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Unlike most other endogenous messengers that are deposited in
vesicles, processed on demand and/or secreted in a regulated
fashion, NO (nitric oxide) is a highly active molecule that readily
diffuses through cell membranes and thus cannot be stored
inside the producing cell. Rather, its signalling capacity must be
controlled at the levels of biosynthesis and local availability. The
importance of temporal and spatial control of NO production
is highlighted by the finding that differential localization of
NO synthases in cardiomyocytes translates into distinct effects
of NO in the heart. Thus NO synthases belong to the most
tightly controlled enzymes, being regulated at transcriptional and
translational levels, through co- and post-translational modifica-
tions, by substrate availability and not least via specific sorting to

subcellular compartments, where they are in close proximity to
their target proteins. Considerable efforts have been made
to elucidate the molecular mechanisms that underlie the
intracellular targeting and trafficking of NO synthases, to
ultimately understand the cellular pathways controlling the
formation and function of this powerful signalling molecule. In
the present review, we discuss the mechanisms and triggers for
subcellular routing and dynamic redistribution of NO synthases
and the ensuing consequences for NO production and action.
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INTRODUCTION

Small and swift, but certainly not soft: NO (nitric oxide) is a
hyper-reactive radical that is nearly ubiquitous, truly pleiotropic
and often ambivalent in its actions. Such multi-talented molecules
need close surveillance and tightly controlled synthesis, and NO
is no exception to this rule. In mammalian species, three types of
NOSs (NO synthases) orchestrate the production of NO from L-
arginine, i.e. nNOS (neuronal NOS), iNOS (inducible NOS) and
eNOS (endothelial NOS). This NOS trio shares similar struc-
tures and catalytic modes, yet the mechanisms that control their
activity in time and space are quite diverse. Above all, expression
of iNOS is induced by inflammatory stimuli, while eNOS and
nNOS are more or less constitutively expressed [1]. A number of
variables collectively dictate the amount of NO that is produced
by cells, including the availability of substrates such as L-arginine,
NADPH and tetrahydrobiopterin, cofactors such as FAD and
FMN, and protein–protein interactions such as NOS dimerization
and association with PSD-95 (post-synaptic density 95), caveo-
lins and CaM (calmodulin) [2,3]. All three isoenzymes bind to
CaM, which is required for maximum activity. However, only
nNOS and eNOS do so in a strictly Ca2+-dependent manner,
whereas iNOS forms an active complex with CaM even when
intracellular Ca2+ levels are low [1]. In addition, the activity of all
three isoforms is regulated by complex phosphorylation and de-
phosphorylation events that differ substantially among the various
NOS types [4].

Finally, another layer of regulation is provided by the sub-
cellular distribution of the NOS isoenzymes. The notion that
the intracellular location of NOS is critical for the coupling

of extracellular signals to efficient NO production is based on
the initial observations that NOS molecules are not dispersed
randomly throughout the cytosol, but are in fact located within
distinct subcellular structures and that misrouted NOS mutants
display reduced activity [5,6]. These findings have prompted
important questions as to how subcellular targeting has an impact
on NOS activity. At present, the mechanisms that underlie target-
ing, sequestration and trafficking of NOS are not fully understood,
and the (patho)physiological consequences of their distinct sub-
cellular distributions are still largely hypothetical. In this review,
we summarize our present knowledge of the intracellular targeting
of the different NOS isoforms, present the mechanisms involved in
NOS translocation and critically discuss the potential implications
of differential NOS distribution for NO production.

MECHANISMS FOR NOS TARGETING

All three NOS isoforms are targeted to distinct subcellular loc-
ations, albeit through different mechanisms. Lipid modification
and protein–protein interactions are proven strategies to estab-
lish and maintain the spatial organization of NOS within a cell.

Membrane anchorage through lipid modification

Prominent compartments for eNOS are the PM (plasma mem-
brane) and the Golgi apparatus. A two-step process targets eNOS
to these membranes (Figure 1): myristoylation of a glycine
residue (Gly-2) at the very N-terminus of eNOS provides
general membrane association, whereas dual palmitoylation of N-
terminally located cysteine residues (Cys-15 and Cys-26) targets
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Figure 1 Putative acylation cycle of eNOS trafficking between plasma and Golgi membranes

The anterograde transport (left-hand side) is thought to be vesicular, while the nature of the retrograde transport (right-hand side) is still unknown. Myristoyl residues are shown in blue, and palmitoyl
residues are in red. Cav-1, caveolin-1.

eNOS to the PM, where it resides partially in caveolae (see below).
Myristoylation of eNOS occurs co-translationally, is essenti-
ally irreversible and is a prerequisite for its subsequent palmitoyl-
ation. Accordingly, myristoylation-deficient eNOS mutants are
distributed diffusely in the cytosol [7–10]. In general, myristoyl-
ation is catalysed by two types of N-myristoyltransferases that
can be targeted to distinct cellular locations [11]. For eNOS,
this process has not been investigated in detail. Palmitoylation
of eNOS is a reversible process and is likely to be carried out
post-translationally at the Golgi complex [7,8]. However, from
the trafficking behaviour of an eNOS–CD8 membrane-spanning
chimaera, it has been concluded that palmitoylation might also
take place at the PM [12]. Typically, palmitoylation can occur in
non-enzymatic fashion in vitro [13], but the recent identification
of palmitoyl acyltransferases in yeast and mammals [14] suggests
that enzyme-mediated palmitoylation is important in vivo.

Recently, it has been shown that (at least a fraction of) iNOS
is palmitoylated, but not myristoylated, and targeted to the PM
[15]. iNOS palmitoylation occurs both in lipopolysaccharide-
challenged myocytes and after iNOS overexpression, and appears
to be necessary for proper passage of the enzyme through the
Golgi network as well as for PM targeting and NO production,
although it does not mediate specific localization to caveolae [15].
In addition, association of iNOS with caveolin lowers the stability
of the enzyme, thereby controlling NO release [16]. Accordingly,
induction of iNOS can be accompanied by down-regulation of
caveolin protein levels [17].

At present, the mechanisms governing anterograde transport
of acylated NOS from the Golgi to the PM are incompletely
understood. Given that other dually acylated proteins such as
myristoylated/palmitoylated Src kinases and heterotrimeric Gαi

[18], as well as farnesylated/palmitoylated Ras [14], undergo
vectorial transport from the Golgi to the PM, it is tempting to
speculate that NOS molecules use similar routes to reach their
final destination at the cytosolic leaflet of the PM (Figure 1, left-
hand side). In the case of eNOS, the role of caveolin in antero-

grade transport and caveolar targeting is still debated. Both
eNOS and caveolin reside to a considerable extent at the
Golgi [19], and some studies have indicated that palmitoylation
may facilitate the interaction of eNOS with caveolin [20,21].
This could suggest a caveolin-assisted anterograde transport.
However, it has been challenged that eNOS and caveolin meet
at the same Golgi subcompartment [22] and that palmitoylation
increases the eNOS–caveolin interaction [12]. Moreover, at
the PM, a considerable fraction of eNOS is localized outside
caveolae, for example at lamellipodia [23,24] and possibly non-
invaginated lipid rafts [25]. Finally, depalmitoylation may initiate
the retrograde transport of NOS back from the PM to the
Golgi (Figure 1, right-hand side), closing the putative acylation–
deacylation cycle (see below).

Subcellular targeting by protein–protein interactions

Unlike the other two isoforms, nNOS appears to lack acylation
and therefore uses other targeting mechanisms [26]. Rather,
nNOS is recruited to membranes such as the PSD or the
sarcolemma via protein–protein interactions involving its unique
N-terminal PDZ domain which is absent from the other NOS
isoforms (Figures 2A and 2B) [4]. This PDZ domain carries two
distinct motifs, i.e. a consensus and a near-consensus (‘pseudo-
peptide’) sequence [27] that can bind to the PDZ domain of
adaptor molecules such as PSD-95 in neurons or α1-syntrophin in
myocytes [28,29]. PSD-95 itself is targeted to the post-synaptic
membrane by palmitoylation [30] and serves as a multivalent
scaffolding protein important for protein clustering, e.g. with
the NMDA (N-methyl-D-aspartate) receptor [31]. Through its
PDZ domain, nNOS can also bind to the adaptor protein
CAPON (C-terminal PDZ ligand of nNOS) [32], which in turn
mediates interaction with members of the synapsin family that are
associated with synaptic vesicles and involved in their exocytosis.
Synapsin I- and II-knockout mice display an altered cellular
nNOS distribution, suggesting an important role of synapsin
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Figure 2 Association of NOS isoforms with various biological membranes

(A, B) nNOS at the synapse (A) and at the sarcolemma (B) of skeletal muscle. (C) iNOS at the epithelial membrane. (D) eNOS at the endothelial membrane. (E) Differential distribution of eNOS and
nNOS at the cardiomyocyte membranes. α1-Syn, α1-syntrophin; Akt, protein kinase B/Akt; β-AR, β-adrenergic receptor; B2R, bradykinin B2 receptor; CaM, Ca2+/calmodulin; CAT, cationic amino
acid transporter; Cav, caveolin-1/-3; NMDAR, NMDA receptor; RyR, ryanodine receptor-1; SR, sarcoplasmic reticulum.

in nNOS localization [32]. In skeletal muscle, nNOS utilizes the
PDZ-containing protein α1-syntrophin for membrane association
(Figure 2B). This protein recruits nNOS as well as other proteins
to the dystrophin–dystroglycan complex at the sarcolemma [33],
and deficiency of α1-syntrophin or dystrophin, as in Duchenne
muscular dystrophy, results in redistribution of nNOS from the
sarcolemma to the cytosol [34,35]. Similarly, nNOS interacts
through its PDZ domain with the Ca2+-efflux pump PMCA4b
(PM Ca2+-ATPase 4b) at caveolae of different cell types [36]. The
targeting mechanism for nNOS at the sarcoplasmic reticulum of
cardiomyocytes (cf. Figure 2E) is still unknown, but might involve
the interaction with ryanodine receptor-1 [37].

A similar picture evolves for the compartmentalization of
iNOS and eNOS (Figures 2C–2E). In epithelial cells, iNOS
localizes to the apical domain in a submembranous protein com-
plex linked tightly to cortical actin [38]. iNOS is recruited to
this complex by binding to the PDZ-containing protein EBP50
(ezrin/radixin/moesin-binding phosphoprotein-50), which in turn
is linked to cortical actin via ezrin [39]. Like PSD-95, EBP50
harbours multiple PDZ domains, implicating it in protein cluster-
ing (Figure 2C).

eNOS resides in caveolae, which represent sites of clustered
signal-transduction networks (see below), reminiscent of the
situation of nNOS at the PSD. eNOS directly binds to caveolin-1
in endothelial cells (ECs) (Figure 2D) [20] and, additionally,

to caveolin-3 at the sarcolemma of cardiomyocytes (Figure 2E)
[40]. Finally, eNOS has been found to be associated with the
cytoskeleton and cell–cell contacts [41–45]. A direct interaction
with actin has been reported [44], but the precise targeting
mechanism is unclear. A protein–protein interaction with PECAM
(platelet/endothelial cell-adhesion molecule) resident at cell–cell
contacts might contribute to this particular localization of eNOS,
since peripheral membrane staining of eNOS is lost in aortic
endothelium of PECAM-knockout mice [41]. eNOS has also been
found in association with mitochondria [46], and even the nucleus
[4], although the targeting mechanisms remain elusive.

FUNCTIONAL CONSEQUENCES OF SUBCELLULAR TARGETING

A hypothesis has been put forward that, within the cell, there
are compartments that allow for full activation of NOS and other
locales where NOS cannot be efficiently activated. Such ‘active’
compartments may be defined by free access to substrates and
cofactors, as well as the presence of upstream activators. Targeting
of NOS into these active compartments can be considered a
prerequisite for efficient NO production, e.g. at cell boundaries.

NO production in different subcellular compartments

Previous studies have shown that eNOS activity in ECs is
higher in confluent than in subconfluent cell cultures and that
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Table 1 Relative NO-producing activities of NOS in various cellular
compartments

NOS isoform Subcellular location Activity Reference(s)

eNOS PM High [42,49,90]
eNOS Cytosol Low [5,115]
eNOS Golgi (cis) Moderate [49]
eNOS Golgi (trans) Low [49]
eNOS Nucleus Very low [50]
eNOS Mitochondrion Low [50]
eNOS Cytoskeleton (actin) Low [43,44]
eNOS Cytoskeleton (tubulin) High [51]
iNOS Peroxisome Unknown [61]
iNOS PM High [50]
iNOS Nucleus High [50]
iNOS Mitochondrion High [50]

this higher activity is correlated with a greater fraction of total
cellular eNOS residing at the PM [42]. Other studies have
shown that palmitoylation-deficient mutants of eNOS (C15S,
C26S and C15S/C26S) which fail to reach the PM [7,10,47]
produce less NO in the intact cell, although they fully retain
their enzymatic activity in vitro [47], and that the highest eNOS
activity is found at the PM [48]. Collectively, these findings
suggest that the ‘correct’ subcellular localization of eNOS is
critical for NO production and that its close proximity to the
PM is optimal for the efficient synthesis of NO (Table 1).

In addition to the PM, eNOS is present in multiple other
locations where the regulation of its activity is not well understood
and experimentally difficult to tackle. To overcome these inherent
problems, the targeting of the non-myristoylated G2A mutant of
eNOS to various intracellular compartments has offered a unique
window into how eNOS activity is regulated within different
intracellular locations. Indeed, the specific targeting of eNOS
to the PM has confirmed the pre-eminence of this location as
a place to produce NO [49]. These studies also showed that
targeting of eNOS to intracellular organelles such as the Golgi
results in an enzyme that is actually functional and therefore
contributes to the total cellular pool of NO, albeit at a lower level
compared with the PM (Table 1). The targeting of eNOS to other
locations such as the nucleus or within the mitochondrial matrix,
however, resulted in a greatly reduced capacity to produce NO
[50]. Cytoskeletal proteins such as actin filaments or microtubules
may also play a role in the regulation of eNOS activity [44,51].
However, it remains to be shown whether interaction of eNOS
with the cytoskeleton has direct consequences for its activity in
intact cells.

Molecular constraints affecting NOS activity

While it is clear that subcellular location has a profound effect on
eNOS activity, the molecular constraints affecting NO production
in the different compartments are largely unknown. The targeting
of Ca2+-independent iNOS to the cellular compartments that
display either high or low eNOS activity has provided new
insights into these mechanisms [50]. Whether present at the PM,
mitochondria, Golgi or cytosol, the activity of iNOS and pro-
duction of NO is invariant. As the substrate and cofactor require-
ments for eNOS and iNOS are virtually identical, these results
largely exclude the spatial restriction of substrate and cofactors
as variables that limit eNOS activity (although this is disputed,
cf. the ‘arginine paradox’ [52]). By exclusion, this positions
Ca2+/CaM as the prime candidate. A number of studies have
demonstrated the presence of Ca2+ gradients within cells. The
highest intracellular Ca2+ concentrations ([Ca2+]i) are detected in

the submembranous space, which is also consistent with the area
of highest eNOS activity [53]. However, most of these measure-
ments have only recorded the brief capacitive Ca2+ influx
(seconds) and have not looked at whether this difference is main-
tained during the time frame of increased NOS activity (5–10 min)
[54]. Interestingly, Ca2+-dependent activation of eNOS has been
reported to trigger its association with Hsp90 (heat-shock protein
90) and activated Akt, leading to eNOS phosphorylation and
sustained activation, independently of maintained high [Ca2+]i

[55].
According to these studies, the presence of Ca2+ and the action

of Ca2+/CaM are important features of an ‘active’ NOS com-
partment. However, differences in [Ca2+]i cannot solely account
for the varied activity of eNOS throughout the cell, but changes
in Ca2+ sensitivity can. Notably, the Ca2+-sensitivity of eNOS
is controlled to a large part by changes in the phosphorylation
state of key serine residues. The specificity of protein kinases is
achieved by both temporal and spatial constraints and therefore
it is not surprising that the phosphorylation state of eNOS is
heavily dependent on its intracellular location [49,56,57]. The
cytosolic non-acylated eNOS mutant is hypophosphorylated on
serine residues (positions 617, 635 and 1179 of the bovine iso-
form) when compared with eNOS at the Golgi or the PM. The
degree of phosphorylation correlates directly with the ability of
these constructs to produce NO, with the greatest activity seen
in the extensively phosphorylated constructs. Mutation of the key
serine to non-phosphorylatable alanine residues equalizes activity
and nullifies the importance of location [58]. Phosphorylation of
Ser-617, Ser-635 and Ser-1179 enhances the sensitivity of eNOS
to Ca2+/CaM and may therefore account for the differences in
eNOS activity in the different parts of the cell [59,60].

Little is known about how subcellular location influences the
activity of other NOS isoforms. A number of the important eNOS
phosphorylation sites are conserved on nNOS, and nNOS is
also targeted to distinct subcellular structures (see above). The
influence of these locations on the ability of nNOS to produce
NO is not known. Although intracellular location is considered
to have little influence on the activity of iNOS itself (see above),
in some cells types targeting of iNOS to the PM appears to be
necessary for efficient NO production [15,61,62].

Functional consequences of spatial NOS organization

What is the biological goal of producing a freely diffusible gas
within specific intracellular locations? Spatial constriction in the
cell periphery might be essential for delivering NO to targets
outside the NO-generating cell. For example, NO produced by
nNOS at the PSD diffuses to the pre-synaptic cell (retrograde
signalling) and eNOS-derived NO in ECs affects platelets and
adjacent smooth-muscle cells [26,63]. In addition, eNOS present
at cell–cell contacts may be essential for local regulation of
endothelial permeability [64]. Likewise, NO produced by nNOS
within the dystrophin complex at the skeletal-muscle sarcolemma
dilates adjacent blood vessels, and mutation of dystrophin in
muscular dystrophy results in loss of peripheral nNOS and
impairment of blood flow [65]. In all of these examples, the bio-
logical effect is mediated by the activation of sGC (soluble NO-
sensitive guanylate cyclase) and the consequent production of
cGMP. The binding of NO to sGC is an extremely efficient
and specific reaction [66] that requires only a small amount of
NO, explaining why the NO signal is transmitted so efficiently to
adjacent cells. Also, NOS localization at the cell periphery might
help to protect the host cell from damage induced by NO. This
is most relevant for epithelial cells, where iNOS targeted to the
EBP50 complex produces excessive amounts of NO specifically at
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Table 2 Subcellular location of confirmed targets for NOS-dependent
nitrosylation

NOS isoform Target Location Reference(s)

eNOS eNOS PM [82]
eNOS Ryanodine receptor-1 Endoplasmic reticulum [116,117]
eNOS Cytochrome c oxidase Mitochondrion [118]
nNOS NMDA receptor PSD [119]
nNOS Ryanodine receptor-1 Sarcoplasmic reticulum [120]
nNOS DexRas-1 Cytosol [86]

the apical cell membrane (whereas virtually no NO is released
at the basolateral side), thereby building a first line of defence
against pathogens [67].

Another important consequence of spatial NOS organization
is the efficient coupling of NO production to upstream signals.
Tethering of nNOS to the NMDA receptor via PSD-95 (see above)
underlies the ‘source specificity hypothesis’, which states that
Ca2+ influx through the NMDA receptor is especially neurotoxic,
most likely through excessive NO production via Ca2+ influx
[28,68,69]. Accordingly, depletion of PSD-95 [70] or inhibition
of PSD-95–nNOS complex formation attenuates excitotoxic cell
death [71].

In caveolae, association of eNOS with caveolin-1 leads to
inhibition of the enzyme, and mice lacking caveolin-1 have in-
creased eNOS activity [72]. Proteins of the NO signalling pathway
clustering in caveolae include arginine succinate synthase and
lyase, arginine and Ca2+ channels as well as bradykinin and acetyl-
choline receptors [4], providing access to upstream signals and
substrates (see Figure 2D). Hsp90, also present in caveolae,
is thought to facilitate signal transduction by bringing eNOS
into close proximity to its upstream activators, Ca2+/CaM and
protein kinase B/Akt [73–75], as well as to its downstream
target sGC [76]. At the sarcolemma of cardiomyocytes, caveolae
contain muscarinic acetylcholine and β-adrenergic receptors [77–
79] signalling through Ca2+ mobilization, as well as L-type
Ca2+ channels that are inhibited by NO via a negative-feedback
mechanism (Figure 2E). Of note, NO generated by nNOS at
the sarcoplasmic reticulum of cardiomyocytes evokes opposing
effects on contractility, highlighting the fundamental importance
of subcellular localization for NO signalling specificity [37].

Numerous biological functions of NO are independent of cGMP
and rely on higher concentrations of NO, making the controlled
production of a reactive and diffusible gas within a confined space
a viable strategy. One such paradigm is the reversible nitrosylation
of proteins (Table 2). Interestingly, eNOS nitrosylates itself,
thereby down-regulating its own enzymatic activity [80,81]. The
degree of nitrosylation varies with its subcellular location: mem-
brane-targeted eNOS exhibits much greater nitrosylation than
cytosolic eNOS, and the transient translocation of eNOS from
membranes to the cytosol may facilitate denitrosylation [82].
Also eNOS-associated proteins become nitrosylated, such as
Hsp90, resulting in a reduction of its positive effect on eNOS
activity [83]. In the case of dynamin, which interacts with both
eNOS and NOSTRIN (NOS trafficking inducer) (see below),
nitrosylation enhances dynamin-mediated internalization pro-
cesses [84]. NMDA receptors that bind indirectly to nNOS are
nitrosylated as well, resulting in reduced Ca2+ influx [85]. Another
example for a functional signal cluster is the complex of nNOS and
DexRas via the adaptor CAPON in neurons, which is necessary for
the NO-dependent activation of DexRas and subsequent modul-
ation of transcription [26,86]. Thus spatial proximity of NOS

signalling complexes is crucial to facilitate nitrosylation and to
provide important feedback mechanisms, supporting the concept
that NOS has to go where NO is needed.

DYNAMIC REDISTRIBUTION OF NOS: TRIGGERS, MECHANISMS
AND CONTROL

Targeting of NO synthases is not unidirectional. For instance,
upon stimulation of ECs, eNOS is sequestered from the PM and
translocated to interior compartments of the cell. At present,
the mechanisms and driving forces that underlie intracellular
redistribution of NOS have best been studied for eNOS, so we
will focus on this isoform.

Mechanisms of eNOS redistribution: the acylation cycle

The distribution of eNOS appears to vary among different cell
types and even within a given cell. The former is illustrated by
blood vessels of various calibres, where ECs of larger arteries keep
their eNOS strictly at the Golgi, whereas those of the endocardium
display a substantial amount of eNOS at the PM [87].

The observation that the turnover of palmitate residues attached
to eNOS is more rapid than that of the protein itself has pointed to
the possibility that eNOS may undergo a cycle of depalmitoyl-
ation and repalmitoylation, translating into a constant shuttling
of the enzyme between Golgi and PM [7]. Such an acylation
cycle has recently been described for the Ras oncogene [88].
For both eNOS and Ras, this cycle comprises two types of pro-
tein modifications, i.e. irreversible acylation (myristoylation of
eNOS and farnesylation of Ras) as well as reversible palmitoyl-
ation (Figure 1). While the former provides general membrane
association, the latter directs proteins specifically to the PM.
According to this acylation cycle model, proteins become de-
palmitoylated at the PM and are consequently displaced from
this locale and redistributed indiscriminately to other intracellular
membranes. Because (re)palmitoylation occurs specifically at the
Golgi, this compartment provides a kinetic trap from which the
proteins are targeted again to the PM [88,89]. Thus the acyl-
ation cycle provides both the transfer of active proteins from
the PM to the Golgi and the continuous access to the sorting
machinery of the Golgi, allowing redistribution to distinct mem-
brane microdomains.

At present, the nature of depalmitoylation and the possible
involvement of specific thioesterases are still unclear. Palmitoyl-
ation and depalmitoylation rates of eNOS in ECs were shown to
be independent of stimuli such as bradykinin or ionomycin [90],
suggesting a constitutive process as seen for Ras [88]. However,
agonist-induced depalmitoylation has also been reported [91].
Palmitoyl-protein thioesterase and acyl-protein thioesterase-1
have been implicated in eNOS depalmitoylation, although the
consequences for its subcellular localization remain to be demon-
strated [92,93]. To date, it is unclear whether the retrograde traffic
of eNOS is brought about by molecular or vesicular transport.
Protein–protein interactions might contribute to the intracellular
redistribution of eNOS and might involve the recently identified
proteins NOSIP (NOS-interacting protein) and NOSTRIN (see
below), as well as the co-chaperone CHIP (C-terminus of heat-
shock cognate 70-interacting protein) [94]. In the case of Ras, the
retrograde transport from the PM to the Golgi is probably non-
vesicular and may require carrier proteins such as the δ subunit of
phosphodiesterase, accommodating the lipid anchor of its acylated
cargo protein [95,96].

In addition to constant shuttling, eNOS localization may be
regulated dynamically. For ECs, an important factor that deter-
mines eNOS location appears to be the plasma concentration

c© 2006 Biochemical Society



406 S. Oess and others

Figure 3 Potential roles of the eNOS-associated proteins NOSIP and NOSTRIN in the redistribution of eNOS from the PM

NOSIP may target eNOS from its caveolar localization towards the actin cytoskeleton. In contrast, NOSTRIN may have a role in vesicular internalization of eNOS, probably involving a caveolar
mechanism. Cav, caveolin; Dyn, dynamin; NST, NOSTRIN; N-WASP, neuronal Wiskott–Aldrich syndrome protein.

of LDL (low-density lipoprotein)/cholesterol. Short-term incub-
ation of porcine arterial ECs with oxidized LDL results in de-
creased cholesterol content of the PM and in the loss of eNOS
from the PM, possibly due to caveolar disintegration [97]. The
ensuing eNOS redistribution reduces acetylcholine-stimulated
activity, presumably due to absence of the enzyme from the
‘active’ compartment. Prolonged exposure of human umbilical-
vein ECs to oxidized LDL leads to redistribution of eNOS without
concomitant changes in the cholesterol content of the PM and to
an attenuated thrombin-stimulated activity of the enzyme [98].
In either case of treatment with oxidized LDL, myristoylation
and palmitoylation of eNOS are unaffected, suggesting that the
enzyme remains associated with membranes. Umbilical-vein ECs
treated with native LDL display a higher proportion of caveolin-1
and eNOS at the PM and stronger association of the two proteins,
resulting in a decreased basal activity and a strongly reduced
activity after Ca2+ ionophore stimulation [99]. Thus a well-
balanced cholesterol supply appears to influence the localization
of eNOS within ECs.

Triggers for eNOS redistribution

Several stimuli can induce a transient displacement of eNOS from
the PM. When subconfluent bovine arterial ECs are exposed to
stimulating agents such as bradykinin, oestradiol or ceramide, the
majority of the eNOS molecules leave the PM for a short while,
and, after 1 h, the original situation is more or less restored [100–
102]. In case of bradykinin, this could be due to the decrease
in the eNOS–bradykinin B2 receptor interaction [103]. None of
these studies has, however, monitored the state (e.g. acylation or
phosphorylation) of eNOS during translocation, and the question
of the whereabouts of eNOS during its absence from the PM
has remained unanswered. Similar observations were made using
confluent layers of umbilical-vein ECs treated with bradykinin
or VEGF (vascular endothelial growth factor), demonstrating that
eNOS and caveolin-1 leave the PM shortly after stimulation [104].
This was accompanied by an increase of the eNOS signal in the
perinuclear region as well as in vesicular structures throughout
the cytoplasm after both bradykinin and VEGF stimulation.
Interestingly, the time course of translocation differs for the two
stimuli, with bradykinin creating a transient, and VEGF creating
a sustained, translocation.

The location of eNOS following translocation was investigated
in more detail by an in vivo study of the hamster cheek-pouch
microcirculation [105]. Shortly after stimulation with acetyl-

choline, eNOS distribution had clearly shifted from the micro-
somal (PM) into the heavy membrane fraction, representing Golgi
and possibly cytoskeletal components. The cytosolic fraction was
only marginally enriched in eNOS after stimulation, and, shortly
after acetylcholine application, eNOS started to return to the
microsomal fraction. Another vivid example of eNOS translo-
cation comes from renal epithelium [106,107]. Here, luminal
flow induces redistribution of eNOS and Hsp90 from all over
the cells towards the apical PM. This shift is accompanied by an
increased NO production. Translocation and activation of eNOS
are blocked by the Hsp90 inhibitor geldanamycin, the actin poly-
merization inhibitor cytochalasin D and the PI3K (phosphoino-
sitide 3-kinase) inhibitor wortmannin. The suggested vesicular
transport for eNOS is well in line with a role of PI3K in
basolateral-to-apical trafficking of other proteins [108].

Mediators of eNOS redistribution

Recent studies involving the eNOS-interacting protein NOSTRIN
have indicated that translocation of eNOS can be at least partially
achieved by vesicular trafficking (Figure 3). Upon overexpression,
NOSTRIN induces trafficking of eNOS away from the PM to
intracellular vesicular structures, concomitant with a decrease in
eNOS activity [109]. Further investigation showed that NOSTRIN
serves as an oligomeric adaptor protein for the large GTPase
dynamin and the Arp2/3 (actin-related protein 2/3 complex)
activating protein N-WASP (neuronal Wiskott–Aldrich syndrome
protein), suggesting a role in co-ordinating vesicle fission and
transport [110,111]. NOSTRIN binds directly to caveolin-1 with-
out affecting the ability of either of the two proteins to interact
with eNOS, and thus allows for the formation of a ternary com-
plex of eNOS, caveolin-1 and NOSTRIN (A. Icking, unpublished
work). NOSTRIN is enriched at caveolar membranes and may be
critical for caveolar transport of eNOS both in internalization and
to the PM.

Unlike NOSTRIN, the eNOS-interacting protein NOSIP com-
petes with the caveolin scaffolding domain for binding of eNOS.
Accordingly, overexpression of NOSIP results in the dislocation
of eNOS from the PM and inhibition of NO release [112]. NOSIP
is a nucleocytoplasmic shuttling protein with predominantly
nuclear localization in proliferating cells, but its localization is
regulated dynamically, and NOSIP accumulates in the cytoplasm
specifically during the G2 phase of the cell cycle. Detailed analysis
has shown that this cytoplasmic accumulation, corresponding
to NOSIP overexpression, mediates cytoskeletal targeting and
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inhibition of eNOS in a cell-cycle-dependent manner [43]. This
highlights the notion that the actin cytoskeleton represents an
‘inactive’ compartment for eNOS and indicates that targeting into
such inactive locales serves to regulate the overall activity of
the enzyme. NOSIP also has inhibitory potential towards nNOS
[113]. Although the exact mechanism of its action remains to be
determined, it is likely to involve NOSIP-induced translocation of
nNOS from distal dendrites towards the perikaryon. Interestingly,
subcellular localization of NOSIP in hippocampal neurons varies
with neuronal activity: it changes in favour of the cytoplasm after
NMDA stimulation and towards the nuclear compartment when
neuronal activity is silenced. The finding that nNOS activity
may be regulated by subcellular targeting is supported by the
observation that NMDA induces the translocation of nNOS
from intracellular locales towards the PM in differentiated PC12
(pheocytochroma) cells [114].

CONCLUSIONS AND FUTURE PROSPECTS

Accumulating evidence indicates that NOSs are subject to specific
targeting to subcellular compartments and that this translocation
is crucial for specific nitrosylation of target proteins and proper
functional performance. Yet our knowledge of the precise
molecular mechanisms governing the intracellular redistri-
bution processes is still rather limited. We anticipate that emerging
techniques such as live-cell imaging and single-molecule tracking
will be instrumental in shedding new light on the molecular details
of NOS trafficking and reshuffling within the cell. It appears that
NOS, very much like small GTPases such as Ras, beautifully
exemplifies Nature’s efforts to develop sophisticated machineries
to keep the activity of its key enzymes under tight control. Future
studies will unravel whether NOS trafficking uses cargo-specific
vehicles or whether it utilizes ‘public’ transportation systems that
are shared by other proteins cycling in the cell.
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