
JOURNAL OF BACTERIOLOGY, July 2006, p. 4992–4995 Vol. 188, No. 13
0021-9193/06/$08.00�0 doi:10.1128/JB.00281-06
Copyright © 2006, American Society for Microbiology. All Rights Reserved.

Involvement of Y-Family DNA Polymerases in Mutagenesis Caused
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Escherichia coli DNA polymerase IV incorporated 2-hydroxy-dATP opposite template guanine or thymine and
8-hydroxy-dGTP exclusively opposite adenine in vitro. Mutator phenotypes in sod/fur strains were substantially
diminished by deletion of dinB and/or umuDC. DNA polymerases IV and V may be involved in mutagenesis
caused by incorporation of the oxidized deoxynucleoside triphosphates.

Excess oxidation is a major threat to the genomic integrity of
most living organisms. Reactive oxygen species oxidize de-
oxynucleoside triphosphates (dNTPs), as well as DNA, and
some of the oxidized dNTPs have been shown to be mutagenic
when they are incorporated in DNA. 8-Oxo-7,8-dihydro-2�-
deoxyguaniosine 5�-triphosphate (8-OH-dGTP) leads to A ·
T-to-C · G transversions when it is incorporated opposite ad-
enine (A) in the template (5, 14). To counteract the mutagenic
8-OH-dGTP, Escherichia coli has a sanitizing enzyme, MutT,
that hydrolyzes 8-OH-dGTP (20). When the mutT gene is
inactivated, the frequency of mutation of A · T to C · G
increases more than a thousandfold compared with the wild-
type frequency (35). In the case of 2-oxo-1,2-dihydro-2�-de-
oxyadenosine 5�-triphosphate (2-OH-dATP), G · C-to-T · A
transversions occur when it is incorporated opposite guanine
(G) in the template (14, 16). Another sanitizing enzyme,
Orf135, degrades 2-OH-dATP in E. coli, and G · C-to-T · A
mutations occur in an orf135-deficient strain more frequently
than in the wild-type strain (15, 17).

The members of the Y family of DNA polymerases (DNA
Pols) are involved in error-free and error-prone translesion
synthesis (TLS) of damaged template DNA in various spe-
cies, including humans (13, 26). Recently, involvement of
Y-family DNA polymerases in the incorporation of dam-
aged dNTPs was suggested by in vitro experiments per-
formed with purified DNA Pols (28). The archaeal Y-family
DNA Pols from Sulfolobus sp. and the human DNA Pols
exclusively incorporate 8-OH-dGTP opposite A in the tem-
plate DNA and incorporate 2-OH-dATP opposite G and
thymine (T). Thus, it would be interesting to examine the in
vivo roles of Y-family DNA Pols in the incorporation of
mutagenic dNTPs into DNA. Escherichia coli strain QC1736
seems to be an appropriate background to investigate the
roles of Y-family DNA Pols (DNA Pol IV and Pol V en-
coded by dinB and umuDC, respectively) in the mutagenesis

caused by oxidized nucleotides. Iron metabolism is deregu-
lated in this strain due to the lack of the Fur protein, a
negative regulator of iron uptake (29). This strain also lacks
both superoxide dismutases (SodA and SodB), which cata-
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FIG. 1. Incorporation of oxidized nucleotides by DNA polymerases. The
incorporation of 2-OH-dATP (A) and 8-OH-dGTP (B) into DNA by DNA
Pol IV and KF exo� of E. coli was assayed as described previously (28).
Cy3-conjugated primer, annealed to the template at a 1:1 ratio (0.1 �M), was
incubated with DNA Pol IV (0.1 �M) or KF exo� (0.02 U), and then 50 �M
2-OH-dATP (A) or 50 �M 8-OH-dGTP (B) was added. No other dNTPs
were added to the reaction mixtures. All the reactions were carried out at
room temperature for 30 min. The reaction products were analyzed on 15%
denatured polyacrylamide gels, and the bands were visualized using a Mo-
lecular Imager FX Pro system (Bio-Rad, Richmond, CA). The oligonucleo-
tide sequences of the primer and template were 5�-Cy3-CGCGCGAAGAC
CGGTTAC-3� and 5�-GAAGGGATCCTTAAGACNGTAACCGGTCTT
CGCGCG-3�, respectively, for 2-OH-dATP and 5�-Cy3-CGGAGCTCGGT
CGGCGTCTGCGTC and 5�-AGCCGCAGGAGNGACGCAGACGCC
GACCGAGCTCCG-3�, respectively, for 8-OH-dGTP (N � A, C, G, or T).
Parts of the sequences of the primer and template are shown. The unla-
beled lanes on the left indicate the positions of Cy3-labeled primers
without extension.
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lyze the breakdown of the superoxide anion. Thus, both iron
overload and superoxide stress occur in strain QC1736,
which leads to high rates of spontaneous mutation from A ·
T to C · G and from G · C to T · A (24). The hot spots and
sequence contexts of A · T-to-C · G mutations are almost
identical to those in a mutT strain (25). In contrast, the
hotspots of G · C-to-T · A mutations are very different from
those in mutM mutY strains, in which 8-OH-G in DNA acts
as a major mutagenic lesion. Expression of the cDNA of the
human counterpart of E. coli MutT, MTH1, which hydro-
lyzes both 8-OH-dGTP and 2-OH-dATP (12), suppresses
the mutator phenotype of the strain. Thus, it has been con-
cluded that the targets contributing to the oxidative mu-
tagenesis in the sod/fur mutant are oxidized dNTPs, such as
8-OH-dGTP and 2-OH-dATP, rather than DNA (25).

We first examined the specificity with which the purified
native form of DNA Pol IV (31) incorporates 2-OH-dATP and
8-OH-dGTP in vitro. DNA Pol IV predominantly incorpo-
rated 2-OH-dATP opposite template G and T, and the fre-

quency of incorporation opposite G was almost equal the fre-
quency of incorporation opposite T (Fig. 1 A). In contrast,
Klenow fragment exo� (KF exo�) (New England Biolabs,
Massachusetts) predominantly incorporated 2-OH-dATP op-
posite T. DNA Pol IV almost exclusively incorporated 8-OH-
dGTP opposite A, and KF exo� incorporated 8-OH-dGTP
opposite A and cytosine (C) (Fig. 1 B). These in vitro results
suggest possible involvement of Y-family DNA polymerases in
oxidative mutagenesis through misincorporation of the oxi-
dized dNTPs during DNA synthesis in E. coli.

To examine the in vivo roles of Y-family DNA Pols, muta-
tion frequencies were compared for sod/fur strains with and
without Pol IV and Pol V (Table 1). Both A · T-to-C · G and
G · C-to-T · A transversion frequencies were reduced by 80 to
90% by deletion of either dinB or umuDC or both in the sod/fur
strains (Table 2). Interestingly, the double mutants (�dinB
�umuDC) exhibited levels of mutation frequency similar to
those of single mutants (�dinB or �umuDC). These results
suggest that the base substitutions by erroneous incorporation

TABLE 1. Strains used in this studya

Strain Characteristics P1 transduction or conjugation Reference
or source

CC101 Derivative of strain P90C �araA(lac proB)xIII� carrying F� lacIZ- proB�;
lacZ has a mutation (GAG to TAG) at codon 461

7

CC104 Derivative of strain P90C �araA(lac proB)xIII� carrying F� lacIZ- proB�;
lacZ has a mutation (GAG to GCG) at codon 461

7

AR30 �dinB61::ble sulA211 4
DE2302 thr-1 ara-14 leuB6 �(gpt proA)62 lacY1 tsx-33 supE44 galK2 hisG4

rpsL31 xyl-5 mtl-1 arg3 thi-1 uvrA6 �(umuDC)595::cat fadR615::Tn10
purB58

34

EC8 thr-1 ara-14 leuB6 �(gpt-proA)62 lacY1 tsx-33 supE44 galK2 hisG4
rpsL31 xyl-5 mtl-1 argE3 thi-1 uvrA6 �(umuDC)596::ermGT fadR�

purB�

11

KY1056sFtet101 AB1157 derivative; harboring F� derived from CC101, which has Tn10
in it for selection of F�

K. Yamamoto

KY1056sFtet104 AB1157 derivative; harboring F� derived from CC104, which has Tn10
in it for selection of F�

K. Yamamoto

YG6125A AB1157 derivative; harboring F� derived from CC101, which has Tn10
in it for selection of F� and �dinB::kan

This study

YG6125B AB1157 derivative; harboring F� derived from CC104, which has Tn10
in it for the selection of F� and �dinB::kan

This study

QC1736 �(argF-lac)U169 rpsL �sodA3 sodB::MudPR fur::kan; Cmr Kmr 29
YG6177 Like QC1736 but �dinB61::ble; Cmr Kmr Zcr AR30 (P1) 3 QC1736 This study
YG6180 Like QC1736 but �umuDC(596)::ermGT; Cmr Kmr DE2302/EC8 (P1) 3 QC1736 This study
YG6124 Like QC1736 �dinB61::ble; �umuDC(596)::ermGT; Cmr Kmr Zcr DE2302/EC8 (P1) 3 YG6177 This study
YG6175b Like QC1736 but harboring F� from CC101; Cmr Kmr Tcr KY1056sFtet101 3 QC1736 This study
YG6176b Like QC1736 but harboring F� from CC104; Cmr Kmr Tcr KY1056sFtet104 3 QC1736 This study
YG6178b Like QC1736 but �dinB61::ble and harboring F� from CC101; Cmr

Kmr Tcr Zcr
YG6125A 3 YG6177 This study

YG6179b Like QC1736 but �dinB61::ble and harboring F� from CC104; Cmr

Kmr Tcr Zcr
YG6125B 3 YG6177 This study

YG6181b Like QC1736 but �umuDC(596)::ermGT and harboring F� derived
from CC101; Cmr Kmr Tcr

KY1056sFtet101 3 YG6180 This study

YG6182b Like QC1736 but �umuDC(596)::ermGT and harboring F� from
CC104; Cmr Kmr Tcr

KY1056sFtet104 3 YG6180 This study

YG6126b Like QC1736 but �dinB61::ble and �umuDC(596)::ermGT and
harboring F� from CC101; Cmr Kmr Tcr Zcr

YG6125A 3 YG6124 This study

YG6127b Like QC1736 but �dinB61::ble and �umuDC(596)::ermGT and
harboring F� from CC104; Cmr Kmr Tcr Zcr

YG6125B 3 YG6124 This study

a The deletion strains for dinB encoding DNA Pol IV were constructed by P1 transduction as indicated. The umuDC deletion encoding DNA Pol V was introduced
into QC1736 and YG6177 by two-step P1 transduction (11). (P1) indicates that P1vir phage lysate was prepared in the strain. F� with a mutation for specific detection
of changes from G · C to T · A or from A · T to C · G was separately introduced by conjugation as indicated. The arrows indicate the directions of transfer for P1
transduction and conjugation. Chloramphenicol, kanamycin, tetracycline, and zeocin were used at concentrations of 10 �g/ml, 25 �g/ml, 10 �g/ml, and 50 �g/ml,
respectively. Cmr, chloramphenicol resistance; Kmr, kanamycin resistance; Tcr, tetracycline resistance; Zcr, zeocin resistance.

b Strain used for the LacZ reversion assay.
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of 2-OH-dATP or 8-OH-dGTP require both DNA Pol IV and
DNA Pol V functions.

The dNTP pool and DNA are continuously exposed to a
variety of exogenous and endogenous damaging agents, includ-
ing reactive oxygen species, and the incorporation of oxidized
dNTPs into DNA is a major source of spontaneous mutagen-
esis and carcinogenesis (1). Here we obtained biochemical and
genetic evidence that DNA Pol IV and Pol V may be involved
in oxidative mutagenesis through misincorporation of altered
nucleotides (i.e., 2-OH-dATP and 8-OH-dGTP) during DNA
synthesis. This is consistent with the report by Satou et al. (27)
that DNA Pol IV promotes mutation of G · C to T · A in E. coli
when 2-OH-dATP is directly introduced into cells by CaCl2
treatment. It has also been suggested that SOS-inducible poly-
merases, including Pol IV and Pol V, are involved in mutagen-
esis caused by increases in the normal levels of dNTPs (33). It
has been reported that more than one DNA polymerase is
involved in mutagenesis when the Y-family DNA polymerases
are involved in TLS. For benzo[a]pyrene-induced mutagenesis,
both Pol IV and Pol V are required for a �1 frameshift TLS
(23). DNA lesions induced by other chemicals, including
3-methylcholanthrene or dimethylbenzo[a]anthracene, also re-
quire both DNA Pol IV and Pol V for a �2 frameshift in a CG
repetitive sequence in Salmonella enterica serovar Typhi-
murium (18, 21). Thus, we speculate that DNA Pol IV and Pol
V are involved in sequential biochemical steps, such as incor-
poration and extension of oxidized dNTPs during chromosome
replication. One of these polymerases might incorporate oxi-
dized dNTPs into DNA in an erroneous manner, and the other
might extend the mutagenic primer termini containing the
oxidized deoxynucleoside monophosphate, thereby inducing
base substitutions. It is obvious, however, that more experi-
ments are needed to elucidate the precise mechanisms.

DNA Pol IV is controlled by 	s, and the level of expression
of Pol IV in the stationary phase decreases significantly when
the rpoS gene encoding 	s is defective (10, 19). Thus, Pol IV
appears to be regulated not only by the SOS response but also
by the 	s-dependent stress response. In stationary-phase cells,
the amount of cellular mismatch repair proteins decreases at
least 10-fold (8). Hence, the error-prone nature of Pol IV is
expected to be more significant. In fact, DNA Pol IV is re-
sponsible for some of the adaptive mutations in stationary-

phase cells (9, 22), Interestingly, adaptive mutagenesis is ap-
proximately fourfold more frequent in a sodA sodB strain than
in the parental strain, and this mutagenesis is suppressed under
anaerobic conditions (2). Therefore, DNA Pol IV might be
involved in stationary-phase mutagenesis by either incorpora-
tion of oxidized dNTPs or extension of primers having oxidized
deoxynucleoside monophosphates or both, although it is pos-
sible that DNA Pol IV induces mutations by error-prone by-
pass across oxidized bases in template DNA.

The oxidized nucleotide pools also cause a problem in mam-
malian cells. Spontaneous tumorigenesis in lungs, livers, and
stomachs is enhanced in mice that are deficient in Mth1 (30).
In addition, a recent study suggested that the majority of
mutations in human cells that are deficient in mismatch
repair do not arise from spontaneous replication errors but
from the incorporation of oxidized dNTPs (6). Thus, it
might be interesting to examine the roles of mammalian
Y-family DNA Pols in genome instability caused by oxida-
tion of the nucleotide pool.
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