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Historically, researchers have studied bacterial signaling as if
it functioned as a set of isolated, linear pathways. More recent
studies, however, have demonstrated that many signaling path-
ways interact and that these interacting pathways should be
construed as an intricate network. This network integrates
diverse signals, both extracellular and intracellular, to ensure
that the the correct amount of the appropriate subset of genes
is expressed at the proper time. Complete delineation of this
complex signal transduction network and use of the network to
predict the full range of cellular behaviors are major goals of
systems biology.

Despite considerable progress, we remain near the begin-
ning of this process, which thus far has been dominated by the
development of enabling technologies and the compilation of
gene lists. Although development and compilation will con-
tinue to be essential, the next critical step must be to organize
the copious data compiled over 5 decades of pregenomics
research and the massive amount of postgenomics data gener-
ated over the last decade. This minireview, in which we de-
scribe a portion of the overall network of Escherichia coli, is an
attempt to perform part of this next step.

THE NETWORK

As the model organism for this network, we chose the en-
terobacterium E. coli. We focused specifically on the common
laboratory strain K-12 in order to mine the wealth of informa-
tion available for it. When appropriate, we included observa-
tions made with other E. coli variants (e.g., enterohemorragic
E. coli [EHEC] or uropathogenic E. coli) or with the close
relative Salmonella enterica. With easy to moderate effort, the
network can be adapted to other enterobacterial relatives.
However, more distantly related species may lack some of the
global regulators discussed here.

As a unifying theme, we chose the early stages of biofilm
development. Defined as a sessile community of bacteria en-
cased in a matrix, a biofilm tends to develop on a surface or an
interface in a series of ordered steps, designated reversible

attachment, irreversible attachment, maturation-1, matura-
tion-2, and dispersion (121). Each step requires reprogram-
ming of gene expression that occurs in response to the chang-
ing environment (122). The reprogramming associated with
the earliest steps of biofilm development can be identified
easily by the distinct organelles that decorate the bacterial
surface. For example, reversible attachment often involves fla-
gella that permit individual planktonic cells to swim toward an
appropriate biotic or abiotic surface. Irreversible attachment
involves the loss of these flagella and the elaboration of adhe-
sive organelles (e.g., curli or type 1 fimbriae); the type of
organelle depends on the environment. Finally, production of
the colanic acid capsule permits construction of the distinctive
three-dimensional structure typical of mature biofilms (for a
recent review of biofilm formation, see reference 149).

For the surface organelles to appear in proper order, ex-
pression of these organelles must be coordinately regulated
(137). Indeed, there is evidence for regulatory relationships
between flagella and fimbriae (10, 75), between flagella and
capsule (80, 124, 158), and between different types of fimbriae
(52, 159). The coordinate regulation of these surface or-
ganelles, whose expression responds to similar subsets of ex-
ternal signals, second messengers, and regulators, is the main
focus of this minireview.

The total network consists of 16 regulators and the several
hundred genes that they regulate. Some regulators in this net-
work function globally. For example, CRP (162) and H-NS (13,
53) each regulate hundreds of genes. In contrast, some regu-
lators, including LrhA (73) and HdfR (67), affect transcription
of only a small number of genes. Some global regulators are
members of a family of two-component signal transduction
(2CST) pathways, a predominant system used by bacteria to
relay environmental signals in order to elicit changes in cellular
functions (for reviews of 2CST pathways, see references 36, 61,
100, and 156). Each 2CST pathway consists of a sensor and a
response regulator. The sensor, often an integral cytoplasmic
membrane protein, is a histidine kinase that uses ATP as its
phosphodonor to autophosphorylate a conserved histidine res-
idue (H1). Some sensors also possess phosphatase activity. In
contrast, the response regulator is an aspartyl kinase that uses
the phosphorylated sensor as its phosphodonor to autophos-
phorylate a conserved aspartyl residue (D1). Most, but not all,
response regulatory domains are fused to a DNA binding do-
main and thus function as transcription factors. E. coli pos-
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sesses 29 histidine kinases and 32 response regulators (80, 86),
including EnvZ/OmpR, QseC/QseB (QseCB), and CpxA/
CpxR (CpxAR).

Deletions of the genes that encode all these 2CST pathways
have been constructed and analyzed by microarray technology.
This has been done for both gene expression analysis (97) and
phenotypic characterization (163). For example, one analysis
showed that the EnvZ/OmpR pathway, initially discovered as a
regulator of the outer membrane porins OmpC (79) and
OmpF (148), actually regulates a much larger set of genes (97).
Another analysis showed that QseCB, identified as a regu-
lator of quorum sensing in EHEC (134), also regulates fla-
gellum biogenesis (27, 135). Other studies showed that the
CpxAR system, which was first shown to sense envelope
insult (31), also regulates the DNA repair gene ung (93),
genes encoding the type IV bundle-forming pili (91), and
both curli operons (59).

A more complex variant of the 2CST pathway is the multi-
step phosphorelay, which includes four domains instead of two
domains (6, 86). Like the conventional 2CST pathway, the
multistep phosphorelay proceeds from the sensor to a response
regulator. A histidine phosphotransferase then transfers the
phosphate from this first response regulator to a second re-
sponse regulator. The second response regulator is often a
transcription factor. RcsC/RcsD/RcsB (RcsCDB) is one of the
few phosphorelays possessed by E. coli (6, 86). One of the four
domains that comprise the complete phosphorelay, RcsC, con-
tains both the sensor and the first response regulator. RcsD
includes the histidine phosphotransferase, and RcsB carries
the final response regulator. The signal travels from H1 to D1
on RcsC, then to H2 on RcsD, and finally to D2 on RcsB (for
a review of RcsCDB signaling, see reference 80). Originally
identified as a regulator of the capsule synthesis genes (cps)
(43), RcsCDB is now known to regulate up to 5% of the E. coli
genome (32, 44).

To construct the network, data were gleaned from the liter-
ature and/or from work performed in our laboratories. These
data came primarily from functional genomics experiments,
such as microarray analysis or analysis of genomic libraries of
reporter gene fusions, but they also were obtained from direct
interaction studies, such as electrophoretic mobility shift assays
or DNase I footprint analyses.

To visualize the network, the open source TouchGraph vi-
sualization software was adapted as follows: functionality was
added to distinguish multiple types of relationships and to
systematically select a center of focus. TouchGraph uses the
spring layout concept and allows user interactions through
focus and context techniques (51). The network is presented in
its entirety in the supplemental material (see Fig. S1 in the
supplemental material). The remaining information in the sup-
plemental material focuses on areas where there is intense
regulation.

Here we summarize the subset of genes most closely aligned
with biogenesis of the surface structures associated with the
transition from motile, planktonic individuals to a sessile bio-
film community (Fig. 1). First, we focus on three biofilm-
associated surface organelles (flagella, curli, and type 1 fim-
briae) whose biogenesis is controlled by the network. We then
shift our attention to the network itself, concentrating on the
three most prominent regulators, FlhD/FlhC (FlhDC), EnvZ/

OmpR, and RcsCDB. A fourth biofilm-associated structure,
the capsule, is mentioned in the context of RcsCDB. Finally,
we discuss three small molecules. Two of these molecules,
cyclic AMP (cAMP) and acetyl phosphate (acetyl�P), affect
the network directly. The third, cyclic di-GMP (c-di-GMP), is
included because it influences the formation of biofilms (131)
in parallel with the network, although how it performs this
function remains unknown.

THE REGULATED PROCESSES

The three major cellular processes regulated by the network
are biogenesis of the surface organelles flagella, curli, and type
I fimbriae.

Flagellum biogenesis. Flagella enable bacteria to reach fa-
vorable environments, and they have functions in adhesion,
biofilm formation, and colonization (47). The environmental
conditions that control the levels of expression of flhDC in-
clude temperature (1), osmolarity (128), pH (133), the concen-
trations of catabolite-repressing carbon sources (161), and a
number of small molecules (65, 71, 72, 74, 89, 109, 125, 126),
including acetate and propionate (104). The mechanisms by
which these factors regulate flhDC expression are largely un-
known.

In E. coli K-12, the transcription initiation site for flhDC is
located 198 bp upstream of the translation start site for flhD
(132) (Fig. 2); in EHEC, it is located (27) only 53 bp upstream
of the flhD open reading frame (132). In E. coli K-12, DNA
binding sites have been identified for H-NS (132), phosphory-
lated OmpR (128), LrhA (73), RcsB (33), and CRP (132) (Fig.
2); in EHEC, additional DNA sites have been identified for
phosphorylated QseB (27).

Additional experimental evidence indicates that there is
transcriptional regulation of flhDC by the chaperones DnaK,
DnaJ, and GrpE (127), the nucleoid protein DnaA (88, 90),
and the transcription factor HdfR (67) (see Fig. S2 in the
supplemental material). Furthermore, insertion of insertion
elements increases transcription of flhDC, presumably by un-
coupling upstream binding sites for negative regulators from
the core promoter (9). flhDC also is regulated posttranscrip-
tionally by the carbon storage regulator CsrA (Fig. 2), which
binds to flhDC mRNA and increases transcript stability (154).
A regulatory RNA, CsrB, sequesters and represses CsrA. A
complex regulatory circuit involving UvrY (also known as
SirA) regulates CsrB (142). Posttranslational regulation is me-
diated by protease ClpX/ClpP in S. enterica (146, 147).

Curli biogenesis. Curli (also known as thin aggregative fim-
briae) are adhesive fibers (115) that promote biofilm formation
by facilitating initial cell-surface interactions and subsequent
cell-cell interactions (96, 150). The environmental conditions
that control curli expression include temperature, oxygen ten-
sion, starvation, osmolarity, iron, and pH (39, 106, 117, 141).
Because they had not been observed under conditions that
mimic the mammalian host environment (i.e., high osmolarity
and high temperature) (45, 84, 95), for a long time curli were
considered unable to contribute to human infections. A recent
report, however, showed that cells can express curli under
these conditions, if they are grown under static conditions that
facilitate biofilm formation (63). At least eight regulators affect
the expression of the curli genes (see Fig. S3 in the supple-
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mental material), which cluster in two divergent operons, csg-
DEFG and csgBA (45). These regulators include three two-
component systems, EnvZ/OmpR (106), RcsCDB (32), and
CpxAR (59, 106), and four other regulators, CRP (162), H-NS
(7, 53, 95), MlrA (20), and FlhDC (110). Most of these regu-
lators act upon the csgD operon (40, 106), which encodes a
transcriptional regulator of csgB. CsgD also regulates yaiC,
yagS, pepD (19), and glyA (25). In addition to CsgD, csgB
expression requires �S, an effect enhanced by the small protein
Crl (18).

The best-investigated regulation of csgD expression involves
the interplay between the negative regulator CpxAR and the
positive regulator EnvZ/OmpR (59, 106). The phosphorylated
forms of both CpxR and OmpR were shown to bind to over-
lapping DNA sites immediately upstream of the csgD promoter
(106). CpxR bound cooperatively to six sites within the csgD
promoter (59). Binding of CpxR and OmpR was not compet-
itive, as both regulators could bind simultaneously. Consider-
ing that the expression and the phosphorylation state of CpxR
both increased upon a shift to high osmolarity, it was postu-
lated that induction of CpxAR mediates csgD repression at
high osmolarity, whereas EnvZ/OmpR mediates csgD activa-
tion at low osmolarity (59).

FIG. 1. Global network of transcriptional regulation in E. coli. Positive regulatory effects are indicated by solid lines and arrowheads. Negative
regulatory effects are indicated by dotted lines with blunt ends. Microarray data were obtained for EnvZ/OmpR (97), RcsCDB (32, 44, 97), LrhA
(73), H-NS (53), CRP (162), CsgD (19), FlhD/FlhC (110, 111), FlhD (110, 112), and Aer (110). Further regulation of flhD expression has been
documented, as follows: QseCB (134, 135), CRP (132), H-NS (14), DnaK, DnaJ, and GrpE (127), DnaA (88, 90), HdfR (67), and insertion element
insertion (9). The expression of csgD and csgB is further regulated by EnvZ/OmpR (106), CpxAR (59, 106), and H-NS (59). FliA has been
described as an alternative sigma factor specific for the flagellar genes (78) and mediates the regulation of aer expression by FlhD/FlhC (B. Prüß
and P. Matsumura, unpublished).

FIG. 2. Regulation of flagella and motility in E. coli. Environmen-
tal control of the flagellar system is mediated by regulation of the
flhDC promoter. The translational start site was determined by Sout-
ourina et al. (132). Footprinting data have been obtained for H-NS
(132), phosphorylated OmpR (128), LrhA (73), RcsAB (33), and
cAMP-CRP (132). Insertion sites for the IS1 and IS5 elements are
indicated (9). The figure is modified from a previous study (8); post-
transcriptional control by CsrA (154) and posttranslational control by
ClpXP (146, 147) have been added.
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Type I fimbria biogenesis. Type I fimbriae mediate adher-
ence to mannose-containing receptors and promote bacterial
attachment to and/or invasion of host cells during urinary tract
infections (29, 82). The structural genes (fimA to fimH) are
located in a single large operon (81) that is driven by a single
promoter located upstream of fimA (123). Expression data
indicate that a strong terminator is located immediately after
fimA (123). Expression of the fim operon is controlled primar-
ily by an invertible 314-bp switch element that is located up-
stream of fimA and is flanked by inverted repeats. The inver-
sion, called phase variation, is mediated by two recombinases,
FimE and FimB (66). The genes encoding these recombinases
are located upstream of the switch element and are transcribed
in the same direction as the fim operon. Generally, FimB can
promote inversion in both directions. FimE, in contrast, pro-
motes only the switch from phase-ON to phase-OFF (34).

Phase variation is subject to tight environmental control,
which is mediated by at least six global regulators (see Fig. S4
in the supplemental material). For example, the leucine re-
sponse protein LrpA mediates the response to amino acids
(e.g., alanine, isoleucine, leucine, and valine). LrpA binds di-
rectly to the switch, affecting fimB- and fimE-promoted switch-
ing (35). Similarly, IHF affects switching by both recombinases
(15), while H-NS affects only the fimB-mediated inversion (92).
In microarray experiments, LrpA (56) and H-NS (53) had an
overall positive effect on the levels of expression of the fim
genes. Interestingly, LrhA had a positive effect on the level of
expression of fimE and a negative effect on the level of expres-
sion of the fim operon (16). This was likely due to the strong
bias for phase switching from the phase-ON to the phase-OFF
orientation of FimE. Other microarray studies showed that
EnvZ/OmpR had a negative effect on the levels of expression
of the fim operon (97).

THE REGULATORS

Within the network, three regulators (FlhDC, EnvZ/OmpR,
and RcsCDB) affect expression of the majority of the genes,
primarily the genes involved in the biogenesis of flagella, curli,
and type I fimbriae.

FlhDC. Initially described as the master regulator of flagel-
lum biogenesis in E. coli and S. enterica (68–70, 129, 130),
FlhDC also regulates nonflagellar genes (110, 111) (see Fig. S5
in the supplemental material). Encoded by the flhDC operon
(11), FlhDC sits atop a transcriptional hierarchy of flagellar
genes (for reviews of flagellar hierarchy, see references 2, 24,
69, and 108). The FlhDC complex binds the upstream regions
of three flagellar operons (fliA, fliL, and flhB) (77) and activates
their transcription from �70-dependent promoters. FlhDC also
activates transcription directly from a subset of promoters that
depend upon �28, the product of fliA. The remaining �28-depen-
dent promoters are under indirect control of FlhDC through its
activation of fliA (50, 78, 94).

Twenty-nine nonflagellar FlhDC-dependent operons in E.
coli were revealed by microarray analysis (110). Approximately
one-half of these operons function in respiration. Transcrip-
tion of the operons that encode aerobic respiratory pathways
was inhibited, while transcription of the operons that encode
anaerobic pathways was enhanced. This enhancement, as well
as that of the Entner-Doudoroff pathway, was mediated by

the oxygen sensor and chemoreceptor Aer (110). In addition,
FlhDC enhanced transcription of the two curli operons, csgB
and csgD. Finally, it modulated transcription of a number of
genes encoding transporters and enzymes involved in amino
acid metabolism.

In addition to this experimental evidence, bioinformatic
analysis suggests that there are additional FlhDC targets. A
consensus sequence for putative FlhDC binding sites was de-
veloped and used to identify putative targets (136). The pro-
moter regions of four of these genes (b1904, b2446, wzzfepE,
and gltI) showed both binding and regulation by FlhDC. In
addition, a FliA consensus sequence was proposed and used to
identify several putative FliA targets (99). Two of these targets
(ygbK and ppdAB) also were dependent on FlhDC, as deter-
mined with promoter-lacZ fusions.

Envz/OmpR. EnvZ/OmpR, a two-component signal trans-
duction pathway originally shown to regulate expression of the
outer membrane porins OmpF and OmpC (79, 148), also con-
trols expression of more than 100 nonporin genes (97) (see Fig.
S6 in the supplemental material). EnvZ/OmpR regulates tran-
scription of ompF and ompC inversely; at low osmolarity, it
activates ompF, and at high osmolarity it represses ompF while
activating ompC (4). To activate transcription, OmpR binds
three tandem sites upstream of and proximal to the �35 hex-
amers of both ompC (C1 to C3) and ompF (F1 to F3) (55, 79,
87, 148). To repress ompF transcription, OmpR binds a fourth
distal site (F4) (55, 98). Occupancy of this distal site is believed
to facilitate formation of a DNA loop between OmpR bound
at F4 and OmpR bound to one or more of the proximal
binding sites (F1 to F3). The binding of OmpR to C1 to C3 and
to F1 to F4 seems to be independent of the degree of OmpR
phosphorylation (48). Rather, the binding appears to be me-
diated by an osmolarity-induced conformational change (83).

The non-porin-associated functions of OmpR include regu-
lation of the permease encoded by tppB in S. enterica (41) and
E. coli (42), the maltose regulator encoded by malT (23), and
the murein regulator encoded by bolA (160). A recent microar-
ray study (97) identified 125 OmpR-dependent genes. The
phenotypes exhibited by an ompR-envZ mutant include in-
creased resistance to several antibiotics (attributed to the de-
fect in porin synthesis) and increased use of several hexoses as
carbon sources (allose, fructose, mannitol, N-acetyl-D-glucos-
amine, and glucose) (163).

Other cellular processes affected by OmpR include the bio-
genesis of curli (59), type I fimbriae (97), and flagella (128).
DNase I footprinting demonstrated that there is direct binding
of OmpR to the flhDC promoter at two discrete regions (128).
This arrangement resembles that present at ompF; thus, a
repression loop similar to that predicted for ompF might be
responsible for repression of flhDC transcription. In contrast to
ompF repression, regulation of flhDC depends on the phos-
phorylation state of OmpR. Phosphorylated OmpR bound the
flhDC promoter with 10-fold-higher affinity than unphosphory-
lated OmpR bound the flhDC promoter (128). Electrophoretic
mobility shift assays have demonstrated that there is binding of
phosphorylated OmpR to the csgD promoter, which drives
expression of one of the two curli operons (59, 106).

RcsCDB. The RcsCDB phosphorelay, discovered as a regu-
lator of capsule synthesis (43), is responsible for the regulation
of up to 5% of the E. coli genome (32, 44, 97) (see Fig. S7 in
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the supplemental material). Many of the target genes encode
parts of surface appendages (e.g., flagella and curli), compo-
nents of the cellular multistress response (e.g., osmB, osmY,
and osmC), or proteins involved in cell division (ftsAZ) (22, 30,
32, 33, 140). RcsB can bind either as a homodimer to the RcsB
box (e.g., at ftsAZ and osmC [22, 30, 140]) or as a heterodimer
in a complex with the auxiliary protein RcsA (e.g., at cps [60,
139, 152, 153]). RcsA is related to the response regulators,
except for the lack of the conserved aspartate site that is
required for phosphorylation (139). The RcsAB box resembles
the RcsB box. The differences in the consensus sequences are
indicative of the presence of RcsA in the heterodimer, and it
was hypothesized that the conformation of RcsB might be
modulated upon interaction with RcsA, resulting in recogni-
tion of different DNA targets (107).

Like EnvZ/OmpR, the RcsCDB phosphorelay regulates the
biogenesis of flagella, curli, and type 1 fimbriae. It may also
regulate an uncharacterized fimbrial locus (sfm). Regulation of
the flagellar system by RcsCDB was shown first in Proteus
mirabilis (12) and later in E. coli (33, 143). The 2CST regulator
RcsB binds directly to the flhDC promoter to inhibit its tran-
scription. This regulation may also involve RcsA (33), but only
when an excess of it is present (C. E. Fredericks and A. J.
Wolfe, unpublished). A recent study provided evidence that
RcsCDB activates fim expression (Fredericks, and Wolfe, un-
published), while a microarray analysis indicated that RcsCDB
negatively regulates both the biogenesis of curli and the ex-
pression of fimZ (32). In S. enterica, the 2CST regulator FimZ
activates fim, while it represses flhDC (28). In E. coli, however,
FimZ probably does not regulate the fim locus but rather
regulates the sfm (salmonella-like fimbriae) locus in which it
resides (http://genolist.pasteur.fr/Colibri/, http://ca.expasy.org
/sprot/). If this is true, then RcsCDB regulates fim and sfm
inversely, increasing fim expression while decreasing expres-
sion of sfm. Whether FimZ regulates flhDC in E. coli remains
unknown.

Taken together, this evidence provides strong support for
the hypothesis that the RcsCDB phosphorelay plays an impor-
tant role in adapting the bacterial cell surface to growth on a
solid surface (32) and, thus, a critical role in the development
of biofilms (L. Ferrieres and D. Clarke, personal communica-
tion).

SMALL MOLECULES

In E. coli, signal transduction pathways either can produce
small molecules as second messengers or can be influenced by
small molecules. Below, we discuss the impact of three of these
molecules, cAMP, acetyl�P, and c-di-GMP, on our network.

Cyclic AMP. The product of a signal transduction pathway
that consists of the phosphoenolpyruvate:carbohydrate phos-
photransferase system and adenylate cyclase, cAMP is a sec-
ond messenger that reports on the nutritional status of the
external environment. When levels of catabolite-repressing
carbon sources decrease, cAMP levels increase (105). The
cAMP then docks with CRP to activate the transcription of
genes required for the metabolism of secondary carbon sources
and other cellular processes (for a review, see reference 46),
including the biogenesis of flagella and curli.

Acetyl phosphate. The intermediate of the phosphotrans-
acetylase-acetate kinase pathway (21, 118), acetyl�P, has a
larger �G0 of hydrolysis than ATP (76). Thus, acetyl�P stores
more energy than ATP stores and, indeed, donates its phos-
phoryl group to ADP to generate ATP. This tendency to do-
nate phosphoryl groups also forms the basis for its proposed
impact on 2CST pathways (85, 151).

There is much evidence which supports the hypothesis that
acetyl�P can interact with 2CST pathways. In vitro, many
response regulators autophosphorylate using acetyl�P as the
phosphoryl donor. Numerous in vivo studies have shown that
there is a strong correlation between the status of the acetyl�P
pool and activation of some 2CST targets, implicating
acetyl�P in the activation of a subset of response regulators
(for a review, see reference 157). One of these studies dem-
onstrated that acetyl�P can influence the in vivo expression of
almost 100 genes (158), verifying that acetyl�P correlates with
decreased expression of genes involved in flagellum biogenesis
(113) and showing that it correlates with increased expression
of genes involved in type 1 fimbria assembly (fim), the biosyn-
thesis of capsule (cps), and the response to multiple stresses
(e.g., osmB, osmY, and osmC) (158). These results can be
explained, in part, by the following observations: (i) acetyl�P
can donate its phosphoryl group to both OmpR (62) and RcsB
(F. Bernhard, personal communication), (ii) the Rcs phos-
phorelay controls the biosynthesis of capsule (138) and many
of the stress-associated genes (30, 32), (iii) both OmpR and the
Rcs phosphorelay regulate the biogenesis of flagella, curli, and
type 1 fimbriae (32, 33, 97, 109, 128), and (iv) acetyl�P acts
upon capsule biosynthesis and flagellum biogenesis via the
RcsCDB phosphorelay (Fredericks, and Wolfe, unpublished).

Cyclic di-GMP. The second messenger, c-di-GMP, also reg-
ulates the transition from motile, planktonic cells to a sessile
biofilm. Like acetyl�P, it inhibits flagellum biogenesis while
enhancing capsule biosynthesis (for recent reviews, see refer-
ences 58, 116, and 131). However, in contrast to cAMP and
acetyl�P, which influence this transition by controlling tran-
scription initiation, c-di-GMP tends to act posttranslationally
(3, 49, 54, 64, 103).

c-di-GMP is synthesized by diguanylate cyclases (DGCs) and
is degraded by phosphodiesterases (PDEs). DGC activity has
been associated with the highly conserved GGDEF domain
(101, 102, 120, 131, 144), while PDE activity has been associ-
ated with the highly conserved EAL domain (17, 26, 145).
GGDEF and EAL domains are ubiquitous in bacteria (133).
On the basis of sheer abundance, they represent a major family
of signaling pathways (37). Many bacterial species possess mul-
tiple proteins with GGDEF and/or EAL domains. For exam-
ple, Pseudomonas aeruginosa has 33 such proteins, Vibrio chol-
erae possesses 41, and E. coli has 36 (58, 116, 131). This
abundance suggests that there is a network of pathways that
either integrates multiple signals into a single second messen-
ger or instead permits synthesis of the second messenger in
response to diverse signals (38). More likely, pathways work in
relative isolation due to localization or the existence of micro-
environments (54, 101, 131).

Processes influenced by c-di-GMP also are abundant, but
most of them result in phenotypic changes that are related to
the transition between motile, planktonic individuals and a
sessile biofilm (131). The mechanisms used by c-di-GMP to
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influence behavior remain obscure, although this molecule
likely works by direct interaction with its targets (37). Such is
the case with the biosynthesis of cellulose, an extracellular
polysaccharide, in Acetobacter xylinum and S. enterica. In these
organisms, multiple DGCs and PDEs regulate the intracellular
concentration of c-di-GMP, which binds directly to a cellulose
synthesis complex that includes BscA, which consists of the
newly discovered c-di-GMP-binding domain PilZ attached to a
glycosyltransferase (5). The result is an activated complex ca-
pable of synthesizing cellulose, which is required for the for-
mation of biofilms and the development of rugose colonies (57,
114, 119, 131, 155). A second example is YcgR, which consists
of a PilZ domain attached to a domain whose function is
unknown (5). YcgR, along with the EAL domain protein
YhjH, has been implicated in the ability of E. coli flagella to
rotate (67) The mechanism is not understood, nor are the
mechanisms that underly the regulation of other targets of
c-di-GMP understood.

CONCLUDING REMARKS

In summary, here we describe the regulation by three global
regulators of three cellular processes involved in early biofilm
development. FlhDC is a positive regulator of flagella and
curli, OmpR is a negative regulator of flagella and type I
fimbriae and a positive regulator of curli, and RcsCDB is a
negative regulator of flagella and curli and a positive regulator
of type 1 fimbriae and capsule (Fig. 3). The differential use of
these three global regulators to integrate diverse signals, sec-
ond messengers, and metabolites likely provides much of the

basis for the ability of cells to coordinate surface organelle
biogenesis so that they can build a proper biofilm. Additional
global regulators (e.g., CRP and H-NS) and more specific
regulators (e.g., HdfR and CsgD) could provide an opportu-
nity to further calibrate the process.

We see this minireview as a semiglobal approach to relate
information about the entire network to a specific biological
question. While the ultimate goal of systems biology is to
decipher the entire regulatory network of the cell, here we
focused on one part of that network, the sector that controls
major cellular processes involved in early biofilm development.
We envision this network as just one system in which multiple
environmental signals feed into numerous global regulators to
regulate diverse cellular processes involved in a complex be-
havior. We anticipate that there are other systems.
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