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ABSTRACT In this study, we investigate the extent to which techniques for homology modeling that were developed for water-
soluble proteins are appropriate for membrane proteins as well. To this end we present an assessment of current strategies for
homology modeling of membrane proteins and introduce a benchmark data set of homologous membrane protein structures,
called HOMEP. First, we use HOMEP to reveal the relationship between sequence identity and structural similarity in membrane
proteins. This analysis indicates that homology modeling is at least as applicable to membrane proteins as it is to water-soluble
proteins and that acceptable models (with Ca-RMSD values to the native of 2 Å or less in the transmembrane regions) may be
obtained for template sequence identities of 30%orhigher if anaccuratealignment of the sequences is used.Second,weshow that
secondary-structure prediction algorithms that were developed for water-soluble proteins perform approximately as well for
membrane proteins. Third, we provide a comparison of a set of commonly used sequence alignment algorithms as applied to
membraneproteins.Wefind that high-accuracy alignments ofmembraneprotein sequences canbeobtainedusing state-of-the-art
profile-to-profile methods that were developed for water-soluble proteins. Improvements are observed when weights derived from
the secondary structure of the query and the template are used in the scoring of the alignment, a result which relies on the accuracy
of the secondary-structure prediction of the query sequence. Themost accurate alignments were obtained using template profiles
constructed with the aid of structural alignments. In contrast, a simple sequence-to-sequence alignment algorithm, using a
membrane protein-specific substitution matrix, shows no improvement in alignment accuracy. We suggest that profile-to-profile
alignment methods should be adopted to maximize the accuracy of homology models of membrane proteins.

INTRODUCTION

Membrane proteins are believed to comprise 20–30% of the

proteins in a genome (1–3) and represent a significant pro-

portion of therapeutic drug targets (4). However, as a result

of difficulties in experimental structure determination, they

constitute only ;1% of the structures available in the protein

data bank (PDB) (5). The absence of structural information

severely limits our ability to understand membrane protein

function. Based on previous experience with water-soluble

proteins, it is likely that computational structure prediction

will provide a useful approach to generating models for these

proteins. Typically, the most accurate models of protein

structures are achieved through homology modeling, where a

known structure is used as a template for the construction of

a model of a related protein (6). However, it remains unclear

whether the methods and assumptions used in homology

modeling of water-soluble proteins can be applied directly to

membrane proteins without modification.

There are several features of membrane proteins that dis-

tinguish them from water-soluble proteins. The differences

arise because the environment of the transmembrane regions

of membrane proteins is different from that in aqueous so-

lution: it is predominantly lipophilic, lacks hydrogen-bonding

potential, and provides little screening of electrostatic interac-

tions. At the primary sequence level, this results in significant

differences in amino acid composition (7,8) and in the probabil-

ities of amino acid substitutions during evolution (9,10), gener-

ally favoring residues with hydrophobic side chains, especially at

the protein-lipid interface (11,12). In addition, amino acids have

been shown to have different secondary-structure propensities in

membrane environments and in aqueous solution (13–15).

The differences in the properties of the two types of protein

might be expected to have consequences for the applicability

of some homology modeling methods to membrane proteins.

For example, differences in amino acid composition and

evolutionary substitution probabilities imply that methods

for the alignment of protein sequences may not be directly

transferable. This possibility has led to the creation of novel

amino acid substitution matrices (10,16), which are used to

identify probable matches in sequences, and to the introduc-

tion of so-called bipartite alignment methods that utilize these

matrices in transmembrane regions only (10,16,17).

A second aspect of modeling that may be affected by the

differences between membrane proteins and water-soluble

proteins is the prediction of secondary structure. We draw a

distinction between the secondary structure of a residue and

its location relative to the membrane, since every amino acid

can be labeled as having both a specific secondary-structure

type and a specific location. This distinction is useful be-

cause it allows for the unique description of secondary-

structure elements peripheral to the membrane (18), as well

as coil-like residues within the membrane, e.g., in reentrant

loops or unwound helices (19). Thus, a method capable of

accurately predicting the secondary structure of each residueSubmitted February 28, 2006, and accepted for publication April 13, 2006.
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in a membrane protein sequence would provide information

that is supplementary to that obtained from the prediction of

the location of a particular amino acid with respect to the

bilayer. More generally, it is important to understand the extent

to which secondary-structure prediction algorithms designed

for soluble proteins are applicable to membrane proteins.

A third way the membrane environment may affect ho-

mology modeling studies involves the presence of unique

topological constraints provided by the lipid bilayer (20). In

principle, it is possible that the range of relative orientations

of helices within the membrane is more restricted than in the

aqueous phase, which may limit the structural diversity avail-

able to families of membrane proteins. It might also suggest

that homology models of membrane proteins are more ac-

curate than models of water-soluble proteins for the same

level of sequence identity. It is therefore of interest to assess

the relationship between sequence identity and structural

similarity for membrane proteins.

In this work, we address the three issues raised above. We

analyze the performance of state-of-the-art globular-protein

homology modeling strategies using a set of 36 homologous

membrane protein structures (HOMEP), comprising 11 fam-

ilies of topologically related proteins. Taking each protein in

turn, we use all its family members as templates for the

construction of homology models whose accuracy is then

determined by comparison to the known structure. Although

small on the scale of general sequence alignment benchmark

sets such as BaliBase (21), the HOMEP set is carefully

compiled and covers a wide range of sequence identities,

varying from 80 to ,10%.

METHODS

The HOMEP benchmark set

A data set of 36 HOMEP structures (see Supplementary Material Table 1;

the data set is available at http://trantor.bioc.columbia.edu/;lucy/homep)

was selected from the PDB (5). All the proteins were solved using x-ray

crystallography at a resolution of 3.5 Å or better. If two or more structures

of the same protein were available, that with the highest resolution was

selected. Polypeptide chains believed not to contact the membrane were

omitted. Each family contains proteins with the same topology, defined here

as the number and orientation of the transmembrane domains, excluding

peripheral membrane-spanning domains that are not present in all members

of the family. Taking each protein as a potential query sequence and all other

members of its family as templates (for a homology model), the HOMEP

data set contains 94 query-template pairs, from which 94 alignments and

homology models can be constructed (Supplementary Material Table 2).

Two definitions of the transmembrane regions were adopted. The first,

referred to as TM, was defined by hand to incorporate all residues in mem-

brane-spanning secondary-structure elements according to DSSP (22) that

were also superimposed in the structural alignment of all family members.

Thus, the TM regions include residues located at the lipid-water interface as well

as within the bilayer (Supplementary Material Table 3). The second definition,

referred to as TMDET, comprises only residues in the hydrophobic core of the

membrane, as defined by the TMDET algorithm (23) used by the PDB_TM

database (24). Two short segments were incorrectly assigned by TMDET and

thus excluded from the analysis: a strand (residues 128–133) in a loop region of

1osm and a helical region in the first two N-terminal residues of 1pw4.

Secondary-structure prediction accuracy

Since HOMEP is highly redundant by design, for the analysis of secondary-

structure prediction algorithms we used the 40% nonredundant set of

membrane proteins from the PDB_TM database from July 1, 2005. After

excluding theoretical models, Ca-only structures, and proteins with missing

residues, the set contained 106 chains from 71 membrane proteins, of which

92 chains were a-helical and 14 chains were b-barrels. Predictions were

obtained with local installations of PSIPRED (25) v2.3, JNET (26), and

PHDsec (27), and compared against assignments from DSSP. To obtain the

multiple-sequence alignment input for each protein, we ran a PSI-BLAST

search on the National Center for Biotechnology Information (NCBI) nonre-

dundant database (nr); we ran three PSI-BLAST iterations including sequences

below an E-value cutoff of 5 3 10�4 and reported sequences with an E-value

cutoff of 1 3 10�3. No filtering of transmembrane regions was carried out.

We also assessed the composite prediction used by HMAP (28), which is

a vector of probabilities for the three states (helix, strand, and coil) deter-

mined by direct averaging of the confidence scores from PSIPRED, JNET,

and PHDsec. To enable comparison with the DSSP assignments, the pre-

diction at each position was taken as the state with the highest probability.

Generation of sequence alignments

Sequence-to-sequence alignments

The dynamic programming algorithm in ClustalW v1.82 (29) was used to

align each of the query-template sequence pairs. Gap-open penalties (po) of

9, 10, 11, 12, 15, and 20 were tested in combination with gap-extension

penalties (pe) of 0.1 or 1. No clear difference was seen in the Q or AL0 scores

(see below) of pairwise alignments using these different gap penalties (data

not shown), so the default values (po ¼ 10 and pe ¼ 0.1) were used.

Sequence-to-profile alignments

We carried out PSI-BLAST (30) searches for each template sequence on the

nr database, which was clustered at 65% sequence identity; five iterations of

PSI-BLAST were carried out using E-value cutoffs as above. The sequence

hits were compiled into a multiple-sequence alignment from which very

remote homologs were removed according to the sequence threshold of

Batalov and Abagyan as described by Tang et al. (28). This purged alignment

was then used to create a sequence-based profile to which the query sequence

was aligned with ClustalW, creating a sequence-to-profile alignment. A

profile is an alternate representation of the primary sequence in which each

amino acid position contains a set of probabilities.

Multiple-sequence alignments

These were generated by combining PSI-BLAST hits (as above) for both

query and template into a single nonredundant set of sequences, which were

then aligned using ClustalW, (T-Coffee (31), Muscle (32), and ProbCons

(33)).

HMAP profile-to-profile alignments

HMAP is a program for the construction and alignment of structure-based

profiles (28) that is similar in its algorithms to other profile-based approaches

(34). For each template we generated two types of profile: HMAP [1,2] and

HMAP [1,2,3], which combine sequence and secondary- and tertiary-

structure information in different ways. The HMAP [1,2] template profiles

combined sequence information from a PSI-BLAST search (as above) with a

consensus secondary-structure assignment derived from all templates in the

family, alongside position-specific weights reflecting the location of un-

gapped (i.e., core) positions in the alignment. The HMAP [1,2,3] template

profiles differ in that the PSI-BLAST hits were taken from all available

templates and merged using a structural alignment as a guide. For the query
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sequence we created a similar HMAP [1,2] profile, except that the secondary

structure was obtained from a consensus prediction (see above) and the

position-specific weights depended on the confidence levels of those pre-

dictions. Query and template profiles were then aligned using a score

designed to favor matching of ungapped core regions and of secondary-

structure types. Gap penalties were also assigned according to the location of

core regions or secondary-structure elements. We used the local-global align-

ment method where unaligned terminal residues are only penalized in the

query.

In the case of the reductase family of proteins, one member (PDB code:

1l0v) comprises two protein chains, whereas the homologous region in the

other two reductase proteins is made up by a single chain. Alignment

therefore required concatenation of the sequences or profiles of the two 1l0v

chains; multiple sequence alignments were not possible.

Structure-based alignments

Structure-based sequence alignments were carried out with SKA (35,36).

Residues that were matched in the structure alignment were used to define

the correct alignment, which is the reference state in the calculation of the

percentage of aligned positions that are correctly predicted, Q (see below).

The sequence identity for each query-template pair was calculated using this

alignment and was defined as the number of identical residues divided by the

length of the shortest sequence.

Measures of accuracy

Models were built using Modeller 6v2 (37) and were assessed using several

measures of structure similarity or model accuracy. In addition to the root

mean squared deviation of the positions of the Ca atoms (Ca-RMSD), we

compare the model with the native structure using two scores that are used to

evaluate predictions in CASP (38). Both measures are based on the global

distance test (GDT), which determines the number of model-template Ca-

atom pairs, G(v) that are within a distance threshold, v Å (39). Using GDT

results, the GDT_TS score (40) is then calculated as the average percentage

of residues that fit within four different cutoff distances:

GDT TSð%Þ ¼ 1

4
+

v¼1;2;4;8

GðvÞ
t

3 100

� �
;

where t is the number of Ca-atoms in the template structure. A second

measure, the AL0 score (37), is computed in a similar way but using a single

threshold of 3.8 Å, that is

AL0ð%Þ ¼ Gð3:8Þ
t

3 100:

This threshold corresponds approximately to the distance between

adjacent Ca atoms in a peptide chain, so that it tends to reflect structural

differences corresponding to shifts in the sequence alignment.

Sequence alignment accuracy was also measured using the percentage of

correctly aligned positions, Q:

Qð%Þ ¼ Nc

Na

3 100;

where Na is the number of nongapped positions in the structure-based SKA

alignment and Nc is the number of correctly aligned positions in the test

alignment compared to the SKA alignment.

For ease of comparison, the individual membrane protein models in our

set (one for each query-template pair, M, have been ranked according to i)

the fraction of the target structure that can be superimposed on the template

within a cutoff distance of 5 Å, and ii) the sequence identity between the

target and template. These two rankings, respectively denoted by Rf
M and

Ri
M , were combined into a relative difficulty score (41) for each model:

Difficulty(M) ¼ (Rf
M1Ri

M)/2.

RESULTS

Benchmark of membrane protein homology
model accuracy

For each of the 94 pairs of membrane proteins in the HOMEP

data set, a homology model was built using the structure-

based sequence alignment, which we take as the correct

alignment. The Ca-RMSD and GDT_TS scores of these

models, plotted against sequence identity (Fig. 1), provide a

benchmark of the likely quality of a membrane protein ho-

mology model for a given level of sequence identity, as-

suming that the correct alignment can be achieved and that no

refinement is carried out. Fig. 1 shows that the quality of a

membrane protein homology model decreases exponentially

with decreasing sequence identity.

FIGURE 1 Structural relationship between membrane protein models and

their templates. The sequence identity of the structure-based (correct)

alignment is plotted against (A) the Ca-RMSD and (B) the GDT_TS scores

of the corresponding model compared to the native structure. Data are shown

for the whole protein (d) and for the transmembrane regions (h). Six

models had RMSD values of between 10 and 40 Å; for clarity these points

are plotted at RMSD ¼ 10 Å.

510 Forrest et al.

Biophysical Journal 91(2) 508–517



Since the alignments used to generate these homology

models are based on structural (i.e., optimal) alignments, Fig.

1 also contains information on the structural similarity be-

tween the target and query crystal structures. As such, the

exponential relationship between sequence and structure for

these membrane proteins appears to be very similar to that

observed for pairs of homologous water-soluble proteins

(42–44). The TM definition used here corresponds loosely to

the common core defined by Chothia and Lesk (44); the Ca-

RMSD values of the two data sets match reasonably well.

The membrane protein whole-protein Ca-RMSDs are more

similar to the values of Flores et al. (43), which also represent

whole proteins, although this comparison is more difficult

due to the large number of outliers in our data set. These

outliers are caused by the absence of template regions for

certain long (.10 residue) loops and termini, resulting in

large local errors to which the RMSD measure is particularly

sensitive. When AL0 and GDT_TS scores are used, how-

ever, it is clear that the scores for the whole models are

indeed significantly lower than the scores for the transmem-

brane regions (Fig. 2). This suggests that there is a marked

structural variability in the connecting regions between

membrane-spanning segments of topologically related pro-

teins (i.e., with the same number of transmembrane domains

and the same N- to C-terminal orientations), as indicated by

the variability in their length and sequences.

The AL0 scores of the transmembrane regions approach

100% in the majority of the models, whereas the GDT_TS

scores for the same regions are often below 100%, sug-

gesting that the errors in the easier models are local de-

viations that might be removed given an effective refinement

protocol.

Secondary-structure prediction accuracy

We ran three different programs on a nonredundant set of

membrane proteins of known structure and compared the

results with assignments calculated using DSSP (Table 1).

The per-residue three-state accuracy (helix, strand, or coil) of

the three methods was found to be between 68 and 79%,

which is comparable to the ;76% found for globular pro-

teins (25,26,45,46). Similar results were obtained for the

composite prediction used by HMAP. Note that the standard

deviations are large in all cases, especially for PHDsec and

JNET, reflecting a variation in scores that is larger than the

7–10% deviation found for soluble proteins. When consid-

ering only the hydrophobic cores, as defined using TMDET,

the accuracy improves further, especially for PSIPRED (87%).

Comparing the different fold types, we found that a-helical

residues in membrane proteins (particularly in the mem-

brane regions) are on average more accurately predicted than

b-strand residues, although the data set is smaller for the

latter, making such comparisons tentative.

Sequence-based profile alignments

We compare the accuracy of membrane-protein sequence

alignments and the models based thereon using the method-

ologies described in the Methods section. Comparing the two

ClustalW methods using the AL0 scores of the respective

models (Fig. 3 and Table 2), the sequence-to-profile align-

ments are more accurate than sequence-to-sequence align-

ments at low sequence identities. This is in line with results

for nonmembrane proteins (47,48). However, in the range of

40–50% sequence identity, the sequence-to-profile align-

ments are less accurate than the sequence-to-sequence align-

ments. This has previously been observed for globular

protein alignments with ClustalW (28,49).

We also compare the ClustalW alignment results with

those of other recently developed multiple-sequence align-

ment algorithms, namely, Probcons, T-Coffee, and Muscle,

which have been reported to be more accurate than ClustalW

for globular protein sequence alignments (31–33). Not all of

these methods were able to align single sequences to a se-

quence profile; thus, for each method, we generated multiple-

sequence alignments using the PSI-BLAST hits for both

query and template (see Methods). The ClustalW multiple-

sequence alignments were more accurate than the sequence-

to-profile alignments, based on the AL0 scores of the

corresponding models (Table 2). Comparing ClustalW

multiple-sequence alignments with those of other methods

FIGURE 2 Relationship between model quality and model-building diffi-

culty. (Top) Alignment accuracy measured by AL0 for the whole protein (d)

and transmembrane regions (h). (Bottom) Structural accuracy measured by

GDT_TS for the whole protein (d) and transmembrane regions (h).

Membrane Protein Homology Modeling 511

Biophysical Journal 91(2) 508–517



using the signed rank test, the newer methods appear to offer

significant improvement over ClustalW. Closer inspection

reveals that this difference is due to alignments at sequence

identities around 40%.

Structure-based profile-profile alignments

The use of the HMAP [1,2] structure-based profile-to-profile

alignment method improves the AL0 scores of the models

compared with the ClustalW sequence-to-profile alignments

and multiple-sequence alignments (Fig. 3 and Table 2).

However, the improvement is less obvious when comparing

against the newer multiple-sequence alignment methods and

in particular with T-Coffee. The most significant improve-

ment in AL0 obtained from HMAP is seen for the most

difficult alignments, with sequence identities of,10%. HMAP

[1,2,3] alignments are better than the HMAP [1,2] align-

ments, especially for pairs of sequences with identities of

0–30%. Three-dimensional information is incorporated here

using structural alignment of the available templates to guide

the combination of their sequence information, as well as

the assignment of weights to the core regions (see Methods).

Clearly the higher precision achieved by combining tem-

plate information in this way leads to greater accuracy in the

alignments.

In summary, the HMAP [1,2] and HMAP [1,2,3] struc-

ture-based profile-to-profile alignments result in the most

accurate models of all the methods compared here. However,

the alignments obtained from HMAP are not optimal as

defined by the structure-based alignments, which obviously

limits the accuracy of the models built on these alignments.

Bipartite alignments

All the alignments presented so far, whether sequence- or

profile-based, were calculated using the BLOSUM62 amino

acid substitution matrix, which was developed for globular

proteins (50). It has been suggested that bipartite alignments,

which use different substitution matrices for the transmem-

brane and water-soluble regions, might be more appropriate

for membrane proteins (10,16). We tested the effect of using

a bipartite approach in a sequence-to-sequence alignment

scheme (10,16) on the HOMEP data set using a simple dy-

namic programming algorithm where the PHAT matrix (16)

was applied to the known transmembrane regions in the

template and the BLOSUM62 substitution matrix was used

for the remaining residues. Note that in contrast to the STAM

method (17), we do not align the transmembrane segments

separately and then add the loop regions, but rather align the

whole sequence and choose the substitution matrix depend-

ing on the assignment of each position (10,16). The bipartite

alignments result in models with lower AL0 scores than

when BLOSUM62 is used throughout (Fig. 4 and Table 3);

similar results are observed using Q scores. Using the TM

TABLE 1 Secondary-structure prediction accuracy

Residues* PSIPRED PHDsec JNET Compositey

Whole

All 19,540 79.2 (10.9) 67.6 (17.1) 69.2 (17.6) 77.6 (12.6)

a 15,350 80.0 (10.4) 67.5 (17.6) 69.7 (18.3) 78.5 (12.4)

b 4190 74.1 (13.0) 68.1 (13.4) 65.6 (12.0) 71.8 (12.9)

TMDET

All 5441 87.3 (16.7) 65.2 (30.2) 71.1 (27.9) 82.3 (20.3)

a 4386 89.6 (13.9) 65.9 (31.7) 73.6 (28.8) 84.7 (19.1)

b 1055 72.2 (24.5) 61.1 (18.8) 54.4 (11.2) 66.5 (21.3)

Average (and standard deviation) of the three-state accuracy, Q3, for several

secondary-structure prediction methods. Q3 is measured as the percentage

of residues that are correctly predicted as helix, strand, or coil relative to the

DSSP assignment. Results were averaged either over the whole structure or

over the hydrophobic regions as defined by TMDET and separated into

helix bundles (a) and b-barrels (b).

*Number of residues in each subset.
yComposite prediction used by HMAP.

FIGURE 3 Accuracy of membrane protein

sequence alignments/homology models ob-

tained from different sequence alignment

methods as a function of sequence identity.

Results are given for (A) the whole protein

and (B) the transmembrane regions. The

average AL0 score is given over all align-

ments/models within a window of 10%

sequence identity, and error bars indicate

the standard deviation over that window.

Numbers correspond to the number of align-

ments in each window and apply to both

plots. Abbreviations: seq-seq, sequence-to-

sequence alignment; seq-profile, sequence-

to-profile alignment; and MSA, multiple

sequence alignment. The two HMAP labels

indicate profile-to-profile alignments.
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definition of the transmembrane region (see Methods), the

bipartite alignments were worse still, which reflects the un-

suitability of the PHAT matrix for residues in the bilayer

interfacial region.

Since PHAT was developed using transmembrane helices

and not b-strands, we also separated the results by fold type

(Table 3). As expected, the bipartite scheme worsens the

alignments of the b-barrels, whereas the alignments of the

helical bundles are very similar to when BLOSUM62 alone

is used. Overall, in the most basic bipartite implementation,

the PHAT substitution matrix does not appear to improve

sequence-to-sequence alignments of membrane proteins.

Errors in individual alignments

For a few models we observe that the alignments generated

using either HMAP [1,2] or HMAP [1,2,3] profiles were less

accurate than the ClustalW sequence-to-profile alignments.

The largest differences are found for the TonB-coupled

receptor family, most strikingly in the models where BtuB

(PDB code: 1nqe) is the query or where FepA (PDB code:

1fep) is the query. These errors are likely caused by the low

secondary-structure prediction accuracy for the long

b-strands in the TonB-coupled receptor family, which is

65.1% with PSIPRED. Other poor quality alignments are found

for the seven transmembrane helix models (see Opsins in Sup-

plementary Material Table 1), when rhodopsin (PDB code:

1u19) is either the query or the template, although the HMAP

alignments are usually better than the ClustalW sequence-to-

profile alignments. The structure of bovine rhodopsin is sig-

nificantly different from that of the three bacterial opsins: the

transmembrane helices of rhodopsin are more distorted and it

contains an additional (interfacial) helix, a small b-sheet, and

much longer loops and termini. These differences, along

with extremely low sequence identities, combine to yield

relatively poor quality alignments and models for this family.

DISCUSSION

Membrane protein homology
modeling benchmark

In this study, we have presented a detailed analysis of the

applicability of sequence alignment and homology modeling

methods to integral membrane proteins. The HOMEP data

set is key to the analysis, since it covers a range of fold types

and sequence identities and thus provides a comprehensive

benchmark of realistic modeling situations. Using this bench-

mark we show that similar trends exist with respect to the

sequence-structure relationship (43,44) and to alignment

accuracy (28) as are observed for water-soluble proteins. In

addition, with this benchmark, it is possible to predict the

likely accuracy of a homology model, assuming that an

accurate alignment can be achieved and that no refinement

is attempted. We find that the relationship between se-

quence identity and structure similarity is similar to that

observed for water-soluble proteins, so that experience based

on model accuracy for soluble proteins should be applicable to

TABLE 2 The number of HOMEP alignments out of 90 for which a method gives a higher score for the whole/transmembrane regions

AL0 CW seq-seq CW seq-prof CW MSA Probcons Muscle T-coffee HMAP [1,2] HMAP [1,2,3]

CW seq-seq – 56/53 58/56 77/64 78/71 79/67 77/64 80/69

CW seq-prof 33/24 – 59/54 73/57 72/67 75/64 77/63 80/67

CW MSA 19/13 28/20 – 57/46 61/58 65/53 69/55 73/61

Probcons 10/9 17/18 29/26 – 32/29 56/38 52/34 55/39

Muscle 10/5 15/12 25/18 55/31 – 60/43 52/36 58/44

T-Coffee 10/7 14/12 23/20 32/15 23/17 – 41/31 44/36

HMAP[1,2] 12/11 13/14 20/17 36/23 35/27 40/26 – 34/32

HMAP[1,2,3] 7/6 9/10 16/11 32/18 29/21 35/21 15/12 –

Q CW seq-seq CW seq-prof CW MSA Probcons Muscle T-coffee HMAP [1,2] HMAP [1,2,3]

CW seq-seq – 49/53 50/54 67/60 65/64 63/64 68/57 71/62

CW seq-prof 36/18 – 57/50 72/58 67/59 74/59 76/58 78/65

CW MSA 28/14 29/19 – 56/44 57/48 59/48 64/52 70/55

Probcons 19/10 18/14 30/22 – 32/34 47/34 54/36 58/41

Muscle 22/9 21/11 28/22 51/31 – 55/43 62/43 69/51

T-Coffee 17/2 16/10 23/18 35/28 26/22 – 44/32 55/41

HMAP[1,2] 13/10 10/13 20/15 29/22 25/20 39/26 – 39/35

HMAP[1,2,3] 11/7 8/9 14/13 27/20 17/17 28/19 11/6 –

Number of times that the alignments from the method in a given column have higher scores than the method in the corresponding row for whole protein/

transmembrane regions, using the AL0 score and the Q-score. The total number of query-template pairs used was 90, i.e., excluding alignments with 1l0v.

Abbreviations: CW, ClustalW; seq-seq, sequence-to-sequence; seq-prof, sequence-to-profile; MSA, multiple-sequence alignment. For example, the upper

right cell in a) reads as follows: The HMAP [1,2,3] alignments give better scores than ClustalW sequence-to-sequence alignments 80 times using the AL0

score for the whole protein, and 69 times for the transmembrane regions only. When only the transmembrane regions are considered, two methods are more

likely to give exactly the same result than when the whole sequence is considered since these regions are less variable, and thus the differences tend to be

smaller in the former case.
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membrane proteins as well. For the transmembrane regions

the expected model accuracy is higher than for the whole

protein. For example, at 50% sequence identity to the

template, a model is expected to have a Ca-RMSD of ;1 Å

from the native structure (;95% GDT_TS) in the trans-

membrane regions. Indeed, an acceptable model of, say, 2 Å

Ca-RMSD in the transmembrane regions (;85% GDT_TS)

is possible for most proteins above 30% sequence identity. In

contrast, below;25% sequence identity, which is the similarity

of many G-protein-coupled receptors to bovine rhodopsin—

the only available template—a model may have a trans-

membrane Ca-RMSD from the native above 3.0 Å (;75%

GDT_TS). The accuracy of the complete model, including

all extramembranous regions, will be expected to be lower

than that of the transmembrane region alone.

This analysis indicates the accuracy of a model assuming

that the conformation of the template structure reflects the

desired conformation of the query protein. However, many

membrane proteins are believed to undergo conformational

changes during functional processes. Homology models can-

not be expected to accurately predict such conformational

changes per se: only the conformation closest to that of the

chosen template will be adequately represented. Thus, the

accurate prediction of many different functional conforma-

tions of a membrane protein will require template structures

in equivalent conformations to be solved.

Membrane protein sequence alignments

Our analysis of sequence alignment algorithms indicates that

those methods that have proved effective for water-soluble

proteins work for membrane proteins as well. There is a clear

progression in alignment accuracy when recently developed

multiple sequence alignment (MSA) algorithms are used and

additional improvements are obtained with HMAP’s profile-

to-profile alignment algorithm. Moreover, the increased use

of structural information in the HMAP [1,2,3] alignments

yields improvements relative to the HMAP [1,2] alignments.

We note that ClustalW (29) is widely used to create sequence

alignments for membrane proteins (51–56). Our results sug-

gest that future work would benefit from the use of profile-to-

profile methods and/or more advanced MSA techniques.

Our results on a simple bipartite sequence-to-sequence

alignment method using the membrane-protein-specific

substitution matrix PHAT show no significant improvement

in the alignment quality over a traditional alignment using

BLOSUM62. Originally, PHAT was shown to improve sen-

sitivity in sequence database searches of membrane proteins

(16). However, since database searching aims to best dis-

criminate between similar and dissimilar proteins, rather than

to achieve the correct global alignment of two sequences, the

optimal parameters for the two applications may differ.

There have also been some reported improvements in align-

ment accuracy using PHAT within the program STAM (17),

which might be attributable to the separation and indepen-

dent alignment of the transmembrane and nontransmem-

brane regions and to differences in gap penalties, rather than

to the choice of substitution matrix. Clearly, the usefulness of

membrane-protein-specific substitution matrices is depen-

dent on the context, suggesting that the contribution of the

choice of matrix should be carefully assessed in future

applications.

Many other strategies have been presented for the align-

ment of membrane protein sequences (17,57–59) and for

TABLE 3 Signed rank test using AL0 values for

BLOSUM62-only against bipartite alignments for the

whole/transmembrane regions

Transmembrane definition* Bettery Worsez Total§

TMDET 57/53 23/21 94

TM 63/54 19/26 94

TMDET: helix bundles 19/17 17/19 46

TMDET: b-barrels 38/36 6/2 48

TM: helix bundles 27/21 13/18 46

TM: b-barrels 36/33 6/8 48

*Definition of residues treated as transmembrane in the bipartite scheme

(see Methods).
yNumber of times that BLOSUM62-only alignments are better.
zNumber of times that BLOSUM62-only alignments are worse.
§Number of alignments tested.

FIGURE 4 Accuracy of bipartite sequence-to-sequence alignments of

membrane proteins obtained with different substitution matrices. See legend

to Fig. 3 for more details.
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database searches (60,61). For example, probable transmem-

brane regions and loop regions have been aligned separately

as independent segments (17,58) and then reassembled.

Alignment of hydropathy profiles, rather than of primary

sequences, has also been proposed (57). These methods have

not been assessed here, either because they are not automated

or because they were only suitable for helical proteins. How-

ever, it would be interesting to see how these methods com-

pare with the profile-to-profile methods in terms of membrane

protein alignment accuracy. Indeed, comparison of models

from fully automated methods with those generated by

experts in the field (with manual adjustment of alignments,

for example) suggests that the manual approaches can lead

to higher model accuracies (62). This has relevance to the

alignments used in, e.g., G-protein-coupled receptor model-

ing (63), which have often required manual intervention.

Nevertheless, a poor initial alignment may introduce errors

that are missed during manual adjustment, particularly at low

sequence identities, emphasizing the importance of accurate

alignment algorithms.

Secondary-structure prediction

The success of the profile-to-profile methods is dependent on

the accurate prediction of secondary structures in the query

protein. We have shown that current secondary-structure pre-

diction algorithms, and in particular PSIPRED, are only slightly

less accurate for membrane proteins than they are for water-

soluble proteins. This is rather surprising, since amino acids

in membranes are reported to have different secondary-

structure propensities (13–15) and because early prediction

methods (64) gave results in poor agreement with experi-

mental data for membrane proteins (65). Our results, which

instead assess more recent, neural-network-based approaches

using a larger set of high-resolution data, are supported by a

previous study of membrane protein b-barrel prediction (66)

in which similar results were obtained using PSIPRED (73%).

(To our knowledge, no similar study has previously been

attempted for helical membrane proteins.)

Neural networks derived from soluble proteins might have

been expected to perform poorly on membrane proteins for

two reasons: the membrane region imposes different secondary-

structure propensities on amino acids, and the algorithms

were not trained on membrane protein structures. Their

success for membrane proteins may be due to the detection

of the periodicity that is present in both sets of proteins. Even

though the periodicity is effectively inverted, i.e., the surface

of transmembrane regions is more hydrophobic than the in-

terior whereas the surface of water-soluble proteins is more

hydrophilic than the interior, the existence of a regular pe-

riodic pattern alone may be sufficient to obtain good predic-

tion accuracy. In membrane protein b-barrels, the strands

often extend far beyond the hydrophobic bilayer core where

their properties are likely to strongly resemble the alternating

patterns of water-soluble protein b-strands. However, the

five to seven residues that comprise the membrane-spanning

part of the strands may have a more complex pattern: the

outer face of the barrel will be predominantly hydrophobic,

whereas the interior face properties will depend on whether

the barrel is filled with protein or water. This might explain

the lower accuracy seen for the predictions on the hydro-

phobic TMDET regions of the b-barrels compared with the

whole structures, although definitive interpretations are dif-

ficult due to the small number of structures (Table 1).

Secondary structure versus
transmembrane prediction

Since they do not predict the same property, it is somewhat

specious to directly compare the accuracies of secondary-

structure predictions with those of transmembrane predictions.

For reference, however, we note that the best-performing

transmembrane-helix predictors have two-state per-residue

accuracies (i.e., whether a residue is in the membrane or not)

of ;80% (67,68). Their accuracy at the segment level (i.e.,

whether a membrane-spanning helix is detected or not) is

generally higher, between 85 and 99%. In the case of the

b-barrel predictors, per-residue accuracies of ;82% have

been achieved (69). Thus, both the transmembrane helix and

transmembrane strand methods are only slightly more ac-

curate than the secondary-structure prediction algorithms. It

is noteworthy, though, that as a consequence of the low num-

ber of structures available, accuracies for transmembrane

predictions may be inflated by overtraining or by tests using

proteins that were also included within the training set (68).

In contrast, the secondary-structure prediction algorithms

were solely trained on water-soluble proteins.

CONCLUSIONS

Using the HOMEP data set, we show that the construction of

membrane protein homology models follows similar general

rules to the construction of water-soluble models. That is, the

expected accuracy of a membrane protein model will be sim-

ilar to that of a water-soluble protein, assuming that similar

alignment accuracy can be achieved. However, as a result of

the low numbers of experimental structures of membrane

proteins currently available, many candidate proteins for

modeling are likely to have low sequence identities to their

templates, so that accurate alignment of their sequences will

be especially challenging. Our results suggest that more ac-

curate alignments for such proteins can be achieved using

structure-based profile alignment methods that have been

developed for water-soluble proteins. In the future, however,

it may be possible to incorporate information specific to mem-

brane proteins—such as the location of hydrophobic trans-

membrane regions—within these methods to make alignments

and homology models of membrane proteins even more

accurate.
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