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Abstract

Populations may become differentiated from one another as a result of genetic drift. The amounts
and patterns of differentiation at neutral loci are determined by local population sizes, migration rates
among populations, and mutation rates. We provide exact analytical expressions for the mean,
variance, and covariance of a stochastic model for hierarchically structured populations subject to
migration, mutation, and drift. In addition to the expected correlation in allele frequencies among
populations in the same geographical region, we demonstrate that there is a substantial correlation
in allele frequencies among regions at the top level of the hierarchy. We propose a hierarchical
Bayesian model for inference of Wright's F-statistics in a two-level hierarchy in which we estimate
the among-region correlation in allele frequencies by substituting replication across loci for
replication across time. We illustrate the approach through an analysis of human microsatellite data,
we show that approaches ignoring the among region correlation in allele frequencies underestimate
the amount of genetic differentiation among major geographical population groups by approximately
30%, and we discuss the implications of these results for the use and interpretation of F-statistics in
evolutionary studies.
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Sewall Wright pointed out more than 70 years ago that isolated populations tend to diverge
from one another as a result of genetic drift and that the amount and pattern of divergence
among populations reflects the extent of migration between them (Wright 1931). In particular,
individuals belonging to the same population are expected to be more similar to one another
than those belonging to different populations, and individuals from different populations within
the same geographical region are expected to be more similar to one another than are individuals
from different geographical regions. As a result, evolutionary biologists have commonly used
statistics that describe patterns of population differentiation as an indication of the extent to
which populations are genetically isolated from one another. Wright's F-statistics, and statistics
related to them like Nei's G-statistics (Nei 1973), have been the most widely used descriptors
of population differentiation for more than fifty years (Malécot 1948; Wright 1951).
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While F-statistics are intended to measure the amount of differentiation among populations,
they are implicitly based on Wright's island model (Wright 1931), a pseudo-spatial model in
which all populations are equally likely to exchange migrants. Much work in theoretical
population genetics has been directed towards understanding the patterns of genetic
differentiation that arise when more realistic models of migration are incorporated into the
models (e.g., Malécot 1948; Kimura and Weiss 1964; Nei and Feldman 1972; Felsenstein 1975;
Nagylaki 1976; Maruyama 1977; Crow and Aoki 1984; Slatkin 1991; Notohara 1990; Epperson
and Li 1997). Many investigators now calculate pairwise F-statistics to provide an indicator
of the amount of differentiation between those populations (e.g., Dyer and Nason 2004).

Another aspect of Wright's model has been less widely appreciated. His model implies that
allele frequencies among populations at any given point in time are uncorrelated when the
number of populations exchaning genes is very large. As a result, the variance in allele
frequency among contemporaneous populations is equivalent to the variance in allele
frequency within any one population over time. Surprisingly, this result no longer holds when
a small to moderately large number of populations are exchanging genes.

Fu et al. (2003) show that substantial among-population correlations in allele frequency are
expected even for mutation rates as large as 1073 unless more than 100 populations are
exchanging genes. Their results re-emphasize an obervation made by Nei (1973): When a finite
number of populations is involved in gene exchange, the entire set of populations “drifts”
together. The mean allele frequency changes from generation to generation, and the resulting
correlation in allele frequencies among populations may be substantial unless the number of
populations exchanging genes is very large. As a result, the variance in allele frequency among
contemporaneous populations may be substantially smaller than the variance in allele
frequency within any one population over time.

We explore two questions raised by these results: (1) How is the magnitude of among
population correlation affected by hierarchical structure in the migration process? How does
the magnitude of the within region correlation compare with the magnitude of the among region
correlation? By hierarchical structure we mean that there is a higher rate of migration among
populations within a region than among populations in different regions. (2) Given that the
number of populations actually exchanging genes is larger than the number of populations from
which samples are available and is generally unknown, can an approximate estimator that does
not depend on the number of populations provide a reasonable estimate of the expected amount
of differentiation among populations? After exploring these questions, we illustrate the
importance of accounting for among population correlations in estimates of population genetic
structure through analysis of a human population data set (Rosenberg et al. 2002) with a
hierarchical Bayesian model, and we discuss the implications of our results for genetic analyses
of population structure.

PROCESS MODEL RESULTS

Analysis of population genetic data must incorporate two aspects of sampling: the usual
statistical sampling associated with the sampling of alleles or genotypes within populations
and the genetic sampling associated with sampling population allele or genotype frequencies
from an underlying stochastic evolutionary process (see Weir 1996, pp. 15-17 for additional
discussion). We use the modeling framework introduced in Fu et al. (2003) for the stochastic
evolutionary process.

Briefly, we focus on a single locus with A allele types, b 1, b 5, -+, b o, and assume that there
are P populations indexed by i (refer to Table 1 for a summary of notation used in the process
model). Let Vaxa, be a general mutation matrix which has a element, v , the probability of
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mutation from allele type b , to allele type b . Let Mpxp be a general (backward) migration

matrix, i.e., Mii = ™M s the probability that the allele in population i came from population j.
Backward migration rates are generally used for analysis of migration in population genetic
models (see, for example, Nagylaki 1982; Rousset 1999,2001).

A multi-level hierarchy arises naturally when migration occurs more frequently among
populations within the same geographical region than among populations in different
geographical regions. Consider a 2-level hierarchy in which there are S populations nested
within each of k geographical regions (kS = P). Assume that population j in geographical region

(1)
iisofsizeNjj, and letPii be the A x 1 vector of allele frequencies in that population at generation
t. We concatenate the population allele frequency vectors within geographical region i to an

0]
SA x 1 vector P and concatenate the k resulting cluster vectors to a kSA x 1 vector p®. We
define

p=MeV)p” ()

where M © V' denotes the Kronecker product of M and V'. Given N jj, we assume that the

(r+1)
population is diploid (so that the number of allele copies is 2N j;) and that the Pii " are
conditionally independent. Thus,

(t+1) (1)
2Ny ~ M(2N;.pj") @

where M denotes a multinomial distribution.. Through (1) and (2), we pass from p (0 — p*®
(t+1)

Stationary equations for means and covariances

The Markov Chain defined through (1) and (2) has a finite state space. If all entries of V' are
nonzero for some t > 1, then this chain has no absorbing states. In fact, it is aperiodic and
irreducible and thus has a unique stationary distribution (see Ewens 1979 for an introduction
to stationary distributions in population genetic models). The stationary mean vector is
identical in all populations and is given by the unique left eigenvector of V corresponding to
an eigenvalue of 1. The stationary variance-covariance matrix is given by the solution of the
following set of equations:

Zgy = (l - ﬁ) (BZB");; ;i + ﬁ [Diag (u,-j) — u,-ju’,-j]
Zjiy = (BIB)yy @)

where B=M @ V' (see Appendix A for details of the derivation, which follows Fu et al.
2003).

Results for a Finite Island Model

To make further analytical progress we consider a special case of the general structured
migration model presented in the preceding section. The finite island model studied in Fu et
al.(2003) imagined that a single backward migration rate applied to all populations. A natural
generalization isto consider a hierarchical model in which migration occurs among populations
within a single geographical region at the same rate but in which migration occurs among
populations in different geographical regions at a different (and smaller) rate. For notational
simplicity, we consider a 2-level hierarchy in which there are S populations within each of k
geographical regions. We specify the migration matrix, M as follows:
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M M; ... My
M, M, ... M,
M=| . . s
M, M, ... M (4)
where
m| mi
U s S
— mg —
-1 -1
M, = S ' S
o
-1 §-1 -+ Mo )
and
my my ny
Sk-1)  Sk-1) S (k—1)
no o my
S (k-1 S (k-1 o S(k-1
M, = (. ) (. ) . (‘ ) i
nmy my ﬂ;z
Sk-D Sk-D " SG-D (6)

withmg=1-—m4—m, and m 1 > m,. The remainder of the formulation is unchanged.

Lengthy calculations (outlined in Appendix B) provide exact expressions for the stationary
mean vector and for the stationary variances and covariances. To illustrate the properties of
this specialization we consider an example with two alleles and asymmetric mutation.

With two alleles at a locus, the mutation matrix is given by
e ( Vit vi2 )
V21 V22
where v 11 =1 —Vv 1o and vpp = 1 — v »1. This mutation matrix leads to the stationary mean
vector u = (pp, 1 — pp), where pp = vo1/(v12 + v21). In addition,
ﬁl‘p (1 - :“p)
1- (1 - #)5‘2 [(1 —rs — gt rs.k.s) + (rl_s - r}.k.S)pl + rz.kpz]

where 8, =V 11 — V21 = 1 — (v12 + V 1), 62 is the variance in allele frequency within any one
population over time, p; is the allele frequency correlation for populations in the same
geographical region, and p is the allele frequency correlation for populations in different
geographical regions. p; and p, are given by

_ 63(’15 ks )Ilf"‘%(l’%)l 53y
pL = «S-D SE-1)
ol of s B3ks N
3 "ZJ\OV[I—OV(I—T_'IJ\')] N ('"Ls —rlk‘s)rz_,\oﬁ
P2 = S*-1) Stk—1)
where
o s2(1 2k 21 _ s ks _ (5-Da}
c = [1 o, (1 k,l)] [1 0, (1 51 ’2~k)] ST ok
r =2mp— SSTlm%
"k
Nk = 2m2 - mm%
— S—1 2
s = 2Mimy — gg=m;
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In the case where each geographical region contains only a single population, i.e., S = 1, these
results reduce to those presented in Fu et al. (2003) for the finite island model.

Figure 1 illustrates the magnitude of p; and p, for several parameter combinations. Notice that
with mutation rates that may be typical of protein-coding loci (v=5 x 10~7), both the correlation
of allele frequencies among populations within a geographical region, p1, and the correlation
among geographical regions, p,, are very high unless either the number of populations within
each region, S, or the number of regions K is on the order of 200 or more. Moreover, the
correlation decays more slowly as a function of increasing numbers of populations and regions
when migration is common (m 1 = 0.04, m » = 0.01) than when it is rare (m { = 0.008, m , =
0.002). Notice also that the within-region correlation is relatively insensitive to the number of
regions. It depends largely on the number of populations within each region. Similarly, the
among-region correlation depends primarily on the number of regions and less on the number
of populations within regions. Finally, with mutation rates that may be more typical of
microsatellites (v = 0.005) the within-region correlation remains substantial with as many as
40 populations per region and the among-region correlation is small only when migration is
rare (m 1 = 0.008, m » = 0.002).

INTERPRETATION FOR F-STATISICS

In general, the expressions for the stationary variance depend on the stationary mean. We can,

however, calculate a scaled variance,

2
Fo= (T[J(I)

ST
Hp(o (1 - /117(/)) @)

that removes this dependence. In this case F st can be regarded as an intraclass correlation
coefficient (Cockerham 1969; Weir and Cockerham 1984). In fact, Wright (1969, p.294)
defined F g7 as “the correlation between random gametes within populations, relative to
gametes of the total set of populations.” Since it was first introducted by Wright (1951) and
Malécot (1948), F st has been the most widely used statistic for describing hierarchical
structure in genetic data.

For a finite set of populations evolving according to (1) and (2) there are two quantities that
might correspond with (7). (Refer to Table 2 for a summary of notation used in relation to F-

2
statistics.) One of these quantities, which we will denote 6, takes 7 »( to be the allele frequency
variance in a single population across time (or equivalently as the allele frequency variance in
a single population associated with different realizations of the stochastic evolutionary

2
process). The second takes 7 »» to be the allele frequency variance across populations at a
single point in time, i.e.,

k S 2
% 2Py = 1pin) /RS

o(pl.....p0) = =
([7“ Dis ) Hp(ry (1 o ,U[J(I)) ©

koS
= E 1 0)
where /70 = Zizl 1P 168

We use 6 in our notation to emphasize that both quantities treat populations as random effects,
as in Cockerham's random-effects model for 0-statistics (Cockerham, 1969; Weir and
Cockerham, 1984; Weir, 1996; Weir and Hill, 2002). In particular, 6 in our formulation has
precisely the same interpretation as 6 in the Cockerham random-effects model (Weir, personal
communication; Holsinger in press). Moreover, 6 is the parameter most directly related to
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features of the allele frequency distribution associated with the process model described above,
as well to allele frequency distributions arising from the pure isolation model underlying
evolutionary interpretations of Weir and Cockerham's 0-statistics (Weir and Cockerham

1984; Weir 1996; Weir and Hill 2002). Thus, we regard 6 as the quantity that corresponds to
(1) (1)
Wright's F 1. Notice that H(p“, P ) corresponds to a random effects interpretation of

Nei's G g7 (1973).

Estimation of 6 is straightforward. Given a sample of genetic data from some set of populations
2
we estimate ppr) and 7 from the data, and the estimate corresponding to 6 is
=

H( D _ (rp(l)

Hp() (1 _”1’“)). Notice that if the number of populations and population clusters is very
large, then the allele frequency correlations illustrated in Figure 1 are negligible, and

Pi1>---»Pis) (see also Fu et al. 2003). Recalling that k and S in (8) refer to the number
of population clusters and populations among which migration is occurring, not the number of
populations included in the sample, an estimate of 6() might also be regarded as an estimate

(1) (1)
ofg(Pl 1 "l’ks)when p1 and p, are small.

(1) 0]
Estimation ofe(pl 122 Pis ) is less straightforward. Let Num denote the numerator on the right

hand side of (8), and Denom the corresponding denominator. 6(!") = E(Num/Denom) would

- . . e 0( (1) )(f)) . “I
correspond precisely with the definition of “\P11-- -+ is ). To estimate ('), however, would
require knowledge of k and S, and they are generally unknown. An alternative is to estimate

(1) (1)
o(p----- ) with (1) = E(Num)/E(Denom), which is is relatively insensitive to k and S for
moderate values. In fact, we can show that 6(!) — 6(!) in probability as k and S tend to infinity.

. ” . 0( (I) )(1)) . .
Furthermore, by using 80" to estimate P11 *» Pis ), we can provide an approximate

expression for 81 that does not depend on k or S (see equation (10)).

Tables 3 and 4 provide comparisons among 6(, 6() and (") for 2N = {100, 1000}, v =V 15
=V, = {5 % 1073, 5 x 10 6}, and several choices of m 1 and m » with m 1 + m , = 0.05. We
calculate the expectations for 6(!") from simulations using the process model in (1) and (2)

conditional on 0'<(1/&S5) E'ﬂ’g) < 1; efficiency refers to the fraction of simulated samples
satisfying this condition. We calculate 6() and 6(!") from the corresponding analytical
expressions. Notice that 6() can be two orders of magnitude greater than 6(") and (') under
model (1) and (2). Notice also that 61 and (") are quite similar, except when the population
size, N is small. These patterns also hold with larger local population sizes (results not shown).
For large mutation rates (5 x 1073) the differences among (), 6D and (") are fairly small.
For smaller mutation rates (5 x 107%) the differences between 6(!) and 6(!"") are negligible,
except when local populations are small (N = 50), but the differences between either of them
and (") can be substantial. With N =500, k =S =5, m 1 = 0.04, and m » = 0.01, for example,
0N = o0 = 0.01, but 6() = 0.67.

INFERENCE UNDER A HIERARCHICAL BETA MODEL

Results presented in the preceding sections refer to variation at a single locus observed across
time, but as evolutionary biologists we more commonly have samples from several or many
different genetic loci collected from populations at the same time. If we regard the genetic
sample as having been drawn from populations at stationarity with respect to the same
underlying stochastic evolutionary process, then the samples at each locus can be regarded as
(approximately independent) samples from the stationary distribution of this process. In fact,
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even if the populations are not at stationarity it may be reasonable to regard samples from
different loci as (approximately independent) samples from a common underlying process,
provided that the relevant evolutionary parameters (mutation, migration, and population size)
are shared across the loci.

Assuming a common N and m across loci seems reasonable, because these parameters refer to
demographic features of the populations from which the samples are drawn. It may seem
problematic to assume common mutational parameters, but notice that in the example studied
above, the scaled variance and correlations depend only on the total mutation rate, vi; — vy =
1 — (v12 + vp1). Similarly, in a multiallele model, the scaled variance and correlations depend
only on the total mutation rate, provided that all alleles are equally likely to mutate (see
equations (12) and (13) in Fu et al. 2003). Thus, we need not assume a common mutational
bias across loci, only that the total mutation rate at each locus can be regarded as an independent
sample from the same underlying distribution of mutation rates. In short, we propose to
substitute replication across loci for replication across time. Weir (1996, pp. 174-175) justified
bootstrap resampling across loci to obtain the sampling distribution for a method-of-moments
estimate for 0 using a similar argument (see also Weir and Hill 2002).

We assume that our sample consists of data from K population clusters, each of which has
S ¢ populations, k=1, ... , K, and that the genotype of each individual is determined at | loci,
each with two alleles A ; and A 5. Let pjkgx1 denote the allele frequencies of A 4, i.e., p iks is
the allele frequency of A ; in s 1 population of the k ™ population cluster at locusi, i =1, ...,
I;k=1,...,K;s=1,..., S Notice that this structure corresponds to the stochastic evolutionary
process illustrated in our example. Classical results (summarized in Crow and Kimura 1970
and in Ewens 1979) suggest that the stationary distribution of allele frequencies among
populations is well-approximated by a Beta distribution when only two alleles are segregating.
Griffiths (1979; see also Ewens 1979) extends these results to show that the distribution of
allele frequencies is well-approximated by a Dirichlet distribution when mutation is equally
frequency among all alleles at a multi-allelic locus. Moreover, Balding (2003) has shown that
a Dirichlet distribution arises naturally in population genetics whenever alleles are regarded
as exchangeable, regardles of whether the underlying stochastic evolutionary process has
reached stationarity. Several authors have used Beta or Dirichlet distributions to construct
likelihood or Bayesian methods for analysis of genetic structure (e.g., Balding and Nichols
1995; Roeder et al. 1998). Thus, we assume a hierarchical beta model for the allele frequency
distribution:

Pikslix 0 ~ Beta (Y58 ma, 5 (1 - my)),

) -0 1-¢
ﬂiklﬂi’a‘ NBE’G(TRI-, 9—‘(1 _ﬂi)) o

and

i 1-6" 1-0
mim, 8" ~ Beta (—n

1 —
PIITI ”))
It follows that
E (pis) = 7,
% = Var (pis) =n(1 -m {0 + & (1-6")+ 6" (1 - @) (1 - ")},
a2p1 = Cov (piks, Piry) = n (1 =) {0" + & (1 — 6")}

fors#¢,
0?02 = Cov(pits, piwy) =1 (1 —m) 6"

fork #k’and s #s' and
Cov (piks, prrs) = 0
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for all k, k', sand s’ but i # i’. Extension of this modeling framework to multiple alleles per
locus is straightfoward, but tedious (see Holsinger 1999 for an outline of the approach). Fu et
al. (2005) describe an alternative approach with the same variance-covariance properties based
on a mixture of beta random variables. We assume the prior distribution for the parameters is
given by independent uniform densities. Posterior inference is done through Markov Chain
Monte Carlo (MCMC) simulation with the Metropolis-Hastings algorithm (Gilks et al.,
1996).

Fst in the Hierarchical Beta Model

. 9( N (’)) . . -
Natural estimates of 6 and “\P111°>" - - > Pixs) arise from this model. Specifically,
gD = "fm a2

lll’(l)(l_/lp(/]) = a(l-m)
=0+ (1-0)+0 (1= (1-0) |

corresponds directly with the definition of 6 as a function of the temporal mean and variance
in allele frequencies. Notice also that

1-6P=1-6")1-)1 -6

Thus, 6() exhibits the conventional mathematical properties of F-statistics in hierarchically
structured populations (Wright 1969, p. 295; Weir 1996). 6 corresponds to the scaled allele
frequency variance across loci, 6Y to the scaled allele frequency variance across geographic
regions within a locus, and 6X to the scaled allele fregency variance across populations within
a geographic region.
. 9( 0) m) . ) L

An estimate of “\P111° - - - Pis) corresponding to () arises from noticing that as the number
of populations and geographical regions tends to infinity, fori=1, ... , I,

K Si —

E| X X(pus - ﬁ...)2/KS]
o
E[p..(1-p..)]

converges in probability to
g 61— (wip1 + wap)]
1 — 6D (wip1 + wapa)

_ K 2,252 o K
with "1 = Zk:lsk/K § ,Wo=1-wqand §= Zk:lsk/K where the expectation is across
K 2 K —\2 =2
the stochastic evolutionary process. Notice that Zk:lsk - Zk:l(sk - S) +KS .
w 1 tends to 0 as K tends to infinity, provided that there exists ¢ in (0, o) such that

K —\2
Zk:l(sk -S) < € for all K. As a result,

gur  — ¢0(1-py)
1-6Dp,

= +6(1-6) (10)

Thus,

provides a reasonable estimate of E(Num)/E(Denom) when the number of populations and

geographical regions is unknown but large (compare Holsinger in press). Finally,
I K Sk

3 % 3 (pis — P’/ (IKS)

i=lk=1s=1

g — L _
p...(1-"p...)
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where the p jxs are replaced with samples from the posterior distribution and the expectation
is calculated across the joint posterior corresponds directly with the definition of

9( (1 (I)) .

Pine--+»Prs) if K and S  are known. For completeness, we note that
B 0 +6"(1-0"

S+ (1-0)+65 (1) (1 -6)

P1

and
—_ HV
e+ -)+0 (1) (1-6)

P2

(1) (1) )

Decomposition of 0(1’111""’1’1:@

(1) ()
In the formulation just presented 9(1’1 e ’Pms) summarizes the population structure while

ignoring the hierarchy. As is clear from the discussion of (), however, it is natural to consider
the partitioning of variation at each level of the hierarchy. There we pointed out that 6%
corresponds to the scaled allele frequency variance among populations within geographical

regions and 6Y to the scaled allele frequency variance among geographical regions. In this
(1) 0]
section we consider an approach to decomposing ‘9(1’111’ o ’l’ms)_ Specifically, let

&S .
E El ;lsk(Pikai--) /KSI

E[p--(1-p.)]
&0 (p1-p2)
1-6Dp,
&

iy _
gﬁ( =

and

K Sk o —
El P (piks_ﬁik‘)-]/,(s
gur) - _Lisi=t
E E[p...(1-p..)]
_ 0P0-pp
- 1—0(’)/)2
=60 (1-¢),

*

. . . r)
where the expectations are taken across the stochastic evolutionary process. Then ¢ and

() . .
b correspond to the scaled allele frequency variance among contemporeneous geographical
regions and among contemporaneous populations within geographical regions, respectively.
Notice that

QU — gl 4 gl
K E
(1)
Thus, % " and
- (') _ g . . . - .
Specifically, b = isthe proportion of contemporaneous genetic variation attributable to

r . - . . *
6; ) provide a readily interpretable additive decomposition of 6(1),

. . (r) . .
allele frequency differences among regions, and % " is the proportion of contemporaneous
genetic variation attributable to allele frequency differences among populations within regions.
0y and 0y retain the multiplicative relationship with 6™ characteristic of Wright's F-statistics:

1-6" =(1-691-¢).

APPLICATION

Human Population Data

Cann et al.(2002) describe the HGDP-CEPH Human Genome Diversity Cell Line Panel. We
analyze the genetic diversity at 377 autosomal microsatellite loci in 1056 individuals included
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in the panel. These individuals represent 52 worldwide populations, and the genotypes are
derived from those used in a related analysis reported in Rosenberg et al. (2002). Using an
individual-based Bayesian classification algorithm (Pritchard et al. 2000), Rosenberg et al.
(2002) were able to gather the 52 populations into 5 geographically coherent groups. We treat
these groups as geographical regions (K = 5) in our analysis: Eurasia (21 populations, i.e.,
S1=21), Africa (6 populations, i.e., S o = 6), East Asia (18 populations, i.e., S 3 = 18), America
(5 populations, i.e., S 4 = 5) and Oceania (2 populations, i.e., S 5 = 2). To illustrate analysis
within the framework developed above, we designate the most frequent allele type at each
locus as A 1 and group all other allele types into a pseudo-allele type A . Analyses in which
we designated the second most frequent allele type at each locus A ; and grouped the remainder
into a pseudo-allele class produced results concordant with those described below (results not
shown).

Results from analysis of these data are presented in Table 5. To illustrate the effect of ignoring
the region-level allele frequency correlation Table 5 includes estimates from a model in which
we assume independent uniform (0,1) prior distributions for w;. Specifically, the hierarchical
model developed above uses

1-6¢" 1-¢

T

mi|n, 8" ~ Beta a-nf

while the reduced model uses
n; ~ Unif (0,1)

Because the actual number of population clusters and populations is unknown, we present
values for 6(') in which we assume that the actual numbers of population clusters and
populations are equal to those in our sample.

Notice that in the hierarchical model 6(™) = 0.1055 is quite similar to (') = 0.1046, suggesting

that our estimate of o p) is little affected either by uncertainty about the actual
number of population clusters and populations or by approximating E(Num/Denom) by E
(Num)/E(Denom). Similarly, notice that in the reduced model, 6() = p(1™) = 0.1031 is quite
similar to (") = 0.1046 in the hierarchical model. More importantly, notice that () = ("),
because the allele frequency correlation among geographical regions is neglected. As a result,
the estimate of 6() = 0.1031 from the reduced model is about 30% smaller than the estimate
of 6() = 0.1322 in the hierarchical model. Method of moments estimates for the full, multi-
allele data set (reported in Rosenberg et al. 2002) give an estimate quite similar to those reported
here for the variance component among populations within regions: 0.025 versus 6% = 0.0294.
The smaller value reported for the variance component among regions, 0.043 versus 6Y =
0.0784, probably reflects the effect of grouping less frequent alleles into a single pseudo-allele
class.

The discrepancy between estimates of F gt in the hierarchical and reduced models (6() = 0.1322
versus 6(D =0.1031, respectively) illustrates that analyses of F-statistics must either incorporate
among region correlations or interpret the results in terms of differentiation relative to an
unknown set of geographcial covariances (see Weir and Hill 2002 for similar results in an
analysis of variance context). In these data, the price for ignoring the population covariances
is a 30% underestimate of F g7 . In a similar analysis of data from Platanthera leucophaea, an
orchid, Holsinger (in press) showed that neglecting the among population correlations would
lead to an estimate of F g7 less than half of the best estimate (0.2122 versus 0.4837).
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These data also show that there are substantial correlations among both populations (p1 =
0.8010) and geographical regions (p, = 0.2253). Moreover, the additive partitioning of 6(!™)
indicates that 75% of the total allele frequency variation is a result of differences among
geographic regions while 25% is a result of differences among populations within geographical

r _ (ry _
regions (HK =0.0784,6," " = 0"0271). Notice both models lead to the same additive

partitioning, because it is done relative to the set of geographical covariances.

Alternatively, we can use the traditional multiplicative partitioning of F-statistics and note that
there is more than twice as much allele frequency differentiation among population clusterss
than among populations within population clusters (6Y = 0.0784 vs. 6% = 0.0298). For these
data, the two partitionings produce similar numerical results. For data sets in which 6V is large,
however, the differences may be substantial. Which partitioning is to be preferred will depend
on whether interest centers on describing the contribution of each level of the hierarchy to

o (1) ("), - .
contemporaneous variation in allele frequency ("K and ¥; ) or on describing the magnitude
of allele frequency variance at each level across replicates of the stochastic evolutionary
process (6Y and 0%).

DISCUSSION

Wright's F-statistics have been the most widely used tool for describing the genetic structure
of populations since they were first introduced more than fifty years ago (Malécot 1948; Wright
1951). Unfortunately, they paid little attention to the distinction between population and sample
frequencies. Cockerham (1969) clearly understood the distinction between population and
sample frequencies and the additional role of genetic sampling, but Nei's gene diversity
statistics (1973) were the first widely used method that recognized some of the sampling
properties. Unfortunately, Nei's statistics accounted only for the statistical sampling associated
with sampling from actual populations and did not consider the genetic sampling associated
with sampling the populations from an underlying stochastic evolutionary process (Weir
1996). To address these shortcomings, Weir and Cockerham (1984) introduced what is now
the most widely used approach for characterizing population structure, a method-of-moments
approach that accounts for both statistical and genetic sampling.

While the Weir and Cockerham (1984) approach is satisfactory in many ways, it suffers from
several important limitations. First, interval estimates of the parameters either depend on
asymptotic convergence of mean squares calculated from Bernoulli random variables to a chi-
squared distribution (Li 1996) or on bootstrapping of samples across loci. In contrast, interval
estimates are easily derived from the MCMC sample produced during analysis of our
hierarchical model. Second, the chi-squared approximation depends on the assumption that the
correlation among populations is zero, while the results in section 2 clearly show that the
among-population correlation can be very large for reasonable mutation and migration rates,
unless the number of populations and population clusters is very large. Third, as Weir and Hill
(2002) point out, the estimate of 6 provided by Weir and Cockerham's method estimates

F st only when the correlation among populations is zero. When the correlation is non-zero,
then the estimate provided is

B=

0-46

A

1-6

A

’

where 6 is equivalent to F st and n(1 — )0, is the covariance in allele frequencies among
populations. If samples at each locus are independent samples from a common underlying
stochastic evolutionary process, however, then 6, is equivalent to our 6 and  is equivalent
to our 0U1). Specifically,
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H(”*) _ H(l) -0
-

where 6() is our estimate of F gr. In short, the parameters of the hierarchical statistical model
we develop have direct, natural interpretations in terms of parameters related to the underlying

stochastic evolutionary process, 6 and 0(”(1[1) 3550 Pi?), even in the face of substantial among
population correlations. Ours is not the only approach that can account for these correlations,
but existing alternatives depend on approximating the among population allele frequency
distribution with a normal distribution (Nicholson et al. 2002; Weir and Hill 2002) or use a
mixture approach whose interpretation is less natural (Fu et al. 2005). Of course, a normal
approximation will work well only when allele frequency distributions are unimodal, roughly
symmetric, and have little mass near 0 or 1, conditions satisfied only when min

[(1-6)/0) p,(1-6)/6)(1 - p)] >0,

Applying our method to human microsatellite data illustrates that the among population
correlation in allele frequencies can be substantial, even in species like humans with large,
highly dispersive populations. The estimated allele frequency correlation among geographical
regions (Eurasia, Africa, East Asia, America, and Oceania), po, is greater than 20%. The
estimated allele frequency correlation among populations, ps, is even greater, about 80%. As
a result of the correlation among major population groupings our best estimate of F g1, 8(), is
about 30% greater than estimate of F g7 that ignore the region-level correlation..

While the numerical difference betewen 6() and 6(1™)) (0.13 vs. 0.10) may not seem great, one
reason for interest in estimates of 0 is their possible relationship to evolutionary process
parameters. For example, if we were to treat the data as coming from a 1-level hierarchy, assume
that mutation rates are much smaller than migration rates, and neglect the among population
correlation in allele frequencies, then F gt = 6 ~ 1/(4Nm + 1) (Crow and Kimura 1970). Thus,

we might estimate Nm as Nm=(1/f-1)/4, Using (") as our estimate of F g we would obtain
Nm = 2.25, while using (") we would obtain Nm = 1.67.

As the results in Tables 3 and 4 show, however, we might vastly overestimate the extent to
which gene flow is responsible for retarding population differentiation when the actual number
of population clusters and populations is small or the migration rates are large or both. In the
case of Platanthera leucophaea, for example, ignoring the correlation among populations
would lead to an inferred estimate of Nm of about 0.98 with a 95% credible interval of
0.73-1.20, while a better estimate would be that Nm is only 0.27 with a 95% credible interval
0f 0.19-0.37 (Holsinger in press). In short, because existing methods for analysis of population
structure typically neglect among population correlations in allele frequency and because such
correlations may be substantial, past inferences about migration derived from F-statistics may
substantially overstate the importance of gene exchange in preventing differentiation of
partially isolated populations.
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APPENDIX A

At stationarity, the distribution for p® is the same for all t. Thus, let ugsaxksa denote the
stationary mean vactor, i.e., E[p®|M, V, N] where N is the vector of population sizes.
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SlnceE[p(H'l)lp(’) M V N] "(1)

E[p™*DM, V,N] :EE[p<f+1>|p('>,M,V,N]
= E[p" M, V,N]|
=M®V)E|[p?M,V,N

where B(M, V) = (M ® V). Under stationarity, u = B(M, V)u. In fact, u does not depend on
M. It is the unique left eigenvector of V corresponding to an eigenvalue of 1 (see Fu et al.
2003 for details).

Turning to stationary covariances, let X be the kSA dimensional stationary variance-covariance
matrix of p. We define A-diag(All, ..., Ags) where

s = s 5~ 05 | 2

. D) _ 1y #(1) #(f)
with Piag (p,-j ) = Diag {pijl e Py } For convenience, we denote E(A) = diag(E(A11), ...,

E(Aks))- Then
)Y

kS AXkS A

= Var(p(’+1>|M, V,N

= BVar (p”IM, V,N|) B’ + E (AM, V. N) (A.2)

since P*® = Bp® and Py Z/— Zm (BijmPi, where B = B(M, V) and Bjjm denote the
(ij, Im)™ A x A block matrix of B.

() () +(0)
We calculate E [ Piag (") M. V.N] o {0 (p; )lM V-N] 4 obtain E(AjIM, V, N).
First, we observe that

kS
E (A4IM,V,N) = Diag ZZBW,,,Elp;,’;lM,V,NI .
I=1 m=1

Next,

A (p;") M, V.N| = Var [ p;" M., V. N|
+E[p M, V.N|{E [p; M, V. N])
= z z ; ; BjjinCov i), pjih, IM, V,N| B
Py [P, Vo[ [ M. V. || B
Therefore,
E[Ajl M, V,N]= {Dzag(zmz_ BjmE (pjaIM, V, N))

_BljlmE[plnlM \& N]{ [ng) rlM Vv, N]},B’ij.l’m’

S B,,zchv[pj,’; Py ML V. N| B
[=lm=1I'=1m’= (A.3)

Under stationarity, E(Ajj|M, V, N) becomes

1 . ’ ’
Wij IDmg (u,-j) —uyu'; — (BZB )UU] b
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since u = Bu. Thus, fori,i'=1, ..., kandj, j'=1, ..., S we have the A x A diagonal matrix of
z,
Sii=|1- . (BZB'), . + o | Diag (uj) - uyu'y]
i, Nij ij,ij ZN,'j uy y=y (A.5)

and the A x A diagonal matrix,
Y7 = (BIB’)

iy iij
fori#i'orj#j".
APPENDIX B
Recalling that V is the mutation matrix, we let
B(M’ V)kSAkaA = M ® V,

Mi®V' M@V ... MpV’
M@V’ MV ... MV’
M;®V' M@V ... MoV’

Similarly,

B=M®V)=MeV ,

since M is symmetric matrix. Thus > xsaxksa reduces to

LD D B

IS B A
Lisanisa =

212 212 le

For simplifying the equation (3), we need to get (BXB’) which consists of the following
matrices, (M ® V) ') (M; ® V") where i, i",j,j' =1, 2:

(M1 ® V)Y1(M; ® V') consists of the following A x A submatrices: diagonal matrix is

2 2
m S -2)m
(mg+ 1 )2{1 +(zmoml +—1)zy]v

M S-1 S-1

and off-diagonal matrix is
S —2)ym? m? S —2)ym2Y
2mom ( ) i+ L[ mo+ ® -Dm !
S-1 - (s-17? §-1 (S -1y

Further

A\ V.
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11 5 7 [ ma(mo+my) 511 (S Dy (mo+my) 511
M@ V) (M@ V') = V' [2rotmsll  S-lonmemsil]y

(M2®V’)Z“(M V'),

poeil N K 1 (5'*1”"% 1
M@ V)ET M@ V) = V| 1)2 S(H)zzz]v,
M, @ V)E2ZM; ® V) =V |my+m) z”]v,

M ®V/)212 M®V’) =V (I"()-Zmll )’"7212|V

=M, ®@V)Z2(M,; 9 V')

and

2
ny12 n _ m 12
My, ®V)Z2(My® V') =V WZ3 \%

After a straightforward but tedious calculation, it can be shown that

(BB)!! =V’ (l—r — Pk + 7y ) 2! +( + s ) SN+ ZR |V,
(BZB/)él -V 'I.SS IA& zll+(1_r2k_'l )211_'_,.2]\212]\/
and
S -1 .k
BEB/ 12 :V/ le 'zll (1 _ s )212 V.
(BZB"); [S(k I R A G Y

Finally, we obtain

zil = (1 - LN)V’ [(1 —rz.k+r3‘k_s)2{1 +(rl_s — Ty Z“ +r2k212]V+ (Diag (1) —ujun’)

r

. ryo—"ry,
s — v [ LAS—?U E{l + (1 —ryg — 1.5S_3.A.s )Zél + rz,k2§2 Vv

2 1

and

S-1 "k
IR "2k s sl (]_ : )212 V.
[S(kl) PS5 U T )
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Figure 1.

Plots of the correlation among populations within the same geographical region, p1, and among
geographical regions, pp, asa function of the number of geographical regions, k, and the number
of populations within each region, S, for several choices of migration rate with two mutation
rates in the two-allele model.
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Table 1

Notation used in the single locus process model.
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Parameter Definition

A Number of alleles

S Number of populations in each geographical region

k Number of geographical regions

P Total number of populations. P = kS

\Y An A x A matrix of mutation rates. v . is the mutation rate from the rth allele to the sth allele

M A P x P matrix of backward migration rates. m j; is the probability that an allele in population i came from

population j in the preceding generation

B The Kronecker product of M and V
N(”) Number of individuals in population j of geographical region i ®
t !
ij The vector of allele frequencies in population j of geographical region i at time t. [7,-11,. is the frequency of the

rth allele.

Properties when the process has reached stationarity.

U The mean vector of allele frequencies in population j of geographical region i.
Ziiji The variance-covariance of allele frequencies within population j of geographical region i.
Zii iy The covariance of allele frequencies between population j of geographical region i and popogulation j' of

geographical region i'.

Finite island model

mg Probability that an allele came from the same population in the preceding generation.
m, Probability that an allele came from a different population in the same geographical region in the preceding
generation.
m, Probability that an allele came from a different geographical region in the preceding generation.
F-statistics 2
F. = 9p Wright's F g1, where 9 b is the variance of allele frequencies and p, is the mean allele frequency.
ST T
up (1= 1)
0

2
An interpretation of F g that arises when p, is taken as the mean allele frequency and T pis taken as the allele
frequency variance in a single population over time.

(1) (1) 2
o (pl 122 Prs An interpretation of F g that arises when p, is taken as the mean allele frequency and O pis taken as the allele
frequency variance across populations at a single time.
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Table 2

Notation used in the two-allele, multiple locus hierarchical beta model.
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Parameter Definition
o0 An estimate of 0
g, gl _ _ (p(r) o p(’))
Alternative estimates of 1> s
| Number of loci (two alleles per locus)
K Number of geographical regions
Sy Number of populations in geographical region k
P iks Frequency of allele A ; at locus i in population s of geographical region k
Ty Mean allele frequency at locus i in geographical region k
;i Mean allele frequency at locus i
b3 Mean allele frequency across loci
7 (1 — ;)0 Variance in allele frequency at locus i within geographical regions
(1 — m)6” Variance in allele frequency at locus i among geographical regions
(1l - m)e" Variance in allele frequency across loci
P1 Allele frequency correlation among populations within geographical regions
P2 Allele frequency correlation among geographical regions
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Comparison of statistics related to F g7 under models (1) and (2) with migration rate = 5 x 1072 and mutation rate = 5 x 1073,

6(1) measures the variance in allele frequency over time. 6(') measures the variance in allele frequency among populations at one
time_f(!" is an approximation of 6(!) that does not require the number of populations and geographical regions involved in gene

exc@ge to be known.

g 2N k S m, m, ol o) o) SD efficiency

>

= 100 5 5 0.04 0.01 0.104857 0.088287 0.088165 (0.0261710) 1.0000

3 0.045 0.005 0.114985 0.098791 0.098595 (0.0319790) 1.0000

o 25 0.092199 0.075152 0.075144 (0.0196840) 1.0000
=

< 2 25 0.04 0.01 0.087076 0.078536 0.078344 (0.0143560) 1.0000

Q 0.045 0.005 0.088258 0.079740 0.079580 (0.0149500) 1.0000

> 5 10 0.04 0.01 0.092473 0.084034 0.084032 (0.0166960) 1.0000

c 0.045 0.005 0.097628 0.089286 0.089035 (0.0190960) 1.0000

g 10 5 0.04 0.01 0.102506 0.094253 0.094415 (0.0196310) 1.0000

=. 0.045 0.005 0.113911 0.105868 0.105622 (0.0236580) 1.0000

© 25 2 0.04 0.01 0.136095 0.128451 0.128495 (0.0259200) 1.0000

- 0.045 0.005 0.164526 0.157379 0.157060 (0.0323100) 1.0000

50 0.086341 0.077787 0.077586 (0.0140480) 1.0000

2 50 0.04 0.01 0.083761 0.079480 0.079537 (0.0102010) 1.0000

0.045 0.005 0.084353 0.080078 0.080110 (0.0105510) 1.0000

5 20 0.04 0.01 0.086417 0.082161 0.082202 (0.0109240) 1.0000

0.045 0.005 0.089016 0.084784 0.084727 (0.0120320) 1.0000

10 10 0.04 0.01 0.091266 0.087055 0.087153 (0.0123930) 1.0000

0.045 0.005 0.097070 0.092913 0.093262 (0.0140960) 1.0000

=z 20 5 0.04 0.01 0.101417 0.097300 0.097387 (0.0144150) 1.0000

— 0.045 0.005 0.113428 0.109421 0.109984 (0.0174510) 1.0000

T 50 2 0.04 0.01 0.135132 0.131318 0.131391 (0.0185340) 1.0000

-IU 0.045 0.005 0.164123 0.160562 0.160681 (0.0230060) 1.0000

> 100 0.083398 0.079114 0.079003 (0.0100390) 1.0000

> 1000 5 5 0.04 0.01 0.011475 0.009505 0.009551 (0.0031180) 1.0000

S,_ 0.045 0.005 0.012712 0.010747 0.010740 (0.0039037) 1.0000

g 25 0.009964 0.007988 0.007989 (0.0022913) 1.0000

_ 2 25 0.04 0.01 0.009364 0.008376 0.008370 (0.0016830) 1.0000

< 0.045 0.005 0.009502 0.008514 0.008566 (0.0017697) 1.0000

Q 5 10 0.04 0.01 0.009997 0.009010 0.009026 (0.0019700) 1.0000

g 0.045 0.005 0.010608 0.009622 0.009587 (0.0022499) 1.0000

7 10 5 0.04 0.01 0.011192 0.010207 0.010233 (0.0024105) 1.0000

(@) 0.045 0.005 0.012579 0.011598 0.011605 (0.0029496) 1.0000

=. 25 2 0.04 0.01 0.015372 0.014395 0.014389 (0.0033988) 1.0000

-9, 0.045 0.005 0.019142 0.018173 0.018133 (0.0044631) 1.0000

50 0.009278 0.008290 0.008299 (0.0016529) 1.0000

_2 E 0.04 0.01 0.008978 0.008484 0.008504 (0.0012243) 1.0000

0.045 0.005 0.009047 0.008553 0.008571 (0.0012423) 1.0000

5 20 0.04 0.01 0.009287 0.008793 0.008808 (0.0013060) 1.0000

0.045 0.005 0.009591 0.009097 0.009090 (0.0014191) 1.0000

10 10 0.04 0.01 0.009855 0.009361 0.009374 (0.0014759) 1.0000

0.045 0.005 0.010541 0.010049 0.010038 (0.0017295) 1.0000

20 5 0.04 0.01 0.011061 0.010569 0.010607 (0.0017637) 1.0000

=z 0.045 0.005 0.012520 0.012029 0.012027 (0.0021845) 1.0000

E 50 2 0.04 0.01 0.015248 0.014760 0.014780 (0.0024704) 1.0000

i 0.045 0.005 0.019087 0.018602 0.018633 (0.0031901) 1.0000

U 100 0.008936 0.008442 0.008445 (0.0011957) 1.0000
>
>
=
=
>
o
=
<
QD
=]
=
(7]
(@]
=h
e
=
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Table 4
Comparison of 6(), 8N, and 6! under models (1) and (2) with migration rate = 5 x 102 and mutaion rate = 5 x 1075,
2N k S m, m, o) o oM (SD) efficiency
100 5 5 0.04 0.01 0.953072 0.118488 0.035089 (0.054724) 0.4755
0.045 0.005 0.953208 0.164943 0.033850 (0.065785 ) 0.5904
25 0.953047 0.087227 0.062394 (0.041973) 0.1781
2 25 0.04 0.01 0.910622 0.092072 0.028777 (0.042559) 0.7901
0.045 0.005 0.910662 0.095906 0.042092 (0.047543) 0.7554
5 10 0.04 0.01 0.910761 0.105795 0.059872 (0.052400) 0.5814
0.045 0.005 0.911008 0.130219 0.043044 (0.059456 ) 0.8211
10 5 0.04 0.01 0.911023 0.131652 0.045810 (0.061431) 0.8369
0.045 0.005 0.911657 0.188210 0.085297 (0.091228) 0.6027
25 2 0.04 0.01 0.911899 0.208303 0.108143 (0.102550 ) 0.5364
0.045 0.005 0.913652 0.330517 0.157490 (0.159240) 0.4574
50 0.910719 0.090522 0.072460 (0.037416) 0.3946
2 50 0.04 0.01 0.837299 0.092947 0.062259 (0.043739) 0.8353
0.045 0.005 0.837358 0.094857 0.054165 (0.046723) 0.7797
5 20 0.04 0.01 0.837517 0.099732 0.072560 (0.044300) 0.7544
0.045 0.005 0.837927 0.112247 0.050154 (0.054560 ) 0.9811
10 10 0.04 0.01 0.837939 0.112617 0.063899 (0.054699 ) 0.8844
0.045 0.005 0.838983 0.143004 0.091877 (0.065587 ) 0.7936
20 5 0.04 0.01 0.838831 0.138653 0.086329 (0.066072 ) 0.9120
0.045 0.005 0.841123 0.200321 0.129833 (0.090874 ) 0.7485
50 2 0.04 0.01 0.841685 0.214397 0.130166 (0.103500 ) 0.8935
0.045 0.005 0.847488 0.339170 0.227145 (0.155290) 0.8039
100 0.837453 0.092185 0.079117 (0.033759) 0.6879
1000 5 5 0.04 0.01 0.668069 0.013146 0.010830 (0.006217) 0.9823
0.045 0.005 0.668735 0.019198 0.014646 (0.010087) 0.9840
25 0.667938 0.009381 0.008466 (0.003690 ) 0.9079
2 25 0.04 0.01 0.502417 0.009950 0.009753 (0.002385) 0.9998
0.045 0.005 0.502523 0.010403 0.010242 (0.002637) 0.9982
5 10 0.04 0.01 0.502824 0.011588 0.011166 (0.003502 ) 0.9985
0.045 0.005 0.503504 0.014620 0.013987 (0.005088 ) 0.9996
10 5 0.04 0.01 0.503639 0.014802 0.014242 (0.004560 ) 0.9988
0.045 0.005 0.505597 0.022460 0.021450 (0.008391) 0.9987
25 2 0.04 0.01 0.506344 0.025410 0.024043 (0.008184) 0.9958
0.045 0.005 0.511859 0.046643 0.044096 (0.015554 ) 0.9992
50 0.502703 0.009767 0.009523 (0.002418 ) 0.9921
2 50 0.04 0.01 0.337740 0.010053 0.010058 (0.001463 ) 1.0000
0.045 0.005 0.337842 0.010279 0.010240 (0.001674) 1.0000
5 20 0.04 0.01 0.338100 0.010859 0.010784 (0.001838) 1.0000
0.045 0.005 0.338776 0.012375 0.012261 (0.002633 ) 1.0000
10 10 0.04 0.01 0.338797 0.012420 0.012385 (0.002337) 1.0000
0.045 0.005 0.340523 0.016267 0.016259 (0.003926 ) 1.0000
20 5 0.04 0.01 0.340267 0.015701 0.015694 (0.003031) 1.0000
0.045 0.005 0.344113 0.024223 0.023941 (0.006016 ) 1.0000
50 2 0.04 0.01 0.345061 0.026333 0.026123 (0.005173) 1.0000
0.045 0.005 0.355126 0.048401 0.047733 (0.010099 ) 1.0000
100 0.337997 0.009963 0.009929 (0.001447) 1.0000
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Table 5
Parameter estimates for the human microsatellite data. See the text for an explanation of the difference between the two models.

Page 22

Hierarchical beta model

Reduced model

Parameter Mean (2.5%, 97.5%) Mean (2.5%, 97.5%)
T 0.3401 (0.3301, 0.3506) nal
0 0.0294 (0.0283, 0.0306) 0.0293 (0.0283, 0.0305)
0 0.0784 (0.0729, 0.0845) 0.0760 (0.0704, 0.0818)
0 0.0298 (0.0237, 0.0370) na.
P 0.8010 (0.7869, 0.8149) 0.7371 (0.7191, 0.7552)
P> 0.2253 (0.1847, 0.2708) na.
o0 0.1322 (0.1254, 0.1395) 0.1031 (0.0979, 0.1087)
e((;'lj) 0.1055 (0.1000, 0.1115) 0.1031 (0.0979, 0.1087)
0, 0.0784 (0.0729, 0.0845) 0.0760 (0.0705, 0.0818)
i
H(E ) 0.0271 (0.0260, 0.0282) 0.0271 (0.0261, 0.0282)
o(in 2 0.1046 (0.1031, 0.1060) 0.1052 (0.1039, 0.1067)

1 . . .
Parameters not estimated in the reduced model are reported as not applicable.

29(”|) based on the observed number of population clusters and populations.
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