that have been
used to realize experimental results with bimodal population dis-
tributions for the toggle switch system that is interfaced with either
the SOS or the quorum-sensing signaling pathway.

Two mechanisms were adopted in experiments to realize switch-
ing in the genetic toggle switch: to decrease high protein expression
level by introducing the SOS signaling pathway or to increase the
low protein expression level by introducing the quorum-sensing
signaling pathway. In both cases, the induction, either by the
activation of protein RecA or the expression of LacR from the
sensor plasmid, will shift the system from one of the steady states
to an intermediate state. In deterministic simulations, the system
just stays at these intermediate states, and no switching occurs at all.
However, intrinsic noise in stochastic simulations can switch the
system from the intermediate state to the other steady state.
Different intermediate states, which are determined by different
strengths of the induction, will lead to different probabilities of the
transitions between the two steady states. Simulation results predict
the ultrasensitive response of the genetic switching in the system of
the genetic toggle switch that is interfaced with either the SOS or
a quorum-sensing signaling pathway. Two implementations, in
which cell volume is either a constant or a function of time (see
Supporting Text and Figs. 7–10, which are published as supporting
information on the PNAS web site), make strikingly similar pre-
dictions for the ultrasensitive response of the genetic switching.
However, it is impossible for intrinsic noise in numerical simulations
to switch the system from one steady state to the other if the system
stays in one of the steady states. These simulation results are
consistent with experimental observations, namely that the genetic
toggle switch is a robust bistable system and that noise-induced
transitions are rare (10, 11).

There are a few ways that external noise can be added to our
modeling framework. We note that if the numbers of molecules are
relatively large, then we can adopt the Langevin approach, which
gives a stochastic differential equation, and then represent external
noise effects by the addition of simple scaled noise processes such
as additive noise or multiplicative noise based on Wiener processes
(9, 21). An alternative approach is to maintain the discrete nature
and allow some of the key elements to be perturbed by external
noise. We can assume that some parameters such as the plasmid
copy numbers are fixed in each cell but can vary from cell to cell
within a certain distribution, and we can use stochastic reaction
rates to represent external noise (31). Or we can assume that
external noise can affect key regulatory processes, so that they only
execute faithfully some percentage of the time. We then could
investigate switching behavior as a function of this percentage and
compare experimentally. These issues are beyond the scope of this
work, but it would be interesting to see how much external noise is
needed to cause transitions and relate to experimental results.

Methods
The proposed modeling technique is based on the Poisson �-leap
method (32) that can be regarded as a bridge linking deterministic

and stochastic models. This method was designed to improve the
computational efficiency of the stochastic simulation algorithm, a
pioneering work of Gillespie (33) for simulating the evolution of
molecular numbers in a well stirred biochemical reaction system.
Here, it is assumed that a well stirred biochemical reaction system
contains N molecular species {S1, . . . , SN} with number Xi(t) of the
species Si at time t. These species of molecules chemically interact
inside a volume � at a constant temperature through reaction
channels {R1, . . . , RM}. For each reaction Rj(j � 1, . . . , M), a
propensity function aj(x) is defined in a given state X(t) �
(X1(t), . . . , XN(t))T � x, and aj(x)dt represents the probability that
one reaction Rj will occur inside � in the infinitesimal time interval
[t, t � dt). In addition, a state change vector �j is defined to
characterize reaction channel Rj. The element �ij of �j represents the
change in the number of species Si due to reaction Rj.

The stochastic simulation algorithm is a statistically exact
procedure for generating the time and index of the next occur-
ring reaction in accordance with the current values of the
propensity functions. However, the bottleneck in the application
of this method is the large computing time because of the
possibility of having very small stepsizes. In the Poisson �-leap
method, it is assumed that there are a number of reactions firing
in a relatively larger time interval [t, t � �). The reaction number
of channel Rj is a sample value generated from a Poisson random
variable P(aj(x)�) with mean aj(x)� (32). After generating a
sample value for each reaction channel, the system is updated by

x� t � �� � x� t� � �
j�1

M

vjP�aj�x��� .

We can find the relationship between a stochastic model,
simulated by the Poisson �-leap method, with the corresponding
deterministic ODE model simulated by the Euler method.
Consider a simple system with two reactions, given by

R1: S1 � S2O¡
c1

S3,

R2: S3O¡
c2

S4.

By using the Poisson �-leap method, the number of S3 molecules
within the time interval [t, t � �) is updated by

x3�t � �� � x3�t� � P�c1x1�t�x2�t��� � P�c2x3�t���.

The mean x� i (� E(xi)) of molecular numbers in the above Poisson
�-leap method can be obtained by the Euler method for solving
the ODE with respect to x�3, given by

dx�3

dt
� c1x�1x�2 � c2x�3,

namely, x�3(t � �) � x�3(t) � �[c1x�1(t)x�2(t) � c2x�3(t)] (assuming
independence of x1 and x2).

A further example is the enzymatic reaction

E � S -|0
k1

k�1

ESO¡
k2

Product � E,

with enzyme E and substrate S. The quasi-steady-state assump-
tion can be applied to approximate the concentration of the
enzyme–substrate complex ES under certain conditions. Then
the three reactions in this enzymatic reaction can be simplified
into one single reaction
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S ¡

c
Product, [1]

where c � Vmax�(Km � s), Vmax � k2(E � ES) and Km � (k�1 �
k2)�k1, and the stochastic simulation algorithm (SSA) was ap-
plied to simulate this simplified reaction (34). Applying the
Poisson �-leap method to the one single reaction in Eq. 1, the
system is updated by

s�t � �� � s�t� � P� Vmax

Km � s� t�
s� t��� . [2]

If the dynamics of the enzymatic reaction is described by an
equation with the Michaelis–Menten function, given by

ds�
dt

� �
Vmax

Km � s�
s� ,

the mean s� of the substrate number obtained by the Poisson
�-leap method in Eq. 2 is well approximated by the Euler method
for solving the above differential equation.

These two examples indicate that we can construct stochastic
models for biochemical reaction systems from well defined
deterministic ODE models. Each item in the deterministic
model for a biological process can be replaced by a Poisson
random variable. Consider a system containing N species and
described by the following deterministic model:

dx� i

dt
� fi�x�1, . . . , x�N� � gi�x�1, . . . , x�N�, i � 1, . . . , N,

where fi(x�1, . . . , x�N) and gi(x�1, . . . , x�N) represent the increase and
decrease processes in the value x� i of species Si, respectively. Here
x� i normally represents the concentration of species Si, whereas in
stochastic models we use xi to represent the molecular number
of species Si. It is assumed that the increase and decrease of the
molecular number xi in a time interval [t, t � �) are samples
of the Poisson random variables with mean fi(x1, . . . , xN)� and
gi(x1, . . . , xN)�, respectively, and the system is updated by

xi�t � �� � xi�t� � P�fi�x1�t�, . . . , xN�t����

� P�gi�x1�t�, . . . , xN�t����.

Note that Poisson random variables in the above model can be
approximated by binomial random variables to avoid negative
molecular numbers in simulations and to improve the compu-
tational efficiency (35).

If the increase process fi(x) � fi(x1, . . . , xN) contains a num-
ber of macroscopic reactions, so that fi(x) can be written as fi(x) �
fi1(x) � � � � � fik(x) [here fij(x) � 0 represents a process in which
species Si is involved], then the Poisson random variable P( fi(x)�)
can be replaced by P( fi1(x)�) � � � � � P( fik(x)�). This replacement
is valid because the sum of two Poisson random variables P(�1) and
P(�2) is also Poisson P(�1 � �2). Similar considerations can be
applied to the decrease process gi(x1, . . . , xN).

We reemphasize that, although our computational method is
based on the existing Poisson �-leap method of Gillespie (32), the
modeling insight is that we do not have to go back to detailed
first-principle biochemical reactions to develop stochastic models.
Rather, we can take existing robust ODE models that may encap-
sulate detailed chemical kinetics by various Hill functions and
quasi-steady-state assumptions and apply the Poisson �-leap
method in the way described. This approach is not purely compu-
tational but gives a general methodology for introducing intrinsic
noise into robust deterministic models in a very simple manner.

Toggle Switch with the SOS Pathway. The genetic toggle switches
consist of two genes, lacI and � cI, that encode the transcriptional
regulator proteins LacR and � CI, respectively (10, 11). In Fig.
1, the lacI gene is expressed from the promoter PL that is
repressed by � CI, whereas the � cI gene is expressed from the
promoter Ptrc that is repressed by LacR. This system has two
distinct bistable states. The expression of lacI is low when � cI
has high expression level, or vice versa. Transitions between the
steady states can be induced by a signal that temporarily moves
the system out of the bistable region.

To evaluate the ability of the genetic toggle switch in respond-
ing to the activation of the SOS pathway, E. coli cells were
exposed to various concentrations of mitomycin C (MMC). The
application of MMC causes DNA damage that leads to the
activation of protein RecA. Activated RecA cleaves the � CI
repressor protein, resulting in the increase of the expression of
gene lacI. Changes in gene expression levels will create an
environment for cells to transfer from one steady state with high
� cI expression level to the other steady state with high lacI
expression level. Transitions between the steady states were
measured by the quantitative GFP expression in single cells 3–6
h after the exposure of cells to various concentrations of MMC
for 15 h (11). In the absence of MMC, all cells exhibited little or
no GFP expression. Nearly all of the cells expressed GFP after
treatment with 500 ng�ml MMC. Bimodal population distribu-
tions were observed at intermediate MMC concentrations for
the cell numbers with different GFP expression levels.

A deterministic model has been proposed for studying the
existence of bistability properties of the genetic toggle switch
(10, 11). Although this deterministic model can realize two
distinct steady states and genetic switching, it cannot realize
experimental results with different genetic switching in different
cells under the same experimental conditions. Based on this
deterministic model, we propose a stochastic model to realize
experimental results with bimodal population distributions with
regard to the expression levels of LacR. The system is updated
by the generated Poisson samples, given by

u�t � �� � u�t� � P���	1 �

1K1

3

K1
3 � v�t�3���

� P��d1 �
�s

1 � s�u�t���,

v�t � �� � v�t� � P���	2 �

2K2

3

K2
3 � u�t�3��� � P�d2v�t���,

where u and v are molecular numbers of � CI and LacR,
respectively; 	1 and 	1 � 
1 represent the basal and maximal
synthesis rates of � CI, respectively; and 	2 and 	2 � 
2 are the
equivalent parameters for LacR expression. In addition, � is
associated with the copy number of the toggle switch plasmid, s
represents the effect of MMC on the degradation of � CI, and
d2 is the degradation rate of LacR. Reaction data are 	1 � 	2 �
0.2 �M�min�1, 
1 � 
2 � 4 �M�min�1, � � 1, d1 � d2 � 1 min�1,
K1 � K2 � 1 �M, and � � 1 min�1 (11). It has been estimated
that 	500 molecules per cell in E. coli leads to a concentration
of 1 �M (36). The initial molecular numbers are u(0) � 2,125 and

Fig. 1. The genetic toggle switch interfaced with the SOS signaling pathway.
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v(0) � 125 (11). The time unit is selected to be consistent with
that in the model discussed in the next section. We have tested
the kinetic rates in the time unit of hours and also obtained
numerical bimodal population distributions (data not shown).
Different time units in the kinetic rates imply different values of
the degradation parameter s. In addition, it is assumed above
that the volume of the cell is a constant. We discuss another
implementation of this stochastic model in Supporting Text by
considering the processes of cell growth and cell division. Both
implementations make similar predictions of the ultrasensitive
response of the genetic switching in terms of different values of
s in a number of experimental conditions (see Supporting Text
and Figs. 7–10 for details).

As cells were exposed to various concentrations of MMC for
15 h (11), the degradation rate of � CI is d1 � 1 when t � [0, 60]
and t � 960, but d1 � �s�(1 � s) in t � [60, 960]. This large
degradation in deterministic simulations will shift the system
from the steady state to an intermediate state, and genetic
switching will happen only if the concentration of � CI is below
a threshold value. In the deterministic model, there is no
switching for s 
 2.0, but switching can occur for s 
 2.0 (Fig.
2A; s � 1.7). However, the situation with stochastic simulations
is entirely different. Fig. 2 gives two simulations for an unsuc-
cessful transition in Fig. 2B and a successful transition in Fig. 2C
with the same degradation parameter s � 1.7. In both simula-
tions, the decrease of � CI shifts the system from the steady state
with high � CI expression level to an intermediate unstable state
with � CI 	 1,140 and LacR 	 255. Intrinsic noise also may
switch the system from this intermediate unstable state to the
other steady state with � CI 	 130 and LacR 	 2,050. If the
transition between the steady states does not happen during t �
[60, 960], the system will bounce back to the initial steady state.

When a different value of the degradation parameter s is used,
the system will shift from the steady state with high � CI
expression level to an intermediate state with slightly different
gene expression levels. This difference in expression levels does
not have much impact on the dynamic behavior of the system in
deterministic simulations unless the expression of � CI is below
a threshold value for switching. However, the difference in
molecular numbers in stochastic simulations has significant
influence on the system dynamics and can result in different

probabilities for intrinsic noise to switch the system from the
intermediate state to the other steady state. Fig. 2D shows the
percentages of switched cells based on different values of s.
These percentages can be approximated by a Hill function, and
we can use a Hill coefficient 4 to best fit the simulated percent-
ages. The protein number of LacR was measured at t � 1140. We
also have measured the LacR number at subsequent time points,
and there is little change in the percentages of switched cells.
This result is consistent with the experimental observations and
indicates that the genetic toggle switch is a robust bistable
system, so that noise-induced transitions are rare (10, 11).

Fig. 3 gives four bimodal distributions for the number of cells
with different LacR molecular numbers when the degradation
parameter s is 1.3, 1.7, 1.75, and 2, respectively. These simulated
bimodal distributions are compared with experimental results
that are derived from figure 3B in ref. 11 by using the software
IMAGEJ (http:��rsb.info.nih.gov�ij). Qualitative comparisons in
Fig. 3 indicate that simulation results are consistent with exper-
imental results in terms of the percentages of switched cells. We
note, however, that the simulated bimodal distributions are
spiky, whereas the experimental distributions are noisier and
wider. This result may be due to the fact that cell numbers in the
simulations are much smaller than those in experiments or that
there are additional external noise factors.

Toggle Switch with a Quorum-Sensing Signaling Pathway. The sec-
ond stochastic model describes the dynamics of the genetic
toggle switch interfaced with a quorum-sensing signaling path-
way. In this system, acyl-homoserine lactone (AHL) in Gram-
negative bacteria is a signal protein to coordinate cellular
activities in the culture with different cell population densities.
Kobayashi et al. (11) have constructed an engineered gene
network containing three different plasmids, namely a sensor
plasmid containing three genes luxI, luxR, and lacI; the toggle
switch plasmid for the expression of LacR and � CI; and an
output plasmid with the reporter gene gfp. In Fig. 4, protein LuxI
from the sensor plasmid is a synthetase that converts common

Fig. 2. Simulations of the genetic toggle switch interfaced with the SOS
signaling pathway. (A) A deterministic simulation of unsuccessful switching
(s � 1.7). (B) A stochastic simulation of unsuccessful switching based on s � 1.7.
(C) A stochastic simulation of successful switching also based on s � 1.7. (D)
Percentages of switched cells in stochastic simulations based on different
degradation parameter s and percentages obtained by a Hill function p(s) �
1.2364 � (s � s0)4�(0.254 � (s � s0)4) � 100%, where 1.2364 is used to match the
simulated percentage when s � 1.85.

Fig. 3. Comparison of simulation results with experimental observations for
the genetic toggle switch interfaced with the SOS signaling pathway. Num-
bers of cells with different LacR molecular numbers are based on 1,000
simulations, and experimental observations in fluorescence signal are derived
from figure 3B in ref. 11 using the top and right labels. (A) s � 1.3; no cell has
high LacR expression level, and no MMC was applied in experiments. (B) s �
1.7; 35.9% of cells have high LacR expression levels, and 1 ng�ml MMC was
applied. (C) s � 1.75; 67.1% of cells have high LacR expression level, and 10
ng�ml MMC was applied. (D) s � 2.0; all cells have high LacR expression levels,
and 500 ng�ml MMC was applied.
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precusor metabolites into AHL. The signal molecule AHL
diffuses between the culture and cells, results in different
concentrations of AHL in the extracellular culture due to
different cell population densities, and regulates the transcrip-
tion of lacI in the sensor plasmid by the AHL–LuxR dimer. The
expression of LacR in the toggle switch plasmid is negatively
regulated by � CI, whereas the expression of � CI is negatively
regulated by the total LacR expressed from the sensor plasmid
and the toggle switch plasmid. As with the model discussed in the
previous section, the reporter gene gfp is not included in the
mathematical model, and we use the LacR expression levels as
an indicator of the GFP expressions.

A deterministic model is developed first for this system that
contains N cells in the culture. In each cell, we will study the
dynamics of proteins AHL, LacR, and � CI. Because the number
of cells in the culture is very large, two constitutively expressed
genes, luxI and luxR, are excluded in the model for simplicity.
The dynamics in each cell is described by the following system of
ODEs of dimension 4N � 1, given by

dx�1i

dt
� b1 � �1x�e � �1x�1i � d11

x�1i

dx�2i

dt
� �1�b2 � 
1

x�1i
2

K1
2 � x�1i

2 � � d2x�2i

dx�3i

dt
� �2�b3 � 
2

K2
3

K2
3 � x�4i

3 � � d2 x�3i

dx�4i

dt
� �2�b4 � 
3

K3
3

K3
3 � �x�2i � x�3i�

3� � d3 x�4i,

for i � 1, . . . , N, and the dynamics of AHL in the culture is
governed by

dx�e

dt
� �2 �

i�1

N

�x�1i � x�e� � de x�e,

where x�1i and x�e are the concentrations of AHL in the ith cell and
culture, respectively; x�2i and x�3i are the concentrations of LacR that
are expressed from the sensor plasmid and toggle switch plasmid,
respectively; and x�4i is the concentration of � CI. In addition, �1 and
�2 are associated with the copy numbers of the sensor plasmid and
toggle switch plasmid, respectively. The synthesis rate b1 of AHL is
a combination of the expression rate of the housekeeping gene luxI
and the synthesis rate of AHL from LuxI. The expression of lacI in
the sensor plasmid is activated by the AHL–LuxR dimer formed by
two AHL and two LuxR proteins (37). The activated expression of
LacR in the sensor plasmid is realized by a function with Hill
coefficient n � 2. The expression of LacR and � CI in the toggle
switch plasmid follows the same equations as in the model discussed

in the previous section. The expression of � CI is negatively
regulated by the total concentration of LacR (x�2i � x�3i) in each cell.
In addition, the diffusion rates of AHL across the cell membrane
are �1 � ��Vc and �2 � ��Vext. Here � represents the membrane
permease ability of AHL, Vc is the volume of a cell, and Vext is the
total extracellular volume (38).

There is no switching in the deterministic setting (see Fig. 5A).
To realize bimodal population distributions observed experi-
mentally, we introduce Poisson random variables into the de-
terministic model

x1i�t � �� � x1i�t� � P�b1�� � P��1k1x�e�� � P��1k1x�1i��

� P�x1id1��

x2i�t � �� � x2i�t� � P��1�b2 �

1x1i

2

K1
2 � x1i

2 ��� � P�x2id2��

x3i�t � �� � x3i�t� � P��2�b3 �

2K2

3

K2
3 � x4i

3 ��� � P�x3id2��

x4i�t � �� � x4i�t� � P��2�b4 �

3K3

3

K3
3 � �x2i � x3i�

3��� � P�x4id3��

xe�t � �� � xe�t� � �
i�1

N

�P��2k1x�1i�� � P��2k2 x�e��� � P�xede��.

Here xji � xji(t) are molecular numbers, x�e and x�1i are concen-
trations, and k1 (� 500) and k2 (� 500�Vext�Vc) are factors for
calculating molecular numbers from concentrations in cell and
in culture, respectively. Note that the volume factor Vc�Vext
should be considered when calculating the AHL concentration
in the culture. Here the diffusion mechanism is based on the fact
that AHL is freely diffusible across the cell membrane (39).

Kinetic rates are based on those in the model for the genetic
toggle switch, namely b2 � b3 � b4 � 0.2 �M�min�1, 
2 � 
3 � 4
�M�min�1, d2 � d3 � 1 min�1, and K2 � K3 � 1 �M (11). In
experiments, the copy numbers of the sensor, the toggle switch, and
the reporter plasmids are low, medium, and high, respectively (11).
It is assumed that the copy number of the sensor plasmid is half of

Fig. 4. The genetic toggle switch interfaced by a quorum-sensing signaling
pathway.

Fig. 5. Simulations of the genetic toggle switch interfaced by the quorum-
sensing signaling pathway. (A) A deterministic simulation with 3,080 cells. (B)
A stochastic simulation of successful switching with 3,080 cells. (C) A stochastic
simulation of unsuccessful switching with 3,080 cells. (D) Percentages of
switched cells obtained by simulations or from a Hill function p(c) � 1.0232 �
c5�(3,5605 � c5) � 100%, where c is the cell number and 1.0232 is used to
ensure p(7,560) � 100%.
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that of the toggle switch plasmid. Thus, �1 � 0.5 based on �2 � 1.
Because the expression of LacR from the sensor plasmid is deter-
mined by the values of �1b2 and �1
1, different assumptions on the
value of �1 will lead to different values of 
1 to match experimental
results. The AHL degradation rate in the cell and diffusion rate out
of the cell are d1 � 1 min�1 and �1 � 2 min�1 (37). There is a linear
relationship between the absorbance at 600 nm (A600) and cell
number in the culture (40). Cell numbers in the culture are very
large based on the volume of culture (10 �l) in experiments (11).
Here the cell numbers are assumed to be 840 and 7,560 when the
values of A600 are 0.06 and 0.54, respectively, to reduce the
computational time. The volume factor Vext�Vc � 3.5 � 106 is
calculated from the assumed cell numbers and the volume of E. coli

(36). The AHL degradation rate de � 0.01 and synthesis rate b1 �
0.45 �M�min�1 are estimated from simulations so that the AHL
concentrations in the culture are 	20�50 nM, which was indicated
in the experiment of Strain B1 in ref. 11. In addition, 
1 � 0.97 �M
and K1 � 0.11 �M are estimated from simulations so that nearly all
cells have low LacR expression levels when N � 840, and all cells
have high LacR expression levels when N � 7560. The simulation
time is 14 h [the growth time in experiment (11)], and the initial
condition is (x1i, x2i, x3i, x4i, xe)�t�0 � (0, 0, 125, 2125, 0), which is
similar to that in the first model.

Fig. 5A gives a deterministic simulation with 3,080 cells. The
system stays at an intermediate state where both LacR and � CI are
constant. Fig. 5 B and C give two stochastic simulations with cell
number N � 3,080 in the culture for successful and unsuccessful
switching, respectively. In both simulations, the system shifts from
the steady state with high � CI expression level to an intermediate
state because of the negative feedback from LacR that is expressed
from the sensor plasmid. Intrinsic noise in the system then may
switch the system from the intermediate state to the other steady
state with low � CI expression level. Fig. 5D gives the percentages
of switched cells based on different cell numbers in the culture.
These percentages can be approximated by a Hill function, and we
can use a Hill coefficient of 5 to best fit the simulated percentages.
We have used other parameter sets for b1, 
1, and K1, and
simulation results also predicted the ultrasensitive response for the
genetic switching (data not shown).

The expression levels of LacR and � CI are determined by the
cell population density in the culture, and different cell popu-
lation densities will determine different probabilities of genetic
switching. Fig. 6 gives experimental results that are derived from
figure 6B in ref. 11 by using the software IMAGEJ and numerical
bimodal distributions for the numbers of cells with different
molecular numbers of LacR that is expressed from the genetic
toggle switch with different cell population densities. Again,
because the original experimental results are qualitative rather
than quantitative, we can only give a qualitative comparison in
Fig. 6 that indicates the simulation results are consistent with
experimental results in terms of the percentages of switched
cells. As before, the difference between the simulated bimodal
distributions and experimental results may be due to the differ-
ence in cell numbers and some additional external noise factors.
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Fig. 6. Comparisonof simulationresultswithexperimentalobservations for the
genetic toggle switch interfaced by the quorum-sensing signaling pathway.
Numbers of cells with different molecular numbers of LacR are based on simu-
lations with different cell population densities in the culture, and experimental
observations in fluorescence signal are derived from figure 6B in ref. 11 using
the top and right labels. (A) n � 840; only nine cells have high LacR expression
levels, and A600 � 0.06. (B) n � 1,400; 68 cells have high LacR expression levels, and
A600 � 0.10. (C) n � 3,080; 1,042 cells have high LacR expression levels, and A600 �
0.22. (D) n � 7,560; all cells have high LacR expression levels, and A600 � 0.54.
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