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ABSTRACT Existing methods of domain identification in proteins usually provide no information about the degree of domain
independence and stability. However, this information is vital for many areas of protein research. The recently developed
hierarchical clustering of correlation patterns (HCCP) technique provides machine-based domain identification in a computa-
tionally simple and physically consistent way. Here we present the modification of this technique, which not only allows de-
termination of the most plausible number of dynamic domains but also makes it possible to estimate the degree of their
independence (the extent of correlated motion) and stability (the range of environmental conditions, where domains remain
intact). With this technique we provided domain assignments and calculated intra- and interdomain correlations and interdomain
energies for .2500 test proteins. It is shown that mean intradomain correlation of motions can serve as a quantitative criterion
of domain independence, and the HCCP stability gap is a measure of their stability. Our data show that the motions of domains
with high stability are usually independent. In contrast, the domains with moderate stability usually exhibit a substantial degree
of correlated motions. It is shown that in multidomain proteins the domains are most stable if they are of similar size, and this
correlates with the observed abundance of such proteins.

INTRODUCTION

Domains can be loosely defined as quasi-independent parts

of protein molecules serving as the structural blocks and

functional units (1,2). The concept of protein domains is very

productive in analyzing themechanisms of protein folding (3)

and their stability and structural transformations in various

conditions (2,4–6). The functional (catalytic and ligand-

binding) sites of protein molecules are frequently located at

interdomain interfaces (2). There are also examples of

separation of catalytic and effector functions between two

or several domains, as this is particularly observed in different

ATPases (7,8). Domains tend to move as rigid bodies in

response to interactions with substrates and products of en-

zyme reaction (9,10). Often, domains retain their structural

integrity and function when isolated as fragments (11), and

this property is actively used in biotechnology to generate

single-chain antibody fragments (12). Genetic recombinant

techniques allow reorganization of domains in an amino acid

sequence (such as circular permutations) (13) and fusion of

domains belonging to different proteins (14,15), which in turn

allows generation of new protein functions.

Primarily, the term domain means the distinct structural

block of a protein, but quite different criteria are presently

used to identify this block. Identification can be based on

observation of independent folding (2), sequence motifs

(16), presence of a distinct hydrophobic core (17), functional

activity (17,18), contact classification (19), topology (20),

structural homology (21), independent mobility (22–25), and

other properties. Since domain-domain interactions can occur

in a broad range, varying from almost complete structural and

dynamic independence to their complete integrity, the

application of these criteria may lead to quite different results.

Different definitions of domains and methods of identifying

them can be grouped around three key concepts.

1. A domain is a recognizable (often visually) substructure

within a protein as a compact, folded part of the molecule

connected to other domains by very few structural

elements (or even only one) such as a loop or a helix.

Because of that, the number of bonds involved in inter-

domain interactions and their strength are much smaller

than those of bonds that stabilize the intradomain structure.

Various algorithms for finding such structural domains

have been suggested (20,23–30). Based on these algo-

rithms, several domain databases were constructed (31–

33). The knowledge of high-resolution three-dimensional

structure of the protein is necessary for implementation of

this concept. Some limitations regarding the analyzed

proteins should also exist. Particularly, this concept is not

expected to work very well when the contact area between

domains is large and their interactions are strong (such as in

elastase) orwhen domainswrap ‘‘arms’’ around each other

(as in papain) (34).

2. A domain is part of a protein molecule that behaves in a

quasi-independent manner with respect to the action of

different factors inducing structural transitions in protein.

Thus, domains can exhibit thermal unfolding in the narrow

interval of temperatures independent of the rest of the

protein (6,35–38). Domains are often considered as

cooperative units in protein folding (39,40). This concept

is extensively explored in experimental protein biophysics

in relation to protein conformational transitions studied by

optical methods and scanning calorimetry. If domains are
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independent and different then the number of transition

points may indicate the number of domains. Moreover,

isolated protein fragments that incorporate these domains

may exhibit the same transitions (36,41,42). This concept

can also be applied to proteins for which the three-

dimensional structure is not known—for instance, to

fibrinogen (41)—but it fails when the domain-domain

interactions are strong (3,43). Moreover, since different

factors may influence domain-domain interactions, one

may reveal a different number of domains depending on

experimental conditions (44).

3. A domain is a relatively compact part of a protein that is

characterized by its own pattern of intramolecular collec-

tive dynamics, which can be distinguished from those of

other domains (22–25). It can be seen that this concept

provides themost physically justified definition of domain,

which allows employment of objective computational

procedures for identification of domains. Several attempts

to develop such procedures were made. The best known

are normal-mode calculations with simplified potentials

(24,25,45) and the analysis of the shape of slowest

Gaussian network model (GNM) normal mode (30).

These three concepts capture essential features of domains

as the structural blocks of proteins, but they offer different

procedures for domain identification. One essential feature

that cannot always be treated properly must be noted. The

bonds inside the domains are on average stronger than the

bonds between the domains. The strength of the latter bonds

can be influenced by a number of factors. These bonds can

appear or disappear and the domains merge or come apart

depending on the medium conditions, such as temperature

and pressure, pH, and ion concentration. They may change

upon incorporation of protein into a larger unit or integration

into the biomembrane. In the fluctuating environment, only

the bonds with energy larger than several kBT can be con-

sidered ‘‘strong’’. Changes of temperature and other envi-

ronmental factors can destabilize large structural blocks and

cause their breakage into several smaller parts or, alterna-

tively, can stabilize their connections and fuse them to larger

units. In reality, the protein can possess only a single dynamic

domain at cryogenic temperatures, two or three at higher tem-

peratures closer to physiological temperature, and no distinct

domains at all above the denaturation point. The question

arises, which number of domains is intrinsic for the given

protein in given conditions? It is logical to assume that the

domains, which determine the functioning of the protein,

should be stable in a wide range of external factors that

determine ‘‘native’’ conditions. For example, the domains of

many ligand-binding proteins should perform hinge-bending

motions to facilitate capture and release of the ligand. If these

domains are disrupted or, alternatively, merged into a rigid

unit, the protein loses its function. Thus, domain composi-

tion cannot be considered as strictly defined and may depend

upon many conditions, so the factors of domain stability and

domain-domain interactions have to be taken into account.

The general solution of the problem of domain recognition

will become possible within the concept of dynamic domains

if ways are found to analyze properly the strengths of in-

tradomain and interdomain interactions. Domains can be

treated as independent units if interdomain interactions are

weaker than interactions inside the domains. In this case,

domains will maintain their integrity and move more or less

like independent units. The degree of this independence can be

described as correlation of domain motions. If domains are

completely independent, the correlation of theirmotion should

be essentially zero. In contrast, if domains are dependent on

each other they will exhibit significant correlation of motion.

This idea is exploited in different ways in several methods of

domain identification (24,25,30,45). An attractive possibility

is to relate the correlations of domainmotions to the energies of

intra- and interdomain interactions in a quantitative manner.

Finding simple algorithms based on this concept, which allow

us to scan protein databases and obtain objective domain iden-

tification for every protein, is the first goal of this research.

The other goal is to formalize and incorporate into an

analysis the concept of domain stability. As stated above, the

character of motions in the protein depends strongly on many

environmental factors, such as temperature, pH, salt con-

centration, etc. Each domain remains a stable and indepen-

dently moving unit only in a certain range of conditions. The

estimated width of this range can be used to evaluate the

stability of a particular domain and to determine if it is

‘‘native’’ for the protein in physiological conditions.

Based on these concepts, we make an attempt to develop a

practical criterion that will allow us to determine the most

plausible number of domains as the elements of structure

stable under extensive variation of environmental conditions.

A supplementary quantitative measure should estimate the

degree of domain independence. In this work, we develop

these criteria using the coarse-grained residue-level descrip-

tion of the proteins.

We used the Gaussian network model (46,47) and the

hierarchical clustering of correlation patterns (HCCP) method

(48) to identify the domains in a large set of Protein Data Bank

(PDB) structures and calculate the correlations of theirmotion.

Two sets of protein structures were used. The first set contains

522 proteins with manually assigned domains. The second set

contains 2022 proteins, which represent all major protein

folds, with no domain assignment data available (see Supple-

mentaryMaterial for the list of proteins). We used the residue-

level knowledge-basedDFIREpotentials (statistical potentials

based on a distance-scaled finite ideal-gas reference energy)

(49,50) to compute the energies of interdomain interactions

and the interactions inside the domains for each structure, and

compared these energies with motion correlations revealed by

HCCP. It is shown that themean correlations of residuemotion

inside the domains can serve as a reliable quantitativemeasure

of domain independence. The domains cannot be considered
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independent if this quantity is below a certain well-defined

critical value.We developed the procedure, which allows us to

determine the most plausible number of domains in the

proteins using HCCP and to estimate the reliability of domain

assignment. This procedure is based on the concept of the

stability gap, which is described in detail in Theory and

Methods.

Finally, after collecting the results on domain identification

and interaction and stability for a significant number of pro-

teinswemade an attempt to provide statistical analysis of their

properties. We found that the maximum size of the domain

is limited by the strength of the intradomain interactions. It

was revealed that the domains of the same protein are usually

of similar size, which increases their stability. Finally the

statistics of interdomain linkages and their role on domain

stability are analyzed.

THEORY AND METHODS

The Gaussian network model

One of the most popular methods of protein dynamics studies is the normal-

mode analysis (NMA) (24,51). This method makes possible an investigation

of the whole spectrum of motions under the assumption of small harmonic

deviations from the local energy minimum. Although limited by this

assumption, NMA nevertheless provides important information about slow

motions, which are not currently accessible by other computational tech-

niques like molecular dynamics simulations. However, conventional NMA is

extremely intensive computationally because of the enormous number of

degrees of freedom in the atomisticmodel of the protein. This numbermaynot

be needed, since it has been shown (52) that the normal modes of the proteins

are relatively insensitive to the small-scale details of the modeled protein

structure and used empirical force fields. Thus, all-atom NMA appears to be

too slow, expensive, and excessively detailed for those applications, where

fine atomic-scale details are not required. That is why several simplified

protein models were suggested for NMA (24,29). Recently the greatly

simplified Gaussian network model (46,47,53–55) became a popular method

of choice in determining the character of large-scale motions in the folded

proteins. A detailed description of GNM can be found elsewhere (46,47).

Here we present only the aspects essential for further analysis.

The GNM can be viewed as an extremely simplified version of NMA,

where realistic potentials of the atom-atom interactions are substituted by

residue-level harmonic potentials (47). The GNM describes the protein as a

network of identical harmonic springs that connect the Ca atoms of the

residues located in close spatial proximity (within cut-off distance rc)

regardless of their positions in the sequence. Equilibrium lengths of the

springs are assumed to be equal to the distances between Ca atoms in the

x-ray structure, and deviations from these distances are considered to be

purely harmonic. Normal modes of such a network of elastic interacting

particles can be computed easily. It has been shown that GNM describes

harmonic motions of folded proteins surprisingly well and produces results

that are often indistinguishable from those of full-scale NMA (47,52).

Using the computed normal modes, the cross-correlations between the

motions of any residue i with the other j, (cij), can be easily calculated in the
GNM. This procedure is described in detail in original GNM articles (46,47)

and in our previous work (48). Here cij is a square matrix of size N, where

N is the number of residues in the protein. This matrix is also used for

domain identification in our HCCP method.

The hierarchical clustering of correlation patterns

Existing methods of domain identification can be classified into two major

classes, those that compare two different conformations of the same proteins

(21,22), and those that analyze a single structure by various techniques

(20,23–30). The methods of the latter group are the most general and are

applicable to any protein with known structure. However, these methods can

produce different domain assignments for different conformations of the same

protein, which means that domain assignment cannot be considered reliable.

To our knowledge, no special attention has been paid to this fact, and no

efforts have been made to improve the reliability of domain assignment by

testing domain identification methods on different conformations of the same

protein. Therefore, the HCCPmethod was designed as a technique that could

allow reliable identification of domains regardless of their spatial position and

orientation in the complex proteins (48). It has been shown that HCCP

produces essentially identical domain assignments for different native

conformations of the same multidomain protein. HCCP makes it possible

to obtain a quantitative description of correlations of motions inside the

domains and cross-correlation of motions of different domains, a feature that

makes this method especially attractive for the study of domain stability and

interdependence. Detailed description of the original HCCP method can be

found in our previous article (48). Here we give a brief description of HCCP

and discuss important improvements introduced to the original method.

HCCP utilizes the correlation matrix cij, obtained from GNM calculations

or from other sources (full-scale NMA, molecular dynamics, essential

dynamics analysis, etc.). This cij contains all information about the corre-

lation of motions that can be extracted from the normal-mode vibrations of

individual residues. However, it has one serious limitation. The cij matrix

contains only pairwise correlations. Thus, only the motions of two selected

residues can be compared to each other, regardless of the motion of the rest

of the protein. Therefore, even small changes in protein structure can lead to

changes in the GNM eigenvectors, which results in a different cij matrix. The

overall structure of the matrix remains essentially the same, but individual

values can change significantly. As a result, according to this changed value

of the pairwise correlation, the same residue can be assigned to different

domains. In other words, domain assignment based on the cij matrix is

sensitive to small variations in the input data.

To eliminate this problem, instead of pairwise correlations we considered

the correlation patterns, the essence of which is that a single kth column (or

row) of the cij matrix contains correlations of the given residue kwith all other

residues in the system (including self-correlation, which is always 1).Wewill

call such a column vector the correlation pattern of the residue k. The new

matrix, the correlation matrix of correlation patterns pij, can be defined as:

pij ¼
1

N
+
N

k¼1

cik3cjk � �cci3�ccj

sisj

;

where �cci is the mean of the ith column of the matrix c, and si is the root

mean square deviation of the ith column of the matrix c. The pij matrix is of

dimension N3N and its elements show to what extent the correlation

patterns of elements i and j are similar in terms of linear correlation. The

matrix pij provides a much more robust way of comparing the motions of

residues than does the conventional correlation matrix cij. Comparing the

correlation patterns, one compares the whole set of correlations of two given

residues with the rest of the protein, not only the pairwise correlations

between them. Small variations in protein structure may change only a few

pairwise correlations without changing the correlations between whole

columns of the cij matrix significantly. Therefore, the results of subsequent

domain assignment will not be sensitive to small changes in protein structure

or in the correlation matrix itself.

At the next step, the residues with similar correlation patterns can be

combined into larger clusters that share the same character of motion. Several

such clusters can be further combined as having weaker motion similarities

and so on. This idea is utilized in the hierarchical clustering procedure we use

to identify the domains. For this purpose, we developed the modified

agglomerative clustering scheme with average linkage. In this scheme, the

most similar clusters aremerged (agglomerated) at each step to produce larger

clusters. Pairwise similarity criteria are applied to all intercluster pairs and
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then averaged to calculate the similarity between the clusters. The details of

the clustering algorithm are as follows:

1. Each amino acid residue of the protein is assigned to be the simplest

cluster of size 1.

2. Minimal vmin and maximal vmax elements of pij are found. The interval
(vmin/vmax) is divided into M bins vmax . v1 . v2 . . . . . vM�1 . vmin

(M ¼ 1000 in this study). The index of the current bin is set to k ¼ 1.

3. The pair of residues whose correlation is pij . vk is found. If no such

pairs exist, then the index of the current bin k is increased by 1 and step

3 is repeated.

4. Residues from the matching pair of residues are merged into a single

cluster. The matrix pij is recalculated by the following rule:

pij ¼
1

mimj

+
k2fMig

+
l2fMjg

pkl; (1)

where mi and mj are the numbers of elements in clusters i and j; Mi and Mj

are the vectors of sizes mi and mj, respectively, which contain the indexes of

the residues in these clusters. In other words, the average correlation of all

intercluster pairs is calculated. (In this study, we will use only p values as a

measure of correlation between two residues or clusters of residues. Thus, for

the sake of simplicitywewill use the term ‘‘correlationof two clusters’’ instead

of ‘‘correlation of the correlation patterns of two clusters’’ henceforth.)

Step 3 is continued until all residues are merged and the whole protein

becomes a single cluster.

Because the values of the correlation pattern matrix p are used in the

clustering procedure, we call this procedure hierarchical clustering of cor-

relations patterns.

The HCCP algorithm used in this study contains several improvements

on the original one (48):

1. A more accurate diagonalization algorithm is used for the eigenvector

search.

2. It was implied that if several pairs meet the criteria at step 3 of the

algorithm, the pair with the largest values of pij is merged first (the pair

that is first in the sequence was used in the previous version).

3. The intercalating segments elimination procedure (ISE), which is

described below, was introduced.

Intercalating segments elimination

In the course of this work, when the large number of proteins was analyzed by

HCCP, the following problem was detected. If one of the domains in a

particular protein contains loops or other segments that protrude to the

interdomain interface, these loops are sometimes assigned to another domain.

We call such incorrectly assigned regions ‘‘intercalating segments’’. The

appearance of intercalating segments is not surprising if the GNM is used to

produce the correlation matrices. The GNM is not based on information on

protein sequence; the residues are considered to be connected if they are

sufficiently close sterically to each other. As a result, the residues in the

protruding loop appear to be connected with both domains by an approx-

imately equal number of harmonic springs. This leads to approximately equal

correlations with both clusters and ambiguous assignment. In our view, this

problem is specific to the GNM and it will not exist if correlation matrices of

different origin (molecular dynamics simulation or all-atom NMA) are used.

Although the number of proteins for which this problem is essential is rather

small (a few dozen out of.2500 studied proteins), some corrective procedure

for avoiding it should be applied on the level of theGNMcorrelationmatrixes.

We call this procedure intercalating segments elimination.

Let us give a strict definition of the intercalating segment first. The

clusters found by the HCCP algorithm on any hierarchical level can be coded

by the vector S~¼ fs1; s2; . . . ; sNg, where N is the number of residues and si
is the index of the cluster, which includes residue i. For example, the clusters

of the first hierarchical level are coded by S~¼ 1; 2; 3; . . . ;N � 1;Nf g and

two clusters of the last hierarchical level can be coded by

S~¼ f1; 1; 1; . . . ; 1; 1; 2; 2; . . . ; 2; 2g. The cluster with index i consists of

mi segments, which are continuous in sequence (mi $ 1). The segment

is called an intercalating segment if

1. sb�1 ¼ se11 ¼ l (the given segment is surrounded in sequence by two

segments of the other cluster j);

2. mi . 1 (the given segment is not the only segment in the cluster i);

3. e� b11,ncr (the given segment is smaller than some critical size).

Here, b and e are the first and last residues in the segment and ncr is a

critical number of residues in the segment. If the segment is larger than this

number, it is excluded from consideration. This allows us to distinguish

between small ambiguously assigned segments and whole domains

surrounded by other domains in sequence. In this work, we used ncr ¼ 10;

however, the procedure is almost insensitive to this value in the range

from 5 to 50 (data not shown). We will call cluster l the enclosing cluster

for the intercalating segment. For example, the coding vector S~¼
f. . . 5; 5; 5; 1; 1; 1; 1; 5; 5; 5; 8; 8; 1; 1 . . .g contains the intercalating segment

in cluster 1. The enclosing cluster is cluster 5.

Intercalating segments can appear and disappear in the course of

hierarchical clustering, but only some of them should be treated as

incorrectly assigned. We propose the following natural criterion: an

intercalating cluster is assigned incorrectly if its motion is correlated more

closely with the motion of the enclosing cluster than with the motion of

its own cluster. To formalize this criterion, we introduce three vectors: S~
ðiÞ
int,

which contains all residues of the intercalating segment from cluster i;
S~
ðiÞ
rest, which contains all the remaining residues from cluster I; and S~

ðjÞ
,

which contains all the residues from the enclosing cluster j. Correlations are

computed by analogy with Eq. 1:

psame ¼
1

NIS3ðmi � NISÞ
+

k2S~ðiÞ
int

+
l2S~ðiÞ

rest

pkl; (2)

pencl ¼
1

NIS3mj

+
k2S~ðiÞ

int

+
l2S~ðjÞ

pkl; (3)

where psame is the correlation of an intercalating segment with its own cluster

and pencl is its correlation with the enclosing cluster; NIS is the number of

residues in the intercalating segment; mi is the number of residues in cluster

i that contain an intercalating segment; mj is the number of residues in

the enclosing cluster; and p is the matrix of correlation patterns on the

hierarchical level in question. The intercalating cluster is assigned incor-

rectly if psame,pencl.

Implementation of ISE into the HCCP algorithm is straightforward.

Simply, the ISE procedure is applied at every step of hierarchical clustering. If

an incorrectly assigned intercalating segment is found, then it is cut out from

its cluster and merged with the enclosing cluster. After that, the p matrix is

updated to accommodate the changes. This procedure is applied until all

incorrectly assigned intercalating segments are reassigned. The time taken by

the ISE procedure is only a small percentage of the total computation time.

The advantages of ISE are illustrated by the domain identification of the

dipeptide-binding protein (dipeptide permease) from Escherichia coli. This

classical hinge-bending protein is crystallized in both closed (PDB code

1DPP) and open (1DPE) conformations. In the open conformation, two well-

defined domains are situated quite far from each other. As a result, HCCP

identifies them correctly without any artifacts (Fig. 1 a). In contrast, in the

closed conformation, HCCP produces an incorrectly assigned loop. This loop

includes residues 408–411 and protrudes into the cleft between domains (Fig.

1 b). It is assigned to the first domain (black), whereas in fact it belongs to the

second domain (gray) that is assigned in the open conformation. As seen in

Fig. 1 c, implementation of the ISE procedure resolves this problem.
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It is necessary to emphasize the difference between the ISE procedure and

the ‘‘refinement’’ or ‘‘post-processing’’ schemes used in other domain iden-

tification algorithms (25–27,30). ISE is based on the same principles as the

HCCP algorithm itself: it compares the correlations between the ‘‘suspi-

cious’’ segment and two clusters, which can contain it. No additional

principles are implemented. Thus it is different from common refinement

schemes that utilize various empirical criteria that are different from the

domain identification criteria and are usually hard to justify.

Comparison of HCCP with other techniques

Dynamic data (correlation matrices) are used in the HCCP method to

identify the domains, which is why it is not practical to compare it with

techniques that are based on static structural information (17,19,20,26) or

comparison of the primary sequences (21). We will focus on the techniques

that are the most similar to our approach.

Several techniques that utilize GNM normal modes or the graph theory

approach were developed recently for domain identification. The method of

automatic domain decomposition developed by Kundu and co-workers (30)

is based on the analysis of a single eigenvector that corresponds to the lowest

nonzero eigenvalue of the GNM. The shape of this eigenvector allows us to

detect the structural regions that move in opposite directions along the

slowest normal mode and assign them to different clusters. These clusters are

postprocessed (‘‘filtered’’) to find the domains. Being very simple and

intuitive, Kundu’s method has several serious limitations.

1. It is limited to the GNM or other methods of normal-mode calculations.

2. Only one normal mode is considered, which leads to considerable loss

of information.

3. The analysis is qualitative: only direction, and not the amplitude of

motion, is used for domain detection; thus, the degree of internal cor-

relation of motions in the cluster cannot be estimated.

4. No hierarchical features, such as rigid subdomains, can be found.

5. The filters applied to initial clusters contain many adjustable parameters

that are hard to justify.

The other very similar method of Sista at al. (56) utilizes the approach

based on graph theory. It is based on the construction of a Laplacian matrix,

which can be built using Ca atoms (in this case, it is identical to the GNM

Kirchhoff matrix) or the side chains of the protein. This matrix is then

diagonalized and the first lowest eigenvector with nonzero eigenvalue is

used for domain identification. Although adjustable cut-off is used for matrix

construction and the shape of the eigenvector is analyzed using a somewhat

different procedure, this method possesses essentially the same limitations as

the previous approach. Since these methods rely on the shape of the single

eigenvector they are likely to be very sensitive to small variations in the

initial connectivity matrix and thus can show large discrepancies in domain

boundaries for different conformations.

The approach most similar to ours is that used by Keskin et al. to study

the functional motions of tubulin (57). In this work, the cluster analysis of

correlation matrix cij was implemented to identify the regions that share the

same motion pattern. This technique is almost identical (except for the

details of the clustering procedure) to the hierarchical clustering of cor-

relations method used in our previous work (48) as a reference point for the

validation of HCCP. The main problem of domain assignment based on the

cij matrix is the sensitivity to those variations of the structure that leave

the domains intact but change their position and orientation (48). In addition,

the changes of the individual pairwise correlations can change the position

of the domain boundary, as discussed above. Introduction of pij matrices in

HCCP allows us to overcome these difficulties.

It is probably due to these limitations that none of the mentioned methods

was tested on different native conformations of the same protein (and to our

knowledge, the same is true for all other proposed techniques). That is why

HCCP is currently the only method of dynamic domain identification, which

was designed and tested to allow reliable identification of intact domains

regardless of their spatial position and orientation.

The major advantages of HCCP are as follows.

1. It is based on the pair-correlation matrices of any origin.

2. Introduction of the correlations of correlation patterns allows one to

eliminate the sensitivity to small variations in the initial correlation

matrix.

3. All normal modes are accounted for if the GNM is used to form the

pair-correlation matrices.

4. The analysis is quantitative: not only the sign, but also the value of

correlation, is used for clustering.

FIGURE 1 Domains identified by the HCCP method in the dipeptide-

binding protein from E. coli (PDB codes 1DPP for the closed form and

1DPE for the open form). The loop containing residues 408–411 is marked

by the dashed oval. (a) Open form. (b) Closed form without ISE (the loop

belongs to the ‘‘dark’’ domain). (c) Closed form with ISE (the loop belongs

to the ‘‘light’’ domain).
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5. Hierarchical clustering allows us to detect substructures of different

levels and estimate their rigidity in terms of internal correlations.

6. No postprocessing steps and adjustable parameters are needed.

Domain stability criterion and determination of
the most plausible number of domains

In the course of HCCP clustering, the system goes through stages with

different numbers of clusters, from N to 1. At what stage can the clusters be

identified as domains? In our previous work (48), we considered well-

defined two-domain proteins only, and this problem did not appear. In this

work, we developed and applied an automatic criterion that determines the

most plausible number of domains in the system. In the course of clustering,

the value of correlation gradually reduces from 1 to �1 in a series of small

discrete intervals (bins). Pairs of clusters with correlation smaller than this

current value of correlation are combined until such pairs are exhausted.

Thus, each bin corresponds to a particular number of clusters in the system,

which is stable on the current level of correlation (none of the existing

clusters can be combined before moving to the next bin). Let us assume, for

example, that the state with M clusters appears on bin number K1 by fusion

of smaller clusters. Some of these M clusters can merge only if the

correlation threshold becomes smaller than their cross-correlation. This

happens on bin number K2 (K2 . K1). In the region between K1 and K2, the

number of clusters in the system remains stable. We call the length of this

region the stability gap, defined as g ¼ K2 � K1.

The stability gap can be interpreted from the physical point of view. The

real protein structure is always perturbed by thermal fluctuations and other

external factors. As a result, all noncovalent bonds in the protein associate

and dissociate stochastically. The probability of finding a particular bond in

its associated state can be estimated roughly using the Kramers reaction rate

theory:

pbond ¼ 1� expð�Ebond=kBTÞ;

where Ebond is the energy of the bond (the difference between the energies in

the associated and dissociated states), kB is the Boltzmann constant, and T is

the absolute temperature. This probability can change from;1 for very strong

bonds ( Ebond=kBT � 0) to nearly zero for very weak ones ( Ebond=kBT � 0).

Some critical value of pcr can be adopted to distinguish between the

‘‘bonded’’ ( pbond . pcr) and ‘‘dissociated’’ ( pbond , pcr) states of each bond
for each given temperature (pbond¼ 0.5 is themost logical choice). Once such

a critical value is assigned, one can say that the bond breaks (or forms) at a

certain critical temperature determined from pcr ¼ 1� expð�Ebond=kBTcrÞ.
These considerations can be applied to define the domains. At ‘‘physiolog-

ical’’ temperature, external factors cannot break relatively strong bonds

between the residues inside the domains, but are likely to destroy weaker

bonds between them. As a result, domains will move as a whole in a

diffusional manner, being relatively independent from each other.

Let us consider the events occurring in the protein on slow lowering of

the temperature. At some critical temperature the thermal fluctuations

become too weak to break the interdomain bonds, and the domains that have

the strongest interdomain interactions ‘‘freeze’’ and begin to move as a

single entity. As a result, the effective number of domains in the protein

becomes smaller. One can also heat the system gradually to increase the

level of fluctuations and observe the opposite picture: larger domains would

break into smaller parts (the domain would ‘‘unfreeze’’). It is evident that the

critical temperatures where the number of domains in the protein will change

are abstract points, where the probabilities of certain interdomain bonds

become equal to pcr. Critical temperatures subdivide the gradual change of

dynamic properties of the protein into several discrete regimes (character-

ized by the number of dynamic domains) according to objective criteria.

There is no abrupt change of the protein dynamics pattern in these points.

In the course of clustering in HCCP, smaller clusters are combined into

larger aggregates as the value of correlation decreases. Thus, lowering the

temperature is in some sense analogous to lowering the correlation threshold

in HCCP. The interval of temperatures at which the effective number of

domains does not change is analogous to the range of domain stability (the

stability gap). However, this analogy is not absolute. In the GNM, the

temperature is a free parameter: it only influences the amplitude of harmonic

motions along the eigenvectors, whereas the correlation patterns are in-

dependent from temperature. As a result, the mapping between temperature

and correlations is somewhat arbitrary. However, this does not change the

qualitative picture: the larger the stability gap, the larger the changes of

temperature that can be tolerated by the proteinwithout changing the effective

number of independently moving domains. Other factors, like pH, salt

concentration, applied pressure, etc., can be considered to produce similar

effects. Thus, the stability gap indicates the extent to which the corresponding

effective number of clusters is resistant to environmental changes.

In this respect, it is important to distinguish between environmental

changes, which only change the effective number of dynamic domains,

leaving the whole protein in its folded state, and those that lead to unfolding.

We assume here that the clustering procedure models only the range of

conditions in which the protein remains folded. It is necessary to emphasize

that the changes in number of dynamic domains (‘‘domain unfreezing’’) are

different from domain melting observed experimentally. In these experi-

ments, independent melting of individual domains of the multidomain

protein was observed at certain temperatures (36,39,41,42). Melting of

domains has the character of phase transition and leads to partial unfolding

of the protein, whereas the events of domain ‘‘unfreezing’’ presume that the

domains remain in their folded state.

We define the most plausible number of domains (NMPN) as the number

of clusters observed in the region of the largest stability gap. The NMPN is the

intrinsic characteristics of the protein, which shows the number of domains

that can characterize it under normal conditions. We can select a different

number of domains, but they would be less stable against temperature

perturbations and other changing conditions, and thus less likely to be

observed. The concept of MPN is illustrated in Fig. 2. The number of

clusters decreases with the decrease of correlation strength. This function has

a number of horizontal regions (‘‘steps’’) that correspond to a particular

number of clusters in the system that are stable in a particular range of

correlations. This range (the length of the ‘‘step’’) is, by definition, a

stability gap for the corresponding number of clusters.

DFIRE potentials

To calculate the energy of domain interaction and the energy of domains itself

we used residue-level knowledge-based DFIRE potentials that proved to be

FIGURE 2 Number of clusters as a function of the bin number for the

UDP-n-acetylglucosamine 2-epimerase from Thermus thermophilus (PDB

code 1V4V). The arrow indicates a horizontal region that corresponds to the

most plausible number of domains.
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quite accurate in determining the native states of various proteins among

decoys (55,56). Their accuracy is comparable to those of empirical all-atom

potentials used in molecular dynamics simulations. DFIRE potentials

describe the pair interaction energy between two residues at a given distance.

Residues are modeled as point objects, ‘‘force centroids’’. There are several

modifications of DFIRE potentials that use different force centroids.We used

the most accurate DFIRE-SCM potential, with the force centroid at the

geometrical center of the heavy side-chain atoms of the residue. In the case of

glycine, which lacks the side chain, the Ca atom is used.

Calculation details

All PDB structures were preprocessed to extract the single chains. Manual

domain assignment data from the web site http://www.bmm.icnet.uk/

;domains/ were converted to machine-readable form. Prepared structures

were analyzed by our HCCP program (available at http://www.geocities.

com/yesint3/hccp.html). The cut-off of 7 Å was adopted. The force constant

in GNM is assumed to be 1 (this value only scales eigenvectors and does

not influence the normalized correlation matrices). All eigenvectors

with nonzero eigenvalues were used for computing the correlation matrices.

The following steps were performed after the hierarchical clustering

procedure.

1. The NMPN and gMPN were determined as described above.

2. The mean intradomain correlation was computed as

pdom ¼ 1

NMPN

+
NMPN

k¼1

1

ðN2

k � NkÞ=2
+

i;j2fDkg;i. j

pij; (4)

where Nk is the number of residues in the kth domain and Dk is a vector

that contains the indexes of the residues from the kth domain.

3. The interdomain correlation was computed as

pint ¼
1

ðN2

MPN � NMPNÞ=2
+

NMPN�1

k¼1

+
NMPN

l¼k1 1

1

NkNl

+
i2fDkg;j2fDlg

pij: (5)

4. Mean intradomain energy per residue was calculated as

Edom ¼ 1

NMPN

+
NMPN

k¼1

1

Nk

+
i;j2fDkg;i. j

EDFIREðsi; sj; rijÞ; (6)

where Nk is the number of residues in the kth domain; EDFIRE is the DFIRE-

SCM energy between the residues of types si and sj, situated at a distance

rij between their force centroids.

5. Mean interdomain energy per residue was calculated as

Eint ¼
1

N
+

NMPN�1

k¼1

+
NMPN

l¼1

+
i2fDkg;j2fDlg

EDFIREðsi; sj; rijÞ (7)

where N is the total number of residues in the protein.

6. The mismatch between the manual domain assignment and HCCP

assignment was calculated for the first set of the test proteins. The

mismatch was computed as a number of residues that are assigned to

different domains by these two methods expressed as a percent of the

total protein size.

All these energies were computed per residue to eliminate the effect of the

variable size of the protein.

It is important to emphasize that the obtained results are not sensitive to the

protein motions as a whole (these motions are described by the eigenvectors

with zero eigenvalues, which are excluded from consideration). Conse-

quently, the sum of all pair correlations in the protein is always zero. It is easy

to see that the sum of pdom and pint is equal to the sum of all pair correlations if

all domains have the same size. In this case, pdom ¼ �pint. It is possible to

show that the deviations from this equality caused by different domain sizes

remain quite small in most cases. Thus, one can expect that pdom � �pint for

almost all proteins except those with rare unusual structures.

All calculations were performed using the modified HCCP program

written in FORTRAN 95. Total computation time for ;2500 proteins is

;6.5 h on a 1.5-GHz PC.

Test proteins

We used two sets of protein structures. The first set, collected from the

protein domain server (http://www.bmm.icnet.uk/;domains/), was used for

comparing the HCCP assignments with the manual ones. Manual assign-

ments in this collection were either made previously in original publications,

or deduced by the authors of this database based on sequence homology with

known proteins. The authors of the corresponding original articles most

frequently used a visual inspection of the structure (the references for each

particular protein are available at the protein domain server). The criteria

used for visual domain identifications were often not specified. Only the

single-chain structures that were marked as two-domain proteins were

selected. The following database entries were excluded from consideration:

1), invalid entries (missed numbers, domains that contain only one residue,

etc.); 2), structures obtained by NMR, because the GNM has not proved to

work well with NMR structures; 3), entries that were replaced by other

structures in later releases of the PDB. This was done because manual

assignments of older data are inconsistent with new entries in the PDB;

4), the number of residues is different, residue indexes do not match, etc. For

every protein crystallized as a multimer, only one of identical subunits was

used. Those proteins for which only Ca atoms or only backbone atoms are

resolved were excluded from energy calculations but still used for domain

assignment. The total number of selected protein structures in this set is 522.

There is a significant number of highly homologous structures among them.

All proteins from this set are presumed to have two domains. To make

the comparison with the manual-assignment data possible, we made our

program consider all proteins on the double-domain level, even if the most

plausible number of domains NMPN was different.

The second set of test proteins was used to perform systematic HCCP

calculations on the representative nonhomologous structures from all major

protein families. We used a subset of all PDB structures that share ,20%

homology and are determined by x-ray diffraction with resolution .2 Å

obtained from the protein-sequence-culling server http://dunbrack.fccc.edu/

PISCES.php (58). All entries contain a single chain (this chain can be a part

of larger complex). No information about domain assignment is available for

these proteins. This set of proteins is the most representative collection of all

major protein folds described in the available databases; it contains no

homologous proteins. Thus, this database is not biased by any manual

selection procedure and is able to reveal fundamental relations between

the correlations, energies, and number of domains in the studied proteins.

The total number of proteins in this set is 2022.

The list of PDB codes of the proteins from both test sets is provided

as Supplementary Material. The databases and the HCCP program itself

are available upon e-mail request addressed to the authors, or from the web

site http://www.geocities.com/yesint3/hccp.html.

RESULTS

Test set 1 (522 manually assigned
two-domain proteins)

Correlation and mismatch between HCCP and
manual assignment

HCCP was developed as an objective automatic method of

domain identification based on the concept of dynamic

domains (48). In contrast, the commonly usedmanual domain
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assignment is based on visual inspection of the static struc-

tural features of the protein, topology, similarity to known

homologous domain structures, and stability or activity of

isolated domains as fragments. Among these methods, visual

inspection of the topology of a polypeptide chain is the most

popular. Because of this difference in concepts we did not

expect exact one-to-one correspondence of the domains found

by these two methods. Meanwhile, analysis of the obtained

data shows that the results on HCCP domain assignment are

quite close to those of manual assignment. The mean

mismatch of all 522 proteins of the first test set is 16.9%.

This correspondence is comparable with the performance of

other automatic domain identification techniques (26). This

signifies that the number of HCCP assignments that coincide

with manual assignments is roughly the same in comparison

with other methods. The observed mismatch is quite signif-

icant, but it must be emphasized that the domain identification

technique, which may exhibit a smaller mismatch with

manual assignment, is not necessarily better. A very small

mismatch would show that the method ‘‘mimics’’ the

peculiarities of human perception during visual assignment

and is likely to reproduce human error as well. In addition, the

two approaches are really very different conceptually, and

clarifying the origin of these differences may permit a deeper

understanding of protein properties.

Therefore, the cases for which the results of domain

analysis by HCCP and manual assignment are different were

most carefully analyzed. Although all proteins from the first

test set are manually assigned as having two domains, the

HCCP procedure identified 116 out of 522 proteins as being

single-domain proteins. We attempted to evaluate the

properties of those proteins at a two-domain level and got

the result that intradomain correlation for all these single-

domain proteins is ,0.6. This is in contrast to the data

obtained for many double-domain proteins that have very

high intradomain correlations of 0.8 or more. In other words,

if the protein that is identified by HCCP as a single-domain

structure is artificially forced to have two domains, these

domains appear to be unresolved. This shows that determi-

nation of the most plausible number of domains in HCCP

works quite well, producing self-consistent results.

Further analysis revealed an interesting relationship be-

tween mismatch within the first test protein set and the mean

intradomain correlation pdom. Fig. 3 shows this mismatch as

a function of pdom. It is clearly seen that the mismatch for

the majority of structures is ,20%. Meanwhile, several

‘‘anomalous’’ structures have very large mismatches of 40%

or more. The histograms linked to Fig. 3 show that double-

domain proteins have an almost exponential distribution

of mismatch values. The most frequently observed are very

small mismatches and only a few proteins have mismatch

.20%. In contrast, the proteins recognized as single-domain

structures have a much broader mismatch distribution, with

the most pronounced peaks near 20%, 45%, and 60%.

Analysis of the proteins (both single- and double-domain)

with large mismatch values shows that they can be roughly

classified into two well-defined classes.

The first class contains proteins that possess long, flexible

unfolded loops or a large content of segments that lack

secondary structure. We call this class proteins with unfolded

segments. These proteins are not unique and their segment

flexibility is often functionally important (59,60). A repre-

sentative example of this class is apolactate dehydrogenase

from Mus musculus (PDB code 2LDX) (51) (Fig. 4). The

reason for very large mismatch in this class of proteins is easy

to understand. Manual structural assignment treats the

compact part of the protein as two closely packed domains

and the flexible loop as a part of the first domain (Fig. 4 a).
In contrast, HCCP accounts for dynamical properties of

the flexible loop. Since the motion of the loop is not corre-

lated with the motion of the compact globule, the loop is

recognized as a separate domain, whereas the globule con-

stitutes another domain (Fig. 4 b). Proteins with unfolded

FIGURE 3 The mismatch as a function of pdom for 522 proteins from test

set 1. The distributions of the single- and double-domain structures are

shown as stacked histograms.

FIGURE 4 (a and b) Domain assignment for apolactate dehydrogenase,

from Mus musculus (PDB code 2LDX): (a) manual assignment; (b) HCCP

assignment. (c and d) Domain assignment for haloalcane dehalogenase from

Xanthobacter autotrophicus (PDB code 2DHC): (c) manual assignment;

(d) HCCP assignment.
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segments are scattered over a wide range of correlation and

mismatch values. This reflects the fact that this group is very

heterogeneous.

The second class of ‘‘anomalous’’ proteins consists of very

compact, almost ‘‘spherical’’ proteins that lack visually

detectable features like weakly bound lobes or well-recog-

nizable domains. A representative example of this class is

haloalcane dehalogenase from Xanthobacter autotrophicus
(PDB code 2DHC) (61) (Fig. 4, c and d). Themost remarkable

feature of the proteins in this class is a very small value of

pdom, which is often ,0.2. This means that in these proteins

the domains are very ‘‘fuzzy’’ and internally highly flexible.

This is a consequence of compact fusion of two domains in the

protein, in which intra- and interdomain interactions are of

similar strength. Due to the lack of visually detectable features

that can be used for manual assignment, such assignment of

structural domains for these proteins is error-prone and often

absolutely different from HCCP assignment.

Thus, based on these mismatch cases, we demonstrate that

our domain assignment is more productive, not only because

it is strongly physically motivated, but because it offers the

possibility of revealing the mechanistic relation between

submolecular structure and function.

Intradomain correlation and stability gap

As stated in ‘‘Methods’’, the stability gap is a certain

extended range of correlations of motions for which the

given set of clusters is stable. The maximal stability gap

gMPN corresponds to the most plausible number of domains

in the protein NMPN under normal conditions. It is obvious

that the stability gap depends on internal stability of the

domains and on their interaction; thus, it is important to

compare the mean intradomain correlation pdom and the

stability gap gMPN values (Fig. 5). We observe that there is a

strong positive correlation between pdom and gMPN. This

reflects the fact that ‘‘tight’’ domains with stronger intra-

domain correlations exhibit broader stability gaps. Since the

stability gap can be interpreted as a range of external factors

in which domains maintain their structure, it is possible to

conclude that domains with large intradomain correlations

maintain stability in a wider range of external conditions.

These data provide further justification of the approach

we used for the determination of the most plausible number

of domains as the stable structures existing in a broad range

of external conditions.

Intradomain correlation and interdomain energy

We analyzed the connection between intradomain correla-

tions and different energy contributions to protein stability.

To do so, we calculated the mean intradomain interaction

energies, interdomain energies, and total energies. To account

for the variation in protein size, the energies per one residue

were obtained. We observed that the scatter of the mean

intradomain energies and total energies is rather chaotic.

These quantities do not correlate with any other computed

parameter, such as inter- and intradomain correlations or

interdomain energy (data not shown). This reflects the

expected result that the energy of an average residue located

in the compact and relatively independent dynamic domain

is independent of other properties of this domain and its

surroundings. In contrast, the interdomain energy shows a

significant correlation with the mean intradomain correlation

(Fig. 6). This statement does not sound logical, but one should

bear in mind that pdom � �pint (see Methods for details).

Thus, for the majority of proteins, the values of intradomain

correlation are equal to the interdomain correlations with the

opposite sign.

It is clear that the stronger is the intradomain correlation, the

smaller is the average interdomain energy. Thus, if the

domains are very compact and independent from each other,

then their interaction isweak and vice versa: if the domains are

‘‘fuzzy’’ and interdependent, then their interaction is strong.

FIGURE 5 Stability gap gMPN as a function of the mean intradomain

correlation pdom for the single-domain (NMPN ¼ 1) and double-domain

(NMPN ¼ 2) proteins from test set 1.

FIGURE 6 Mean interdomain energy Eint as a function of the mean

intradomain correlation pdom for single-domain (NMPN ¼ 1) and double-

domain (NMPN ¼ 2) proteins from test set 1.
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Single-domain proteins on average have lower energies than

double-domain proteins. This is explained by the fact that if

we artificially divide a single-domain protein into two

domains, these domains remain in fact parts of a single

domain with a strong interaction between them.

Test set 2 (2022 nonhomological structures
with unknown domain assignment)

Number of domains

The second test set was used to perform extended HCCP

calculations on proteins from all the major protein families

and reveal the features that are universal for all of them. The

second test set contains 2022 nonhomologous protein chains.

Using HCCP, 1080 of them were identified as having one

domain, 870 as having two domains, 31 as having three

domains, and 39 as having more than three domains. Two

remaining proteins were identified as having two and three

domains, respectively, but one of their domains is the size of

one residue. Closer inspection of our data shows that these

two chains, and also those chains identified as possessing

more than three domains, are surprisingly very short—of

typically .40 residues. Such small proteins lack real intra-

domain structures, and therefore the assignment to them of

three or more domains represented by short-chain segments

would be superficial. Therefore, we conclude that the method

we used to find the most plausible number of domains is

not applicable to these very short proteins (,50 residues).

Treatment of single-domain proteins

Those proteins identified by HCCP in test set 2 as single-

domain structures need special attention. Single-domain

proteins have zero intradomain correlation, because in this

case the domain is the entire protein. The program does not

detect its move as a whole (corresponding GNM eigenvec-

tors with zero eigenvalues are excluded from consideration).

Because only one domain is present, the interdomain

energies are also equal to zero. This means that the useful

properties computed for multidomain proteins cannot be de-

scribed for single-domain proteins and comparison of single-

and multi-domain proteins becomes meaningless.

To avoid this complication, we forced our program to

calculate all correlations and energies for single-domain

proteins at the level of two domains. The single-domain

protein was artificially split into two parts that are less stable

than the single ‘‘native’’ domain. Such treatment allows us

to describe both single- and double-domain proteins using

the same parameters, such as intradomain correlations and

interdomain energies. This allows an effective comparison

of these two sets of proteins and determination of whether

the proposed method of finding the most plausible number

of domains is justified.

The same procedure was used as for test set 1. In this case,

it additionally allows us to compare HCCP domain assign-

ments with the manual assignments available for this set.

Intradomain correlation and stability gap

Fig. 7 shows the stability gap as a function of intradomain

correlation for the proteins from test set 2. The proteins with

one domain, which are artificially split into two parts, form a

tight group with stability gaps ,300 (the stability gap is

measured as the number of bins; see Methods for details) and

intradomain correlations scattered around 0.25–0.3. In con-

trast, the proteins with two and three domains are scattered

along a well-defined line and exhibit very strong correlations

between pdom and gMPN . The three-domain proteins have

systematically lower stability gaps in comparison with the

double-domain proteins with the same pdom.
It is remarkable that there are no multidomain proteins

observed with an intradomain correlation ,0.2.

The same critical value is found in the analysis of proteins

from the first test set. In contrast, a significant amount of the

artificially ‘‘split’’ single-domain proteins have intradomain

correlation,0.2. This shows that ‘‘artificial’’ domains in the

single-domain proteins are different from ‘‘natural’’ domains:

they are less compact and less stable. We can thus conclude

that our procedure for finding the most plausible number of

domains allows us to distinguish between real domains and

subdomains, which are less stable and exhibit much weaker

intradomain correlations.

Intradomain correlation and interdomain energy

The interdomain energies as a function of intradomain cor-

relations are shown in Fig. 8. The scatter of the interdomain

energies per residue is quite large for all the values of

intradomain correlations. However, there is a general trend

showing that the energy of interaction between domains, Eint,

is lower for smaller values of intradomain correlation, pdom.
The same trend is observed for test set 1. Proteins with three

FIGURE 7 Stability gap gMPN as a function of the mean intradomain

correlation pdom for the proteins from test set 2.
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domains have systematically lower Eint than double-domain

proteins with the same value of pdom. This feature is easy to

explain by the fact that proteins with three domains have two

or three domain-domain interfaces, with more interactions

possible, whereas double-domain proteins have only one

interface. Single-domain proteins split into two artificial

domains have, in general, lower interdomain energy than

‘‘natural’’ double-domain proteins. This shows that the do-

mains produced by artificial splitting of protein structure are

strongly bound, which shows that they are in fact the parts of

a single domain.

Statistics of domain sizes and number of
interdomain linkages

The large size of test set 2 and the fact that it contains

representative proteins from all major classes makes it pos-

sible to collect the statistics of various domain properties.

Sinceonly80proteinsof test set 2 havemore than twodomains,

we limit our analysis to 1950 proteins that have one or two

domains. Single-domain proteins were artificially split into

two subdomains, as described above. For each protein, the

following properties were computed: relative sizes of do-

mains in the protein n1;2 ¼ N1;2=N, where n1,2 is the relative
size of domains 1 and 2, respectively, N1,2 is the number of

residues in domains 1 and 2, respectively, andN is the number

of residues in the whole protein. The relative domain size is

the absolute number of residues in the domain divided by N.
Fig. 9 shows the distribution of the relative sizes of

domains. It is clearly seen that this distribution has a sharp

peak at the value of 0.5. This means that in a two-domain

protein the great majority of domains constitute approxi-

mately one-half of the whole protein. Very large (n1,2 . 0.8)

and very small (n1,2 , 0.2) domains are extremely rare. We

need to find an explanation for this intriguing fact. Let us

consider an idealized protein with two domains of sizes N1

and N2. Let us assume that all pair correlations inside the

domains are equal to p0 and all interdomain pair correlations

are equal to p12 (p0 . 0; p12 , 0). As stated above, the sum

of all pair correlations in the protein is zero, so

ðN2

1 � N1Þ
2

p0 1
ðN2

2 � N2Þ
2

p0 1N1N2p12 ¼ 0

or

ða1 1=a� 1=N1 � 1=N2Þp0 ¼ 2jp12j;

where a ¼ N1=N2.

If both domains are large enough, this equality can be

further simplified by neglecting the terms 1/N1,2:

p0 ¼
2jp12j

a1 1=a
:

Let us then assume that p12 is fixed and allow variation of

the ratios of domain sizes a and the intradomain correlations

p0. It is easy to see that maximal value of p0 is achieved for

a ¼ 1. For any other a, the value of p0 will be smaller. The

small values of p0 mean that the domains are very ‘‘fuzzy’’

and unstable. This leads us to an important conclusion: the

domains of similar size ( a � 1) possess maximal stability,

whereas domains of very different size (a is far from 1) are

very unstable. Thus, if the evolutionary pressure selects the

most stable domains, then the majority of proteins should

FIGURE 8 Mean interdomain energy Eint as a function of the mean

intradomain correlation pdom for proteins from test set 2.

FIGURE 9 Distributions of the relative domain sizes (a), absolute domain

sizes (b), and protein sizes (c) for the single- and double-domain proteins

from test set 2.
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have domains of similar size. This conclusion is in perfect

agreement with the data shown in Fig. 9 a. The domains of

similar size (relative size ;0.5) are the most abundant.

Fig. 9 b shows the distribution of absolute domain sizes

and Fig. 9 c the distribution of protein sizes. The most

common protein size, which corresponds to the maxim of

distribution, is 150 residues. Since the majority of domains

constitute one-half of the whole protein, the maximum

distribution of the absolute domain sizes corresponds to 75

residues. Domains of .400 residues are extremely rare,

whereas there are a significant number of proteins larger than

400 residues, because very large proteins typically contain

two domains. This shows that the size of an independent

dynamic domain cannot be .400–500 residues. A possible

explanation for this is the limited strength of the residue-

residue interactions, which are unable to maintain their

integrity in very large domains. In contrast, the number of

very small domains (,50 residues) is significant. This is

because a single element of secondary structure, like short

a-helix or small b-hairpin, can constitute a domain.

Fig. 10 shows the distribution of the number of interdomain

linkages for single- and double-domain proteins from test set

2. The linkages are defined as the places where the chain

crosses the boundary between two domains. If the protein

exhibits a pronounced hinge-bendingmotion, these places are

likely to behave like mechanical hinges. The domains that are

combined by a large number of linkages are likely to be tightly

bound, whereas those with only one or two linkages canmove

more or less freely around them. It is clearly seen, that the

single-domain proteins, which were artificially split into two

subdomains, have on average a much larger number of link-

ages than the double-domain proteins. The maximum of the

distribution is 4 for single-domain proteins and only 1 for

double-domain proteins. This means that because of the

numerous interdomain linkages themotions of subdomains in

the single-domain proteins are interdependent. This observa-

tion correlates perfectly with the fact that the interaction

between the subdomains of single-domain proteins is much

stronger than that between the domains of double-domain

proteins (Fig. 8).

We also studied the dependence of intradomain correlation

on the relative size of domain (Fig. 11). One should expect

that very small domains, which contain only several residues,

are quite compact and thus possess large intradomain

correlation. In contrast, very large ‘‘fuzzy’’ domains are

likely to have smaller intradomain correlation values. Such

trends, visualized by the linear fits, are easily seen in Fig. 11

for both single- and double-domain proteins. The negative

correlation between the intradomain correlation (pdom) and
the relative size of domain (n) for the single-domain proteins

is very strong (�0.73). This means that the compactness of

artificial subdomains of the single-domain proteins depends

strongly on their size. Large subdomains possess many strong

interdomain contacts, which decreases their internal motion

correlation. In contrast, the correlation between pdom and n
for the double-domain proteins is weak (�0.47). This reflects

the fact that the domains of double-domain proteins are

relatively independent and interact with each other weakly. It

is also remarkable that pdom for double domain-proteins is on

average higher than pdom for single-domain-proteins, by 0.2–

0.3 for all domain sizes (the linear fit for double-domain

proteins goes under the corresponding line for single-domain

proteins). This is a clear visual indication of the fact that

the artificial subdomains of the single-domain proteins are not

real dynamic domains because of their small intradomain

correlations.

FIGURE 10 Distribution of the number of hinges for

the single- and double-domain proteins from test set 2.
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DISCUSSION AND SUMMARY

The problemof identifying dynamic domains is addressed in a

number of studies. However, no universally accepted algo-

rithm of domain identification exists to date. Existing

techniques (22–25) usually contain a large number of

parameters and postprocessing procedures (‘‘filters’’), which

often lack clear physical meaning and make the internal logic

of the proposed algorithms quite complex and hard to

understand. Therefore, the results of domain identification

in these techniques depend on the choice of empirical

parameters, which are derived by comparison with some

other domain assignment available for a limited set of test

proteins. This can make the choice of applied parameters

biased and prone to human error. Various postprocessing

filters often utilize principles that are absolutely different from

those used in basic domain identification techniques. They are

purely empirical ‘‘tricks’’ that serve to correct the mistakes of

the basic algorithm.Another problemof existing techniques is

the reliability of results. To our knowledge, no special studies

have been made to show that domain identification made by a

particular automated technique remains the same if some

other conformation of the same protein is used as input. To

solve these problems, the HCCP algorithm was developed. It

was shown (48) that HCCP is a very robust technique that

produces essentially the same domain assignments for

different conformations of the same protein. As an important

step toward further development of this approach, in the

current article we introduce the ICE procedure. This elimi-

nates ambiguity in assignment for those residues that are close

to the hinge regions or interdomain interfaces. The ISE

procedure is fundamentally different from various postpro-

cessing techniques in other methods. It uses the same physical

principle as the HCCP algorithm itself to assign the prob-

lematic residues and requires only one empirical parameter,

which is easy to interpret.

As discussed in the introduction, dynamic domains can be

defined as units that possess strong intradomain interactions

and weak interdomain interactions. This criterion can be

formulated in terms of correlations of motion. The correla-

tions inside the domain should be much stronger than the

correlations between the domains. It is obvious, therefore,

that the dynamic domain is not a strictly defined concept to

satisfy all possible cases of intradomain and interdomain

interactions. To distinguish between separate domains and

parts of the same domain, the cut-off value of correlation has

to be chosen. This value is different for different proteins and

cannot be easily determined. However, in the course of

hierarchical clustering, all correlation values and the do-

mains that correspond to these values are scanned. Thus,

determining the most plausible number of domains in the

proteins is equivalent to finding the cut-off value of

correlation mentioned above.

The number of dynamic domains in a particular protein

depends on external factors like temperature and pH, which

influence the character of motions in the protein. Domains

that determine the functioning of a protein are likely to be

stable in a wide range of external conditions (40). Therefore,

it is logical to assume that the principle of broad-range

stability operates on a larger scale, and it can be used in the

identification of dynamic domains. This simple assumption,

introduced in this article for the first time that we know of,

demonstrates its applicability. It is shown that the number of

dynamic domains found by our technique coincides with the

number of domains found by manual assignment in proteins

that are suitable for visual domain determination (from our

test set 1). These domains can be considered as ‘‘intrinsic’’

for the given protein. The number of intrinsic domains is the

most plausible number of domains that can be observed in

the protein in a relatively broad range of conditions.

Therefore, to find the most plausible number of domains,

one should inspect the correlation of motions, especially

slow collective motions, of a given protein in a wide range of

conditions. It is obvious that this task cannot be performed

by modern computational techniques (like molecular dy-

namics simulations) even for the smallest proteins. We

overcome this problem by using the HCCP hierarchical

clustering technique, in which variation of the level of

correlations is to some extent equivalent to variation of the

external conditions.

The suggested HCCP approach (48) makes it possible to

obtain clusters that can be considered as independently

moving structural blocks at any given level of correlation

between them. As stated in Theory and Methods, the level of

correlation in HCCP can be related to the level of energy of

thermal fluctuations for real proteins. Thus, the hierarchical

clustering is in some sense analogous (but not identical) to

lowering the temperature. The stability gap (the range of

correlations where the number of clusters does not change) is

thus equivalent to the range of temperatures where a given

set of clusters is stable. Therefore, the largest stability gap

FIGURE 11 Dependence of the intradomain correlation on the relative

size of domain for single- and double-domain proteins from test set 2.
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can be chosen for finding the most plausible number of

domains in the system.

We tested our criterion of the most plausible number of

domains by calculating the interdomain correlations and the

energies of interdomain interactions over two large sets of

test proteins. The first test set with manual domain assign-

ment available revealed that our criterion identifies the

majority of double-domain proteins in exact correspondence

with this assignment. The mismatch between manual and

HCCP assignments is quite tolerable. However, some of the

proteins that have two domains according to manual

assignment are identified by HCCP as single-domain

proteins. To verify our result, we treated these proteins as

two-domain structures. The correlations between two ‘‘ar-

tificial’’ domains appear to be very high and the interdomain

interactions are very strong in comparison with the majority

of native double-domain proteins. This indicates that the

‘‘problematic’’ proteins are indeed single-domain structures

and our algorithm works correctly. This makes possible an

important conclusion: the dynamic domains coincide with

the static domains identified by other techniques in many, but

not all, cases.

Our data reveal important trends between the intradomain

correlation, stability gap, and interdomain energy. These

trends are essentially the same for both sets of test proteins.

The stability gap is broader for the higher values of in-

tradomain correlation. This is a direct consequence of the

fact that the domains with strong internal bonds are more

stable and maintain their integrity in a broader range of ex-

ternal conditions. In contrast, interdomain energy decreases

with increase of intradomain correlation. This indicates that

domains with strong internal bonds interact with each other

weakly and vice versa.

This interpretation is proved by analysis in which the

single-domain proteinswere considered at the double-domain

level, which is not native for them. At this level, two domains

show low internal stability and a very strong interaction with

each other, justifying their assignment to a single dynamic

unit. Additionally, proof of this view comes from statistical

analysis of the number of interdomain linkages in the proteins

from test set 2. Single-domain proteins that are artificially split

into two domains have a large number of interdomain

linkages, which impose many constraints on domain motion.

In contrast, real double-domain proteins are typically linked at

only one or two sites, which allows the domains to move

relatively freely around them. In this case, the interdomain

linkages can be viewed as mechanical hinges.

It is shown that the interdomain correlations of individual

domains depend on the relative size of domain (the number

of residues in the domain divided by the number of residues

in the whole protein). ‘‘Artificial’’ domains of the single-

domain proteins possess lower interdomain correlations than

real domains of the double-domain proteins for all domain

sizes. This reflects their lower stability and higher interde-

pendence.

Our approach allows us to simplify computational work at

the cost of atomic detail. This made it possible for the first

time that we know of to apply the concept of dynamic

domains for domain identification to a significant number

(2548) of proteins and to find several interesting correlations.

Statistical analysis of our data revealed that the majority of

double-domain proteins possess domains of very similar size

(the domain boundary splits the protein into two almost

equal parts). Based on our analysis we found a simple

explanation for this fact, namely that domains of similar size

are the most stable, whereas domains of very different size

become very ‘‘fuzzy’’ and unstable. We can conclude from

the abundance of proteins with domains of similar size that

the evolutionary pressure tends to select domains with the

highest compactness and stability.

We also revealed that very large domains (.400–500

residues) are extremely rare. This indicates that the

interdomain interactions cannot support the integrity of

very large aggregates. Another possible explanation comes

from the fact that the domains are also folding units. It is

plausible that very large domains cannot fold effectively and

thus are eliminated by evolutionary pressure.

Introduction of the intradomain correlation function

makes possible a quantitative measure of interdependence

of domain motions. According to our data, no proteins that

possess more than one domain have an intradomain

correlation ,0.2. In contrast, if single-domain proteins

are considered at the two-domain level, the intradomain

correlation is often (but not always),0.2, but always,0.6.

From these data, we can formulate the following simple

rule: if the mean internal correlation inside the given

structural blocks, pdom, is ,0.2, these blocks cannot be

considered as independent dynamic domains. If pdom . 0.6,

these blocks are the domains with almost completely

independent mobility. Finally, if 0.2 , pdom , 0.6, the

blocks are likely to be domains that are only partially

independent.

The results on calculations of domain assignments for all

proteins from both test sets can be used by the research

community for studies of structure, dynamics, and function

of individual proteins and, particularly, for extracting from

protein databases the structures with desired domain com-

position and interactions. We believe that with the aid of

these data the results of limited proteolysis of proteins, which

is used for obtaining protein fragments containing intact and

active domains, will become more predictable. Our approach

will also help in manipulating protein domains on a genetic

level. To make all the data presented here available, we

compiled two databases that represent two sets of test pro-

teins. Each database entry contains information about the

most plausible number of domains, stability gap, intra- and

interdomain correlations and DFIRE energies, and the bound-

aries of domains in a format that is readable by both humans

and machines.

Analysis of our data produces the following conclusions:
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1. Improved HCCP technique, which includes the ISE

algorithm, identifies the most plausible number of do-

mains and their boundaries with high accuracy.

2. The most plausible number of domains in a given protein

can be determined using the principle of the largest

stability gap. The domain, found by using this concept

are likely to maintain their integrity in the widest range of

physical conditions and thus are most likely to be ob-

served in a real protein at native conditions.

3. The mean intradomain correlation pdom can be used as a

quantitative criterion of domain independence and sta-

bility. According to this criterion, proteins can be separated

into two groups: those possessing ‘‘fuzzy’’ domains with

weak intradomain bonds (0.2 , pdom , 0.6) and those

with almost independent (very well separated) domains

with very strong intradomain and very weak interdomain

interactions (pdom . 0.6). No multidomain proteins with

pdom , 0.2 were identified. If such small values are

observed for domains assigned by other methods, this

assignment might represent not dynamic domains but a

single-domain structure.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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